A Cognitive Anycast Routing Method for Delay-Tolerant Networks
Abstract
:1. Introduction
2. Related Works
3. Anycast Routing
3.1. CSG Routing Method
3.1.1. Spiking Neuron Model
3.1.2. Cognitive Network Controller
3.1.3. CNC Learning
3.2. Anycast CSG Routing
3.2.1. Anycast group semantics
3.2.2. Optimal Anycast Bundle Forwarding
Algorithm 1 Prepare contact plan. |
|
Algorithm 2 Create contact graph |
|
Algorithm 3 Search feasible routes |
|
4. Evaluation Testbed
5. Performance Measurements
5.1. Scenario 1: Homogeneous Propagation Delays and Random Packet Drops
5.2. Scenario 2: Earth–Moon Scenario
5.3. Scenario 3: Regular Link Disruptions
5.4. Anycast Group Size
6. Conclusions
Funding
Conflicts of Interest
Abbreviations
BER | Bit Error Rate |
CGR | Contact Graph Routing |
CL | Convergence Layer |
CCSDS | Consultative Committee for Space Data Systems |
CNC | Cognitive Network Controller |
CSG | Cognitive Space Gateway |
DTN | Delay-Tolerant Networking |
LIF | Leaky-Integrate-and-Fire |
LTP | Licklider Transmission Protocol |
SNN | Spiking Neural Network |
UTP | Unshielded Twisted Pair |
References
- Fu, Q.; Rutter, B.; Li, H.; Zhang, P.; Hu, C.; Pan, T.; Huang, Z.; Hou, Y. Taming the Wild: A Scalable Anycast-Based CDN Architecture (T-SAC). IEEE J. Sel. Areas Commun. 2018, 36, 2757–2774. [Google Scholar] [CrossRef]
- Xue, J.; Dang, W.; Wang, H.; Wang, J.; Wang, H. Evaluating Performance and Inefficient Routing of an Anycast CDN. In Proceedings of the 2019 IEEE/ACM 27th International Symposium on Quality of Service (IWQoS), Phoenix, AZ, USA, 24–25 June 2019; pp. 1–10. [Google Scholar]
- Bakiras, S. Approximate server selection algorithms in content distribution networks. In Proceedings of the 2005 IEEE International Conference on Communications (ICC 2005), Seoul, Korea, 16–20 May 2005; Volume 3, pp. 1490–1494. [Google Scholar] [CrossRef]
- Tran, H.A.; Mellouk, A.; Hoceini, S.; Perez, J. User-centric Content Distribution Network architecture. In Proceedings of the 2012 Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), St. Petersburg, Russia, 3–5 October 2012; pp. 343–350. [Google Scholar]
- de Vries, W.B.; Schmidt, R.d.O.; Pras, A. Anycast and Its Potential for DDoS Mitigation. In Management and Security in the Age of Hyperconnectivity; Badonnel, R., Koch, R., Pras, A., Drašar, M., Stiller, B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 147–151. [Google Scholar]
- Taghizadeh, S.; Elbiaze, H.; Bobarshad, H. EM-RPL: Enhanced RPL for Multigateway Internet-of-Things Environments. IEEE Internet Things J. 2021, 8, 8474–8487. [Google Scholar] [CrossRef]
- Davis, F.; Marquart, J.; Israel, D.J. A DTN-Based Multiple Access Fast Forward Service for the NASA Space Network. In Proceedings of the 2011 IEEE Fourth International Conference on Space Mission Challenges for Information Technology, Palo Alto, CA, USA, 2–4 August 2011; pp. 64–65. [Google Scholar] [CrossRef] [Green Version]
- Lent, R. An Anycast Service with Cognitive DTN Routing. In Proceedings of the 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), New Delhi, India, 14–17 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Pachler, N.; del Portillo, I.; Crawley, E.F.; Cameron, B.G. An Updated Comparison of Four Low Earth Orbit Satellite Constellation Systems to Provide Global Broadband. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Coutinho, R.W.L.; Boukerche, A. North Atlantic Right Whales Preservation: A New Challenge for Internet of Underwater Things and Smart Ocean-Based Systems. IEEE Instrum. Meas. Mag. 2021, 24, 61–67. [Google Scholar] [CrossRef]
- Usman, O.B.; Knopp, A. Digital Predistortion in High Throughput Satellites: Architectures and Performance. IEEE Access 2021, 9, 42291–42304. [Google Scholar] [CrossRef]
- Ahmed, T.; Ferrus, R.; Fedrizzi, R.; Sallent, O.; Kuhn, N.; Dubois, E.; Gelard, P. Satellite Gateway Diversity in SDN/NFV-enabled satellite ground segment systems. In Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21–25 May 2017; pp. 882–887. [Google Scholar]
- Quibus, L.; Le Mire, V.; Queyrel, J.; Castanet, L.; Féral, L. Rain Attenuation Estimation with the Numerical Weather Prediction Model WRF: Impact of Rain Drop Size Distribution for a Temperate Climate. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Burleigh, S.; Hooke, A.; Torgerson, L.; Fall, K.; Cerf, V.; Durst, B.; Scott, K.; Weiss, H. Delay-tolerant networking: An approach to interplanetary Internet. IEEE Commun. Mag. 2003, 41, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Araniti, G.; Bezirgiannidis, N.; Birrane, E.; Bisio, I.; Burleigh, S.; Caini, C.; Feldmann, M.; Marchese, M.; Segui, J.; Suzuki, K. Contact graph routing in DTN space networks: Overview, enhancements and performance. IEEE Commun. Mag. 2015, 53, 38–46. [Google Scholar] [CrossRef]
- Lent, R. A Neuromorphic Architecture for Disruption Tolerant Networks. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Lent, R.; Brooks, D.; Clark, G. Validating the Cognitive Network Controller on NASA’s SCaN Testbed. In Proceedings of the 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 554–559. [Google Scholar]
- Lent, R. A Cognitive Network Controller Based on Spiking Neurons. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Lines, A.; Joshi, P.; Liu, R.; McCoy, S.; Tse, J.; Weng, Y.; Davies, M. Loihi Asynchronous Neuromorphic Research Chip. In Proceedings of the 2018 24th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), Vienna, Austria, 13–16 May 2018; pp. 32–33. [Google Scholar]
- Sommese, R.; Bertholdo, L.; Akiwate, G.; Jonker, M.; van Rijswijk-Deij, R.; Dainotti, A.; Claffy, K.; Sperotto, A. MAnycast2: Using Anycast to Measure Anycast. In Proceedings of the ACM Internet Measurement Conference (IMC ’20), New York, NY, USA, 27–29 October 2020; pp. 456–463. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, X.; Yin, X.; Wang, Z.; Zhou, X. The Understanding and Forecast of AS-Level Anycast Path Inflation. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Bertholdo, L.M.; Ceron, J.M.; Granville, L.Z.; Moura, G.C.M.; Hesselman, C.; van Rijswijk-Deij, R. BGP Anycast Tuner: Intuitive Route Management for Anycast Services. In Proceedings of the 2020 16th International Conference on Network and Service Management (CNSM), Izmir, Turkey, 2–6 November 2020; pp. 1–7. [Google Scholar] [CrossRef]
- McQuistin, S.; Uppu, S.P.; Flores, M. Taming Anycast in the Wild Internet. In Proceedings of the Internet Measurement Conference (IMC ’19), New York, NY, USA, 21–23 October 2019; pp. 165–178. [Google Scholar] [CrossRef] [Green Version]
- Hao, F.; Zegura, E.W.; Ammar, M.H. QoS routing for anycast communications: Motivation and an architecture for DiffServ networks. IEEE Commun. Mag. 2002, 40, 48–56. [Google Scholar]
- Zaumen, W.T.; Vutukury, S.; Garcia-Luna-Aceves, J.J. Load-balanced anycast routing in computer networks. In Proceedings of the Fifth IEEE Symposium on Computers and Communications (ISCC 2000), Antibes-Juan Les Pins, France, 3–6 July 2000; pp. 566–574. [Google Scholar]
- Bathula, B.G.; Vokkarane, V.M.; Lai, C.P.; Bergman, K. Load-Aware Anycast Routing in IP-over-WDM Networks. In Proceedings of the 2011 IEEE International Conference on Communications (ICC), Kyoto, Japan, 5–9 June 2011; pp. 1–6. [Google Scholar]
- Li, Y.; Han, Z.; Gu, S.; Zhuang, G.; Li, F. Dyncast: Use Dynamic Anycast to Facilitate Service Semantics Embedded in IP address. In Proceedings of the 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR), Paris, France, 7–10 June 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Zegura, E.W.; Ammar, M.H.; Fei, Z.; Bhattacharjee, S. Application-layer anycasting: A server selection architecture and use in a replicated Web service. IEEE/ACM Trans. Netw. 2000, 8, 455–466. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, T.; Zhang, X.; Kaiwartya, O.; Eiza, M.H.; Putrus, G. Toward Anycasting-Driven Reservation System for Electric Vehicle Battery Switch Service. IEEE Syst. J. 2019, 13, 906–917. [Google Scholar] [CrossRef] [Green Version]
- Velusamy, G.; Lent, R. An Adaptive Approach for Demand-Response and Latency Control in Distributed Web Services. In Proceedings of the 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Kim, J.; Lin, X.; Shroff, N.B.; Sinha, P. Minimizing Delay and Maximizing Lifetime for Wireless Sensor Networks With Anycast. IEEE/ACM Trans. Netw. 2010, 18, 515–528. [Google Scholar]
- Zhao, Z.; Min, G.; Dong, W.; Liu, X.; Gao, W.; Gu, T.; Yang, M. Exploiting Link Diversity for Performance-Aware and Repeatable Simulation in Low-Power Wireless Networks. IEEE/ACM Trans. Netw. 2020, 28, 2545–2558. [Google Scholar] [CrossRef]
- Fall, K. A Delay-tolerant Network Architecture for Challenged Internets. In Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications, New York, NY, USA, 25–29 August 2003; pp. 27–34. [Google Scholar] [CrossRef] [Green Version]
- Le, T.; Gerla, M. Social-Distance based anycast routing in Delay Tolerant Networks. In Proceedings of the 2016 Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Vilanova i la Geltru, Spain, 20–22 June 2016; pp. 1–7. [Google Scholar]
- Le, T.; Gerla, M. An anycast routing strategy with time constraint in delay tolerant networks. In Proceedings of the 2017 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Budva, Montenegro, 28–30 June 2017; pp. 1–6. [Google Scholar]
- Net, M.S.; Burleigh, S. Evaluation of Opportunistic Contact Graph Routing in Random Mobility Environments. In Proceedings of the 2018 6th IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Huntsville, AL, USA, 11–13 December 2018; pp. 183–188. [Google Scholar]
- Zeng, D.; Teng, C.; Yao, H.; Liang, Q.; Hu, C.; Yan, X. Stochastic Analysis of Epidemic Routing Based Anycast in Throwbox-Equipped DTNs. In Proceedings of the 2014 IEEE 8th International Symposium on Embedded Multicore/Manycore SoCs, Aizu-Wakamatsu, Japan, 23–25 September 2014; pp. 77–81. [Google Scholar]
- Gong, Y.; Xiong, Y.; Zhang, Q.; Zhang, Z.; Wang, W.; Xu, Z. WSN12-3: Anycast Routing in Delay Tolerant Networks. In Proceedings of the IEEE Globecom 2006, San Francisco, CA, USA, 27 November–1 December 2006; pp. 1–5. [Google Scholar]
- Hadi, F.; Shah, N.; Syed, A.H.; Yasin, M. Effect of Group Size on Anycasting with Receiver Base Forwarding in Delay Tolerant Networks. In Proceedings of the 2007 International Conference on Electrical Engineering, Lahore, Pakistan, 11–12 April 2007; pp. 1–4. [Google Scholar]
- Rosa da Silva, E.; Guardieiro, P.R. Anycast routing in Delay Tolerant Networks using genetic algorithms for route decision. In Proceedings of the 2008 11th International Conference on Computer and Information Technology, Khulna, Bangladesh, 24–27 December 2008; pp. 65–71. [Google Scholar]
- Gerstner, W.; Kistler, W. Spiking Neuron Models: An Introduction; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Lent, R. Evaluation of Cognitive Routing for the Interplanetary Internet. In Proceedings of the 2020 IEEE Global Communications Conference (GLOBECOM 2020), Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- ION-DTN.The Interplanetary Overlay Network (ION) Software Distribution. Available online: https://sourceforge.net/projects/ion-dtn (accessed on 27 April 2021).
- Krishnamachari, B.; Wicker, S.B.; Béjar, R.; Pearlman, M. Critical Density Thresholds in Distributed Wireless Networks. In Communications, Information and Network Security; Springer: Boston, MA, USA, 2003; pp. 279–296. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
SNN simulation time, step | 100 ms |
SNN simulation step | 0.5 ms |
Time constant () | 10 ms |
Resistance (R) | 10 M |
Maximum depolarization (spike voltage) | 35 mV |
Spike fire threshold () | −50 mV |
Reset | −90 mV |
Rest | −70 mV |
Bootstrap current () | 2.1 nA |
Random walk probability () | 0.1 |
Learning factor () | 0.1 |
Smoothing factor () | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lent, R. A Cognitive Anycast Routing Method for Delay-Tolerant Networks. Network 2021, 1, 116-131. https://doi.org/10.3390/network1020008
Lent R. A Cognitive Anycast Routing Method for Delay-Tolerant Networks. Network. 2021; 1(2):116-131. https://doi.org/10.3390/network1020008
Chicago/Turabian StyleLent, Ricardo. 2021. "A Cognitive Anycast Routing Method for Delay-Tolerant Networks" Network 1, no. 2: 116-131. https://doi.org/10.3390/network1020008
APA StyleLent, R. (2021). A Cognitive Anycast Routing Method for Delay-Tolerant Networks. Network, 1(2), 116-131. https://doi.org/10.3390/network1020008