Cropping Flax for Grain and Fiber: A Case-Study from Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location, Soil, Climate, and Plant Material
2.2. Experimental Procedure
2.3. Statistical Analysis
- Treatment effect: This accounts for the differences between the treatments being compared.
- Block effect: This represents the variation among the blocks, which are groups of experimental units that are similar in some aspect but may differ from one another.
- Error term: This captures the random variability or unexplained variation within each block.
- -
- Y(ij) is the response variable for the (i)th treatment in the (j)th block;
- -
- µ is the overall mean;
- -
- τ_i is the effect of the (i)th treatment;
- -
- β_j is the effect of the (j)th block;
- -
- ε(ij) is the random error term.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daneshmandi, M.; Sahebi, H.; Ashayeri, J. The Incorporated Environmental Policies and Regulations into Bioenergy Supply Chain Management: A Literature Review. Sci. Total Environ. 2022, 820, 153202. [Google Scholar] [CrossRef]
- Duarah, P.; Haldar, D.; Patel, A.K.; Dong, C.D.; Singhania, R.R.; Purkait, M.K. A Review on Global Perspectives of Sustainable Development in Bioenergy Generation. Bioresour. Technol. 2022, 348, 126791. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Aghbashlo, M.; Tabatabaei, M. Life Cycle Assessment of Bioenergy Product Systems: A Critical Review. e-Prime-Adv. Electr. Eng. Electron. Energy 2021, 1, 100015. [Google Scholar] [CrossRef]
- Schipfer, F.; Mäki, E.; Schmieder, U.; Lange, N.; Schildhauer, T.; Hennig, C.; Thrän, D. Status of and Expectations for Flexible Bioenergy to Support Resource Efficiency and to Accelerate the Energy Transition. Renew. Sustain. Energy Rev. 2022, 158, 112094. [Google Scholar] [CrossRef]
- Feng, Y.; Tao, L.; Zheng, Z.; Huang, H.; Lin, F. Upgrading Agricultural Biomass for Sustainable Energy Storage: Bioprocessing, Electrochemistry, Mechanism. Energy Storage Mater. 2020, 31, 274–309. [Google Scholar] [CrossRef]
- Saleem, M. Possibility of Utilizing Agriculture Biomass as a Renewable and Sustainable Future Energy Source. Heliyon 2022, 8, e08905. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Monti, A. Energy Crops in Rotation. A Review. Biomass Bioenergy 2011, 35, 12–25. [Google Scholar] [CrossRef]
- Fiala, M.; Bacenetti, J. Model for the Economic, Energy and Environmental Evaluation in Biomass Productions. J. Agric. Eng. 2012, 43, e5. [Google Scholar] [CrossRef]
- Duca, D.; Toscano, G.; Pedretti, E.F.; Riva, G. Sustainability of Sunflower Cultivation for Biodiesel Production in Central Italy According to the Renewable Energy Directive Methodology. J. Agric. Eng. 2013, 44, 175–180. [Google Scholar] [CrossRef]
- Babu, S.; Singh Rathore, S.; Singh, R.; Kumar, S.; Singh, V.K.; Yadav, S.K.; Yadav, V.; Raj, R.; Yadav, D.; Shekhawat, K.; et al. Exploring Agricultural Waste Biomass for Energy, Food and Feed Production and Pollution Mitigation: A Review. Bioresour. Technol. 2022, 360, 127566. [Google Scholar] [CrossRef]
- Koçar, G.; Civaş, N. An Overview of Biofuels from Energy Crops: Current Status and Future Prospects. Renew. Sustain. Energy Rev. 2013, 28, 900–916. [Google Scholar] [CrossRef]
- López-Bellido, L.; Wery, J.; López-Bellido, R.J. Energy Crops: Prospects in the Context of Sustainable Agriculture. Eur. J. Agron. 2014, 60, 1–12. [Google Scholar] [CrossRef]
- Cherubini, F. The Biorefinery Concept: Using Biomass Instead of Oil for Producing Energy and Chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Fahd, S.; Fiorentino, G.; Mellino, S.; Ulgiati, S. Cropping Bioenergy and Biomaterials in Marginal Land: The Added Value of the Biorefinery Concept. Energy 2011, 37, 79–93. [Google Scholar] [CrossRef]
- Wang, L.; Agyemang, S.; Amini, H.; Shahbazi, G. Mathematical Modeling of Production and Biorefinery of Energy Crops. Renew. Sustain. Energy Rev. 2015, 43, 530–544. [Google Scholar] [CrossRef]
- Rahimi, V.; Shafiei, M. Techno-Economic Assessment of a Biorefinery Based on Low-Impact Energy Crops: A Step towards Commercial Production of Biodiesel, Biogas, and Heat. Energy Convers. Manag. 2019, 183, 698–707. [Google Scholar] [CrossRef]
- Clauser, N.M.; Felissia, F.E.; Area, M.C.; Vallejos, M.E. A Framework for the Design and Analysis of Integrated Multi-Product Biorefineries from Agricultural and Forestry Wastes. Renew. Sustain. Energy Rev. 2021, 139, 110687. [Google Scholar] [CrossRef]
- Ravasio, N.; Galasso, I.; Ottolina, G.; Sacchi, M.; Speranza, G.; Tonin, C. A Biorefinery Model Based on Flax and Hemp Crops. La Chim. e L’industria 2013, 95, 113. [Google Scholar]
- Masella, P.; Martinelli, T.; Galasso, I. Agronomic Evaluation and Phenotypic Plasticity of Camelina sativa Growing in Lombardia, Italy. Crop Pasture Sci. 2014, 65, 453–460. [Google Scholar] [CrossRef]
- Heller, K.; Sheng, Q.C.; Guan, F.; Alexopoulou, E.; Hua, L.S.; Wu, G.W.; Jankauskienė, Z.; Fu, W.Y. A Comparative Study between Europe and China in Crop Management of Two Types of Flax: Linseed and Fibre Flax. Ind. Crops Prod. 2015, 68, 24–31. [Google Scholar] [CrossRef]
- Angelini, L.G.; Tavarini, S.; Antichi, D.; Foschi, L.; Mazzoncini, M. On-Farm Evaluation of Seed Yield and Oil Quality of Linseed (Linum usitatissimum L.) in Inland Areas of Tuscany, Central Italy. Ital. J. Agron. 2016, 11, 199–202. [Google Scholar] [CrossRef]
- Tavarini, S.; Angelini, L.; Casadei, N.; Spugnoli, P.; Lazzeri, L. Agronomical Evaluation and Chemical Characterization of Linum usitatissimum L. as Oilseed Crop for Bio-Based Products in Two Environments of Central and Northern Italy. Ital. J. Agron. 2016, 11, 122. [Google Scholar] [CrossRef]
- Bauer, P.J.; Stone, K.C.; Foulk, J.A.; Dodd, R.B. Irrigation and Cultivar Effect on Flax Fiber and Seed Yield in the Southeast USA. Ind. Crops Prod. 2015, 67, 7–10. [Google Scholar] [CrossRef]
- Rashwan, E.A.; Mousa, A.; El Sabagh, A.; Barutçular, C. Yield and Quality Traits of Some Flax Cultivars as Influenced by Different Irrigation Intervals. J. Agric. Sci. 2016, 8, 226–240. [Google Scholar] [CrossRef]
- Dey, P.; Mahapatra, B.S.; Negi, M.S.; Singh, S.P.; Paul, J.; Pramanick, B. Seeding Density and Nutrient Management Practice Influence Yield; Quality and Nutrient Use Efficiency of Flax Grown under Sub-Tropical Humid Himalayan Tarai. Ind. Crops Prod. 2022, 178, 114616. [Google Scholar] [CrossRef]
- Flax Council of Canada. Growing Flax (Production, Management & Diagnostic Guide). 2016. Available online: https://www.saskflax.com/quadrant/media/Pdfs/Growing%20Flax/150101_FCOC-growers-guide-v11.pdf (accessed on 4 May 2023).
Treviglio (BG) | Cavriana (MN) | |
---|---|---|
Geographic coordinates *# | N 45°32′43″; E 9°35′00″ | N 45°18′49″; E 10°36′43″ |
Position *# | flat | flat |
Altitude (m asl) *# | 125 | 70 |
Temperature max (°C) *# | 35 | 33 |
Temperature average (°C) *# | 14 | 12 |
Temperature min (°C) *# | −11 | −9 |
Humidity (%) *# | 70 | 71 |
pH | 7.6 | 8.4 |
Soil texture (%) λ | sand: 62.5 silt: 18.0 clay: 19.5 type: sandy-clay | sand: 64.5 silt: 20.0 clay: 15.5 type: sandy-silt |
Organic matter %dw λ | 0.60 | 0.86 |
Nitrogen (g/100 g) λ | 0.10 | 0.12 |
N ammonia (mg/kg dw) λ | 14.00 | 27.1 |
N nitric (mg/kg dw) λ | 6.05 | 19.5 |
P2O5 (mg/kg dw) λ | 149.00 | 688 |
K2O (mg/kg dw) λ | 119.00 | 150 |
Rain (mm) a | ||||||
2011 | 2012 | Average over 2013–2023 for Treviglio c | ||||
Cavriana | Treviglio | Cavriana | Treviglio | 95.0% Uper Confidence Limit | 95.0% Lower Confidence Limit | |
March | 77.8 | 66.2 | 0.4 | 1.6 | 105.8 | 12.4 |
April | 3.4 | 15.0 | 88.6 | 155.0 | 98.2 | 45.3 |
May | 20.8 | 106.2 | 84.2 | 95.6 | 168.4 | 67.7 |
June | 90.2 | 170.2 | 23.4 | 86.2 | 120.3 | 30.7 |
July | 40.0 | 126.4 | 4.6 | 28.0 | 117.1 | 41.1 |
August | 15.4 | 69.0 | 18.0 | 15.8 | 115.4 | 44.0 |
September | 45.6 | 115.5 | 112.4 | 90.0 | 113.7 | 28.4 |
Total | 293.2 | 668.5 | 331.6 | 472.2 | - | - |
Temperature (C°) b | ||||||
2011 | 2012 | Average over 2013–2023 for Treviglio c | ||||
Cavriana | Treviglio | Cavriana | Treviglio | 95.0% Uper Confidence Limit | 95.0% Lower Confidence Limit | |
March | 9.0 | 9.9 | 13.9 | 14.1 | 16.1 | 11.9 |
April | 16.0 | 17.4 | 12.7 | 12.3 | 21.0 | 17.1 |
May | 20.1 | 19.8 | 18.1 | 17.8 | 25.2 | 20.5 |
June | 22.0 | 22.2 | 23.5 | 22.7 | 32.0 | 26.2 |
July | 23.4 | 23.5 | 25.2 | 24.0 | 32.7 | 28.2 |
August | 25.4 | 26.0 | 26.0 | 24.8 | 31.8 | 27.4 |
September | 22.0 | 21.8 | 19.9 | 18.9 | 26.9 | 23.2 |
Mean | 19.7 | 20.1 | 19.9 | 19.3 | - | - |
Location | ||||
---|---|---|---|---|
Cavriana | Treviglio | |||
Season | 2011 | 2012 | 2011 | 2012 |
Crop precession | corn | barley–soy | corn | |
Pre-seeding tillage | spring plowing at 30 cm + 2 harrowing | |||
Date of sowing | 31 March | 14 March | 31 March | 14 March |
Orientation | north–south | |||
Parcel size and planting layout | 19.8 m2; 10 rows 11 m long, spaced at 0.16 m | |||
Investment | 600 seed m−2 | |||
Pre-sowing fertilization | 15 March | 3 March | absent | |
N: 58 kg | N: 69 kg | - | ||
P2O5: 69 kg | P2O5: 83 kg | - | ||
K2O: 90 kg | K2O: 72 kg | - | ||
Top dressing | 03 May | 30 April | 03 May | 2 May |
N: 67 kg | N: 50 kg | N: 54 kg | N: 67 kg | |
Pre-emergence weed control | Afalon DS 0.7 L ha−1, manual distribution | |||
Post-emergence weed control | 1 | 2 | 1 | |
Pesticide treatments | absent | |||
Irrigation | surface flooding | surface flooding | ||
n° 3 intervention | n° 4 intervention |
Number of Days from Sowing | Vegetative Period (Days) | Flowering Period (Days) | |||
---|---|---|---|---|---|
Emergence | Flowering | Ripening | |||
Sowing on 31-March-2011 | |||||
Cavriana | 14 | 61 | 102 | 47 | 23 |
Treviglio | 21 | 92 | 151 | 71 | 18 |
Sowing on 14-March-2012 | |||||
Cavriana | 27 | 71 | 116 | 44 | 17 |
Treviglio | 22 | 81 | 135 | 59 | 22 |
Parameter | Unit | Mean | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|
Grain yield | t ha−1 dw | 1.399 | 0.681 | 49 |
Straw yield | t ha−1 dw | 2.769 | 0.871 | 31 |
Plant density | n plant m−2 | 387 | 79 | 20 |
Total above-ground biomass | t ha−1 dw | 6.363 | 1.827 | 29 |
Potential seed | t ha−1 dw | 1.907 | 0.805 | 42 |
Seed moisture | % w w−1 | 7.0 | 1.4 | 20 |
Average plant height | mm | 611.6 | 93.0 | 15 |
Average height first branch | mm | 377.1 | 81.2 | 22 |
Average height of first capsule | mm | 463.5 | 70.1 | 15 |
Basal stem diameter | mm | 2.4 | 0.9 | 38 |
Average number of basal branches per plant | n | 1.5 | 0.7 | 51 |
Average number of apical branches per plant | n | 9.1 | 3.2 | 35 |
Average number of capsules per plant | n | 27.6 | 19.4 | 70 |
Average weight of capsules per plant | g | 1.23 | 0.62 | 50 |
Harvest index | dimensionless | 0.3 | 0.1 | 30 |
Results for Grain Yield | ||
Source of Variation | p-Value | Statistical Significance (p ≤ 0.05) |
Block | 0.086 | no |
Year | 0.000 | yes |
Locality | 0.000 | yes |
Variety | 0.636 | no |
Year × Locality | 0.827 | no |
Year × Variety | 0.648 | no |
Locality × Variety | 0.683 | no |
Year × Locality × Variety | 0.170 | no |
Results for Straw Yield | ||
Source of Variation | p-Value | Statistical Significance (p ≤ 0.05) |
Block | 0.650 | no |
Year | 0.142 | no |
Locality | 0.000 | yes |
Variety | 0.000 | yes |
Year × Locality | 0.000 | yes |
Year × Variety | 0.172 | no |
Locality × Variety | 0.010 | yes |
Year × Locality × Variety | 0.226 | no |
Rainfall | Temperature | |||
---|---|---|---|---|
Grain Yield | Straw Yield | Grain Yield | Straw Yield | |
March | −0.73 | −0.12 | 0.70 | 0.09 |
April | 0.53 | −0.21 | −0.82 | 0.06 |
May | −0.11 | 0.23 | −0.68 | −0.02 |
June | −0.94 | −0.20 | 0.81 | 0.48 |
July | −0.90 | 0.03 | 0.83 | 0.54 |
August | −0.75 | 0.26 | −0.07 | 0.78 |
September | 0.04 | 0.54 | −0.61 | 0.13 |
total/mean | −0.70 | 0.02 | −0.30 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masella, P.; Angeloni, G.; Galasso, I. Cropping Flax for Grain and Fiber: A Case-Study from Italy. Biomass 2024, 4, 599-609. https://doi.org/10.3390/biomass4020032
Masella P, Angeloni G, Galasso I. Cropping Flax for Grain and Fiber: A Case-Study from Italy. Biomass. 2024; 4(2):599-609. https://doi.org/10.3390/biomass4020032
Chicago/Turabian StyleMasella, Piernicola, Giulia Angeloni, and Incoronata Galasso. 2024. "Cropping Flax for Grain and Fiber: A Case-Study from Italy" Biomass 4, no. 2: 599-609. https://doi.org/10.3390/biomass4020032
APA StyleMasella, P., Angeloni, G., & Galasso, I. (2024). Cropping Flax for Grain and Fiber: A Case-Study from Italy. Biomass, 4(2), 599-609. https://doi.org/10.3390/biomass4020032