Maximizing the Extraction of Bioactive Compounds from Diospyros kaki Peel through the Use of a Pulsed Electric Field and Ultrasound Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample and Extract Preparation
2.3. Design of the Experiment and the Response Surface Methodology (RSM) Optimization
2.4. Sample Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Extraction Optimization
3.2. Total Polyphenol Content of the Extracts
3.3. Content of Rutin and Other Polyphenols in the Extracts
3.4. Antioxidant Properties of the Extracts
3.5. Total Carotenoid Content (TCC) of the Extracts
3.6. Ascorbic Acid Content of the Extracts
3.7. Principal Component Analysis (PCA) and Multivariate Correlation Analysis (MCA)
3.8. Partial Least Squares (PLS) Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rauf, A.; Uddin, G.; Patel, S.; Khan, A.; Halim, S.A.; Bawazeer, S.; Ahmad, K.; Muhammad, N.; Mubarak, M.S. Diospyros, an under-utilized, multi-purpose plant genus: A review. Biomed. Pharmacother. 2017, 91, 714–730. [Google Scholar] [CrossRef] [PubMed]
- Kosseva, M.R.; Joshi, V.K.; Panesar, P.S. Science and Technology of Fruit Wine Production; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128008508. [Google Scholar]
- Bibi, N.; Khattak, A.B.; Mehmood, Z. Quality improvement and shelf life extension of persimmon fruit (Diospyros kaki). J. Food Eng. 2007, 79, 1359–1363. [Google Scholar] [CrossRef]
- Zheng, Q.L.; Nakatsuka, A.; Itamura, H. Involvement of negative feedback regulation in wound-induced ethylene synthesis in “Saijo” persimmon. J. Agric. Food Chem. 2006, 54, 5875–5879. [Google Scholar] [CrossRef] [PubMed]
- Intrigliolo, D.S.; Visconti, F.; Bonet, L.; Parra, M.; Besada, C.; Abrisqueta, I.; Rubio, J.S.; de Paz, J.M. Persimmon (Diospyros kaki) Trees Responses to Restrictions in Water Amount and Quality. In Water Scarcity and Sustainable Agriculture in Semiarid Environment; Elsevier: Amsterdam, The Netherlands, 2018; pp. 149–177. ISBN 9780128131640. [Google Scholar]
- Rashwan, M.R.; Khalifa, A.H.; Abo Zeiad, F.K.; Mohamed, M.I. Nutrient and Phytochemical Compounds of Persimmon and Husk Tomato. Assiut J. Agric. Sci. 2017, 48, 102–112. [Google Scholar] [CrossRef]
- Dommisch, H.; Kuzmanova, D.; Jönsson, D.; Grant, M.; Chapple, I. Effect of micronutrient malnutrition on periodontal disease and periodontal therapy. Periodontol. 2000 2018, 78, 129–153. [Google Scholar] [CrossRef] [PubMed]
- Shikano, H.; Miyama, Y.; Ikeda, R.; Takeshi, H.; Suda, J.; Yoshinaga, K.; Taira, S. Localization analysis of multiple vitamins in dried persimmon (Diospyros kaki) using matrix-assisted laser desorption/ionization mass spectrometry imaging. J. Oleo Sci. 2020, 69, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Celik, A.; Ercisli, S. Persimmon cv. Hachiya (Diospyros kaki Thunb.) fruit: Some physical, chemical and nutritional properties. Int. J. Food Sci. Nutr. 2008, 59, 599–606. [Google Scholar] [CrossRef]
- Direito, R.; Rocha, J.; Sepodes, B.; Eduardo-Figueira, M. From Diospyros kaki L. (Persimmon) Phytochemical Profile and Health Impact to New Product Perspectives and Waste Valorization. Nutrients 2021, 13, 3283. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Luo, Z.; Sun, J.; Li, L.; Yin, X.; Li, J.; Xu, Y. Effects of inside-out heat-shock via microwave on the fruit softening and quality of persimmon during postharvest storage. Food Chem. 2021, 349, 129161. [Google Scholar] [CrossRef]
- Yokozawa, T.; Kim, Y.A.; Kim, H.Y.; Lee, Y.A.; Nonaka, G. ichiro Protective effect of persimmon peel polyphenol against high glucose-induced oxidative stress in LLC-PK1 cells. Food Chem. Toxicol. 2007, 45, 1979–1987. [Google Scholar] [CrossRef]
- Dong, Y.; Yu, X.; Ye, X.; Gao, Z.; Wang, S.; Qu, S. Current status and perspective of persimmon research in China. Technol. Hortic. 2022, 2, 4. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I. Optimization of the Extraction Parameters for the Isolation of Bioactive Compounds from Orange Peel Waste. Sustainability 2022, 14, 13926. [Google Scholar] [CrossRef]
- Butt, M.S.; Sultan, M.T.; Aziz, M.; Naz, A.; Ahmed, W.; Kumar, N.; Imran, M. Persimmon (Diospyros kaki) fruit: Hidden phytochemicals and health claims. EXCLI J. 2015, 14, 542–561. [Google Scholar] [CrossRef] [PubMed]
- Bozkir, H.; Rayman Ergün, A.; Serdar, E.; Metin, G.; Baysal, T. Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrason. Sonochem. 2019, 54, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Dash, K.K.; Bhagya Raj, G.V.S. Ultrasound assisted microwave vacuum drying of persimmon fruit: Modeling by artificial neural network and optimization by genetic algorithm. J. Food Process Eng. 2023, 46, e14315. [Google Scholar] [CrossRef]
- Yoo, D.I.; Shin, Y. Application of persimmon (Diospyros kaki L.) peel extract in indigo dyeing as an eco-friendly alternative reductant. Fash. Text. 2020, 7, 28. [Google Scholar] [CrossRef]
- Picot-Allain, C.; Mahomoodally, M.F.; Ak, G.; Zengin, G. Conventional versus green extraction techniques—A comparative perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. [Google Scholar] [CrossRef]
- Koina, I.M.; Sarigiannis, Y.; Hapeshi, E. Green Extraction Techniques for the Determination of Active Ingredients in Tea: Current State, Challenges, and Future Perspectives. Separations 2023, 10, 121. [Google Scholar] [CrossRef]
- Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Bozinou, E.; Ntourtoglou, G.; Batra, G.; Athanasiadis, V.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Use of Pulsed Electric Field as a Low-Temperature and High-Performance “Green” Extraction Technique for the Recovery of High Added Value Compounds from Olive Leaves. Beverages 2021, 7, 45. [Google Scholar] [CrossRef]
- Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Athanasiadis, V.; Bozinou, E.; Ntourtoglou, G.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Optimization of Pulsed Electric Field as Standalone “Green” Extraction Procedure for the Recovery of High Value-Added Compounds from Fresh Olive Leaves. Antioxidants 2021, 10, 1554. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Pappas, V.M.; Palaiogiannis, D.; Chatzimitakos, T.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Pulsed Electric Field-Based Extraction of Total Polyphenols from Sideritis raiseri Using Hydroethanolic Mixtures. Oxygen 2022, 2, 91–98. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kotsou, K.; Bozinou, E.; Lalas, S.I. Response Surface Optimization for the Enhancement of the Extraction of Bioactive Compounds from Citrus limon Peel. Antioxidants 2023, 12, 1605. [Google Scholar] [CrossRef] [PubMed]
- Kotsou, K.; Stoikou, M.; Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Sfougaris, A.I.; Lalas, S.I. Enhancing Antioxidant Properties of Prunus spinosa Fruit Extracts via Extraction Optimization. Horticulturae 2023, 9, 942. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Kotsou, K.; Palaiogiannis, D.; Lalas, S.I. Optimization of Extraction Parameters for Enhanced Recovery of Bioactive Compounds from Quince Peels Using Response Surface Methodology. Foods 2023, 12, 2099. [Google Scholar] [CrossRef] [PubMed]
- Lakka, A.; Grigorakis, S.; Kaltsa, O.; Karageorgou, I.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D.P. The effect of ultrasonication pretreatment on the production of polyphenol-enriched extracts from Moringa oleifera L. (drumstick tree) using a novel bio-based deep eutectic solvent. Appl. Sci. 2020, 10, 220. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kotsou, K.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I. Optimized Isolation Procedure for the Extraction of Bioactive Compounds from Spent Coffee Grounds. Appl. Sci. 2023, 13, 2819. [Google Scholar] [CrossRef]
- Al-Amiery, A.A.; Al-Majedy, Y.K.; Kadhum, A.A.H.; Mohamad, A.B. Hydrogen peroxide scavenging activity of novel coumarins synthesized using different approaches. PLoS ONE 2015, 10, e0132175. [Google Scholar] [CrossRef]
- Jagota, S.K.; Dani, H.M. A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal. Biochem. 1982, 127, 178–182. [Google Scholar] [CrossRef]
- Hosseininejad, S.; González, C.M.; Hernando, I.; Moraga, G. Valorization of Persimmon Fruit Through the Development of New Food Products. Front. Food Sci. Technol. 2022, 2, 914952. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Palaiogiannis, D.; Poulianiti, K.; Bozinou, E.; Lalas, S.I.; Makris, D.P. Extraction of Polyphenolic Antioxidants from Red Grape Pomace and Olive Leaves: Process Optimization Using a Tailor-Made Tertiary Deep Eutectic Solvent. Sustainability 2022, 14, 6864. [Google Scholar] [CrossRef]
- Xi, W.; Lu, J.; Qun, J.; Jiao, B. Characterization of phenolic profile and antioxidant capacity of different fruit part from lemon (Citrus limon Burm.) cultivars. J. Food Sci. Technol. 2017, 54, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as Active Ingredients for Cosmetic Products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Ratz-Yko, A.; Arct, J.; Majewski, S.; Pytkowska, K. Influence of polyphenols on the physiological processes in the skin. Phytother. Res. 2015, 29, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, R.H.; Halim, L. Antioxidant and antiproliferative activities of common edible nut seeds. LWT 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Sentandreu, E.; Cerdán-Calero, M.; Halket, J.M.; Navarro, J.L. Rapid screening of low-molecular-weight phenols from persimmon (Diospyros kaki) pulp using liquid chromatography/UV-visible/electrospray mass spectrometry analysis. J. Sci. Food Agric. 2015, 95, 1648–1654. [Google Scholar] [CrossRef] [PubMed]
- Tsurunaga, Y.; Takahashi, T.; Nagata, Y. Production of persimmon and mandarin peel pastes and their uses in food. Food Sci. Nutr. 2021, 9, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Burillo, S.; Oliveras, M.J.; Quesada, J.; Rufián-Henares, J.A.; Pastoriza, S. Relationship between composition and bioactivity of persimmon and kiwifruit. Food Res. Int. 2018, 105, 461–472. [Google Scholar] [CrossRef]
- Korkmaz, A.; Kolankaya, D. Protective effect of rutin on the ischemia/reperfusion induced damage in rat kidney. J. Surg. Res. 2010, 164, 309–315. [Google Scholar] [CrossRef]
- Chen, S.S.; Gong, J.; Liu, F.-T.; Mohammed, U. Naturally occurring polyphenolic antioxidants modulate IgE-mediated mast cell activation. Immunology 2000, 100, 471–480. [Google Scholar] [CrossRef]
- Chan, H.J.; Ji, Y.L.; Chul, H.C.; Chang, J.K. Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Arch. Pharm. Res. 2007, 30, 1599–1607. [Google Scholar] [CrossRef]
- Satari, A.; Ghasemi, S.; Habtemariam, S.; Asgharian, S.; Lorigooini, Z. Rutin: A Flavonoid as an Effective Sensitizer for Anticancer Therapy; Insights into Multifaceted Mechanisms and Applicability for Combination Therapy. Evid. Based Complement. Altern. Med. 2021, 2021, 9913179. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, R.; Singh, A.; Upadhyay, A.; Singh, R.; Thangalakshmi, S.; Dar, A.H.; Bajpai, V.K.; Shukla, S. Exotic god fruit, persimmon (Diospyros kaki): Pharmacological importance and human health aspects. eFood 2023, 4, e52. [Google Scholar] [CrossRef]
- Leontowicz, H.; Gorinstein, S.; Lojek, A.; Leontowicz, M.; Číž, M.; Soliva-Fortuny, R.; Park, Y.S.; Jung, S.T.; Trakhtenberg, S.; Martin-Belloso, O. Comparative content of some bioactive compounds in apples, peaches and pears and their influence on lipids and antioxidant capacity in rats. J. Nutr. Biochem. 2002, 13, 603–610. [Google Scholar] [CrossRef]
- Lee, Y.A.; Cho, E.J.; Yokozawa, T. Protective effect of persimmon (Diospyros kaki) peel proanthocyanidin against oxidative damage under H2O2-induced cellular senescence. Biol. Pharm. Bull. 2008, 31, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Muñoz, A.; Sánchez-Hernández, S.; Samaniego-Sánchez, C.; Giménez-Martínez, R.; Olalla-Herrera, M. Differences in the phenolic profile by uplc coupled to high resolution mass spectrometry and antioxidant capacity of two Diospyros kaki varieties. Antioxidants 2021, 10, 31. [Google Scholar] [CrossRef]
- Direito, R.; Reis, C.; Roque, L.; Gonçalves, M.; Sanches-Silva, A.; Gaspar, M.M.; Pinto, R.; Rocha, J.; Sepodes, B.; Rosário Bronze, M.; et al. Phytosomes with Persimmon (Diospyros kaki L.) Extract: Preparation and Preliminary Demonstration of In Vivo Tolerability. Pharmaceutics 2019, 11, 296. [Google Scholar] [CrossRef]
- Pu, F.; Ren, X.L.; Zhang, X.P. Phenolic compounds and antioxidant activity in fruits of six Diospyros kaki genotypes. Eur. Food Res. Technol. 2013, 237, 923–932. [Google Scholar] [CrossRef]
- Taheri, Y.; Suleria, H.A.R.; Martins, N.; Sytar, O.; Beyatli, A.; Yeskaliyeva, B.; Seitimova, G.; Salehi, B.; Semwal, P.; Painuli, S.; et al. Myricetin bioactive effects: Moving from preclinical evidence to potential clinical applications. BMC Complement. Med. Ther. 2020, 20, 241. [Google Scholar] [CrossRef]
- Maulidiani, M.; Abdul-Hamid, N.A.; Abas, F.; Park, Y.S.; Park, Y.K.; Kim, Y.M.; Gorinstein, S. Detection of bioactive compounds in persimmon (Diospyros kaki) using UPLC-ESI-Orbitrap-MS/MS and fluorescence analyses. Microchem. J. 2019, 149, 103978. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, A.; Wang, X.; Sun, H. A kaempferol-3-O-β-D-glucoside, intervention effect of astragalin on estradiol metabolism. Steroids 2019, 149, 108413. [Google Scholar] [CrossRef]
- Yaqub, S.; Farooq, U.; Shafi, A.; Akram, K.; Murtaza, M.A.; Kausar, T.; Siddique, F. Chemistry and Functionality of Bioactive Compounds Present in Persimmon. J. Chem. 2016, 2016, 3424025. [Google Scholar] [CrossRef]
- Grygorieva, O.; Kucharska, A.Z.; Piórecki, N.; Klymenko, S.; Vergun, O.; Brindza, J. Antioxidant activities and phenolic compounds in fruits of various genotypes of American persimmon (Diospyros virginiana L.). Acta Sci. Pol. Technol. Aliment. 2018, 17, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.N.; Fan, J.F.; Yue, X.; Wu, X.R.; Li, L.T. Radical scavenging activity and phenolic compounds in persimmon (Diospyros kaki L. cv. Mopan). J. Food Sci. 2008, 73, C24–C28. [Google Scholar] [CrossRef] [PubMed]
- Zehiroglu, C.; Ozturk Sarikaya, S.B. The importance of antioxidants and place in today’s scientific and technological studies. J. Food Sci. Technol. 2019, 56, 4757–4774. [Google Scholar] [CrossRef] [PubMed]
- Carpena, M.; Garcia-Oliveira, P.; Pereira, A.G.; Soria-Lopez, A.; Chamorro, F.; Collazo, N.; Jarboui, A.; Simal-Gandara, J.; Prieto, M.A. Plant Antioxidants from Agricultural Waste: Synergistic Potential with Other Biological Properties and Possible Applications. In Plant Antioxidants and Health; Springer: Cham, Switzerland, 2022; ISBN 9783030781606. [Google Scholar]
- De Ancos, B.; Gonzalez, E.; Cano, M.P. Effect of high-pressure treatment on the carotenoid composition and the radical scavenging activity of persimmon fruit purees. J. Agric. Food Chem. 2000, 48, 3542–3548. [Google Scholar] [CrossRef]
- Gorinstein, S.; Zachwieja, Z.; Folta, M.; Barton, H.; Piotrowicz, J.; Zemser, M.; Weisz, M.; Trakhtenberg, S.; Màrtín-Belloso, O. Comparative contents of dietary fiber, total phenolics, and minerals in persimmons and apples. J. Agric. Food Chem. 2001, 49, 952–957. [Google Scholar] [CrossRef]
- Fukushima, Y.; Taguchi, C.; Kishimoto, Y.; Kondo, K. Japanese carotenoid database with α- and β-carotene, β-cryptoxanthin, lutein, zeaxanthin, lycopene, and fucoxanthin and intake in adult women. Int. J. Vitam. Nutr. Res. 2023, 93, 42–53. [Google Scholar] [CrossRef]
- Karaman, S.; Toker, Ö.S.; Yüksel, F.; Çam, M.; Kayacier, A.; Dogan, M. Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: Technique for order preference by similarity to ideal solution to determine optimum concentration. J. Dairy Sci. 2014, 97, 97–110. [Google Scholar] [CrossRef]
- Kondo, S.; Yoshikawa, H.; Katayama, R. Antioxidant activity in astringent and non-astringent persimmons. J. Hortic. Sci. Biotechnol. 2004, 79, 390–394. [Google Scholar] [CrossRef]
Independent Variables | Code Units | Coded Variable Level | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Technique | X1 | ST | PEF + ST | US + ST | PEF + US + ST | – |
C (%, v/v) | X2 | 0 | 25 | 50 | 75 | 100 |
t (min) | X3 | 30 | 60 | 90 | 120 | 150 |
T (°C) | X4 | 20 | 35 | 50 | 65 | 80 |
Design Point | Independent Variables | Responses | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | Rutin (μg/g) | TPC (mg GAE/g) | FRAP (μmol AAE/g) | DPPH (μmol AAE/g) | H2O2 (μmol AAE/g) | Asc. Acid (mg/g) | TCC (μg CtE/g) | |
1 | 3 | 1 | 3 | 4 | 93.25 | 3.24 | 20.16 | 5.58 | 15.72 | 0.96 | 6.41 |
2 | 3 | 2 | 1 | 3 | 140.17 | 6.28 | 35.44 | 19.95 | 17.08 | 2.27 | 19.19 |
3 | 2 | 3 | 4 | 3 | 150.18 | 6.30 | 38.61 | 27.54 | 25.66 | 2.13 | 8.00 |
4 | 2 | 4 | 5 | 4 | 160.59 | 5.78 | 37.19 | 29.93 | 25.39 | 2.94 | 127.65 |
5 | 3 | 5 | 4 | 2 | 150.57 | 5.46 | 42.19 | 19.89 | 28.65 | 4.89 | 366.24 |
6 | 4 | 1 | 4 | 5 | 108.53 | 2.73 | 18.28 | 6.75 | 17.01 | 1.53 | 35.67 |
7 | 4 | 2 | 3 | 1 | 141.95 | 5.35 | 24.07 | 14.08 | 15.46 | 1.62 | 51.86 |
8 | 1 | 3 | 3 | 2 | 160.50 | 6.47 | 36.82 | 26.98 | 24.85 | 2.24 | 19.12 |
9 | 1 | 4 | 4 | 1 | 163.85 | 5.55 | 32.63 | 22.81 | 22.66 | 2.11 | 57.45 |
10 | 1 | 5 | 1 | 4 | 162.24 | 5.40 | 26.68 | 21.29 | 26.29 | 5.34 | 389.84 |
11 | 1 | 1 | 2 | 3 | 107.61 | 3.90 | 21.20 | 16.76 | 17.70 | 1.70 | 57.36 |
12 | 1 | 2 | 5 | 5 | 158.96 | 5.58 | 40.01 | 29.54 | 15.54 | 2.59 | 3.51 |
13 | 4 | 3 | 2 | 4 | 157.34 | 5.60 | 27.05 | 15.93 | 25.22 | 1.39 | 22.32 |
14 | 3 | 4 | 2 | 5 | 164.24 | 4.86 | 28.74 | 22.64 | 33.01 | 2.65 | 121.95 |
15 | 2 | 5 | 3 | 5 | 149.57 | 3.47 | 21.28 | 14.43 | 31.02 | 3.40 | 326.15 |
16 | 2 | 1 | 1 | 1 | 91.90 | 2.55 | 10.09 | 5.78 | 22.34 | 0.62 | 4.16 |
17 | 2 | 2 | 2 | 2 | 133.96 | 5.77 | 34.56 | 21.48 | 24.08 | 2.05 | 13.09 |
18 | 3 | 3 | 5 | 1 | 154.32 | 5.75 | 31.40 | 34.29 | 24.05 | 2.17 | 19.51 |
19 | 4 | 4 | 1 | 2 | 159.05 | 6.19 | 34.73 | 8.02 | 28.04 | 2.93 | 58.50 |
20 | 4 | 5 | 5 | 3 | 156.13 | 4.72 | 30.84 | 26.79 | 33.03 | 4.74 | 382.41 |
Design Point | Independent Variables | Responses (μg/g) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | GA | PCA | CFA | pCA | FA | QG | KR | KG | MYR | |
1 | 3 | 1 | 3 | 4 | 54.62 | 12.41 | 22.65 | 13.94 | 29.99 | 8.39 | 58.62 | 26.35 | 18.04 |
2 | 3 | 2 | 1 | 3 | 10.28 | nd | 22.22 | 12.14 | 50.97 | 11.58 | 74.31 | 37.99 | 17.41 |
3 | 2 | 3 | 4 | 3 | 8.41 | 9.05 | 21.72 | 11.87 | 53.37 | 11.87 | 75.64 | 43.96 | 17.39 |
4 | 2 | 4 | 5 | 4 | 8.76 | 9.69 | 21.55 | 11.93 | 54.43 | 11.61 | 76.56 | 49.64 | 17.33 |
5 | 3 | 5 | 4 | 2 | 8.85 | 8.78 | 21.86 | 11.64 | 53.65 | 11.04 | 70.69 | 40.16 | 17.12 |
6 | 4 | 1 | 4 | 5 | 15.27 | 10.00 | 22.88 | 13.55 | 40.75 | 7.57 | 60.65 | 39.73 | 17.01 |
7 | 4 | 2 | 3 | 1 | nd * | 76.85 | 22.65 | 12.46 | 50.45 | 12.05 | 73.82 | 35.91 | 17.64 |
8 | 1 | 3 | 3 | 2 | nd | 16.29 | 22.48 | 11.70 | 56.21 | 12.78 | 80.11 | 43.44 | 17.46 |
9 | 1 | 4 | 4 | 1 | nd | 12.05 | 21.80 | 11.60 | 55.81 | 12.16 | 78.31 | 41.99 | 17.41 |
10 | 1 | 5 | 1 | 4 | nd | nd | 19.86 | 11.49 | 53.71 | 9.62 | 71.29 | 41.94 | 16.88 |
11 | 1 | 1 | 2 | 3 | nd | 12.50 | 22.40 | 13.79 | 39.75 | 9.96 | 65.63 | 29.70 | 17.65 |
12 | 1 | 2 | 5 | 5 | 46.48 | 12.94 | 20.88 | 13.12 | 53.86 | 10.82 | 68.55 | 55.59 | 16.86 |
13 | 4 | 3 | 2 | 4 | 11.74 | 17.44 | 21.93 | 11.88 | 54.99 | 12.10 | 74.88 | 42.56 | 16.93 |
14 | 3 | 4 | 2 | 5 | 15.38 | 13.08 | 21.35 | 12.15 | 54.82 | 11.77 | 76.75 | 52.19 | 17.45 |
15 | 2 | 5 | 3 | 5 | 10.21 | 10.65 | 20.12 | 12.01 | 51.99 | 9.97 | 68.64 | 50.20 | 16.29 |
16 | 2 | 1 | 1 | 1 | 8.99 | 11.25 | 21.33 | 12.41 | 37.73 | 7.00 | 53.81 | 25.08 | 17.17 |
17 | 2 | 2 | 2 | 2 | 28.97 | 12.12 | 21.65 | 12.20 | 47.60 | 9.95 | 67.85 | 33.83 | 17.19 |
18 | 3 | 3 | 5 | 1 | nd | 15.87 | 22.25 | 11.83 | 54.99 | 11.97 | 77.35 | 41.25 | 17.17 |
19 | 4 | 4 | 1 | 2 | nd | 11.51 | 21.62 | 11.55 | 55.32 | 12.29 | 75.45 | 42.33 | 17.07 |
20 | 4 | 5 | 5 | 3 | 8.52 | nd | 19.53 | 11.52 | 52.22 | 8.91 | 67.89 | 40.21 | 16.64 |
Responses | Second-Order Polynomial Equations (Models) | R2 | p | Equation |
---|---|---|---|---|
Rutin | Y = 55.94 − 19.28X1 + 93.3X2 − 29.42X3 + 6.54X4 + 3.64X12 − 12.27X22 − 0.42X32 + 3.86X42 − 0.77X1X2 + 4.73X1X3 − 4.72X1X4 + 4.16X2X3 − 5.1X2X4 + 0.82X3X4 | 0.9847 | 0.0013 | (2) |
TPC | Y = −3.47 + 0.48X1 + 6.38X2 − 2.06X3 + 2.25X4 − 0.04X12 − 0.83X22 − 0.06X32 − 0.01X42 − 0.12X1X2 + 0.35X1X3 − 0.42X1X4 + 0.27X2X3 − 0.46X2X4 + 0.1X3X4 | 0.949 | 0.0235 | (3) |
FRAP | Y = −39.09 + 10.4X1 + 49.14X2 − 18.74X3 + 15.43X4 − 2.53X12 − 5.8X22 − 1.11X32 + 0.98X42 − 0.12X1X2 + 3.49X1X3 − 3.54X1X4 + 2.56X2X3 − 5.46X2X4 + 1.82X3X4 | 0.9421 | 0.0313 | (4) |
DPPH | Y = −1.4 − 6.98X1 + 34.34X2 − 18.64X3 + 7.66X4 − 0.67X12 − 5.45X22 + 0.51X32 + 1.21X42 + 0.41X1X2 + 3.93X1X3 − 2.1X1X4 + 2.1X2X3 − 2.21X2X4 − 0.21X3X4 | 0.9433 | 0.0299 | (5) |
H2O2 | Y = 36.36 − 5.37X1 − 0.19X2 + 3.02X3 − 9.32X4 − 1.35X12 − 0.07X22 − 0.1X32 − 0.19X42 + 1.92X1X2 + 0.53X1X3 + 1.95X1X4 − 1.55X2X3 + 1.23X2X4 + 0.49X3X4 | 0.9682 | 0.0078 | (6) |
Ascorbic acid | Y = −0.83 − 0.03X1 + 3.67X2 − 3.16X3 + 1.46X4 − 0.1X12 − 0.29X22 − 0.04X32 + 0.18X42 − 0.04X1X2 + 0.62X1X3 − 0.47X1X4 + 0.27X2X3 − 0.55X2X4 + 0.17X3X4 | 0.9366 | 0.0383 | (7) |
TCC | Y = 34.27 − 5.2X1 + 63.98X2 − 195.12X3 + 85.7X4 − 0.55X12 + 8.74X22 − 10.52X32 + 15.56X42 − 9.32X1X2 + 45.75X1X3 − 37.4X1X4 + 28.45X2X3 − 29.51X2X4 + 8.83X3X4 | 0.9644 | 0.0102 | (8) |
Responses | Optimal Conditions | ||||
---|---|---|---|---|---|
Maximum Predicted Response | Technique (X1) | C (%, v/v) (X2) | t (min) (X3) | T (°C) (X4) | |
Rutin (μg/g) | 172.86 ± 11.93 | ST (1) | 50 (3) | 120 (4) | 65 (4) |
TPC (mg GAE/g) | 7.17 ± 1.16 | ST (1) | 50 (3) | 90 (3) | 50 (3) |
FRAP (μmol AAE/g) | 47.75 ± 9.97 | PEF + ST (2) | 75 (4) | 90 (3) | 35 (2) |
DPPH (μmol AAE/g) | 34.29 ± 9.87 | US + ST (3) | 50 (3) | 150 (5) | 20 (1) |
H2O2 (μmol AAE/g) | 35.57 ± 4.79 | US + ST (3) | 100 (5) | 120 (4) | 65 (4) |
Ascorbic acid (mg/g) | 4.93 ± 1.58 | US + ST (3) | 100 (5) | 150 (5) | 35 (2) |
TCC (μg CtE/g) | 386.47 ± 118.99 | ST (1) | 100 (5) | 60 (2) | 65 (4) |
Variables | PLS Model Values | Experimental Values |
---|---|---|
Rutin (μg/g) | 155.52 | 156.76 ± 8.15 |
TPC (mg GAE/g) | 5.33 | 5.74 ± 0.21 |
FRAP (μmol AAE/g) | 37.08 | 38.1 ± 0.52 |
DPPH (μmol AAE/g) | 28.23 | 29.96 ± 0.22 |
H2O2 (μmol AAE/g) | 30.3 | 34.17 ± 3.06 |
Ascorbic acid (mg/g) | 5.19 | 6.22 ± 0.86 |
TCC (μg CtE/g) | 392.17 | 399.07 ± 22.75 |
Polyphenolic Compounds (μg/g) | Optimal Extract |
---|---|
Gallic acid | 8.19 ± 0.46 |
Protocatechuic acid | Not detected |
Caffeic acid | 21.43 ± 1.54 |
p-Coumaric acid | 11.82 ± 0.31 |
Ferulic acid | 51.25 ± 1.08 |
Quercetin 3-β-D-glucoside | 5.62 ± 0.19 |
Kaempferol 3-O-β-rutinoside | 68.88 ± 3.24 |
Kaempferol 3-glycoside | 36.74 ± 2.2 |
Myricetin | 16.96 ± 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Kotsou, K.; Palaiogiannis, D.; Lalas, S.I. Maximizing the Extraction of Bioactive Compounds from Diospyros kaki Peel through the Use of a Pulsed Electric Field and Ultrasound Extraction. Biomass 2023, 3, 422-440. https://doi.org/10.3390/biomass3040025
Athanasiadis V, Chatzimitakos T, Bozinou E, Kotsou K, Palaiogiannis D, Lalas SI. Maximizing the Extraction of Bioactive Compounds from Diospyros kaki Peel through the Use of a Pulsed Electric Field and Ultrasound Extraction. Biomass. 2023; 3(4):422-440. https://doi.org/10.3390/biomass3040025
Chicago/Turabian StyleAthanasiadis, Vassilis, Theodoros Chatzimitakos, Eleni Bozinou, Konstantina Kotsou, Dimitrios Palaiogiannis, and Stavros I. Lalas. 2023. "Maximizing the Extraction of Bioactive Compounds from Diospyros kaki Peel through the Use of a Pulsed Electric Field and Ultrasound Extraction" Biomass 3, no. 4: 422-440. https://doi.org/10.3390/biomass3040025
APA StyleAthanasiadis, V., Chatzimitakos, T., Bozinou, E., Kotsou, K., Palaiogiannis, D., & Lalas, S. I. (2023). Maximizing the Extraction of Bioactive Compounds from Diospyros kaki Peel through the Use of a Pulsed Electric Field and Ultrasound Extraction. Biomass, 3(4), 422-440. https://doi.org/10.3390/biomass3040025