Optimizing the Extraction Process of Bioactive Compounds for Sustainable Utilization of Vitis vinifera and Citrus sinensis Byproducts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Collection
2.3. Taguchi L9 Design
2.4. Extraction and Purification of Polyphenolic Compounds
2.5. Preparation of Samples
2.6. Determination of Total Flavonoids
2.7. Antioxidant Activity
2.7.1. ABTS∙+ Radical Scavenging Assay
2.7.2. Ferric-Reducing Power (FRAP)
2.7.3. Hydroxyl Radical (OH•) Scavenging Activity
2.8. In Vitro and Ex Vivo Assays
2.8.1. Inhibition of α-Amylase
2.8.2. Inhibition of Hemolysis
2.9. Analysis of Functional Groups by FTIR
3. Results and Discussion
3.1. Optimization of the Extraction Process Using the Taguchi L9 Design
3.1.1. Effect of Temperature
3.1.2. Effect of Time
3.1.3. Effect of Solvent Concentration
3.1.4. Effect of Particle Size
3.2. Determination of Total Flavonoids
3.3. Antioxidant Activity Profile
3.3.1. Inhibition of ABTS∙+ Radicals and IC50 Determination
3.3.2. Ferric-Reducing Power (FRAP)
3.3.3. Inhibition of Hydroxyl Radicals (OH•)
3.4. In Vitro and Ex Vivo Analysis
3.4.1. Inhibition of α-Amylase
3.4.2. Inhibition of Hemolysis
3.5. Analysis of Functional Groups by FTIR
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shirisha, G.; Mandava, K.; Batchu, U.R.; Thammana, K.R.; Turpu, V. Antitumor and antioxidant effects of flavonoid fraction of Citrus sinensis peel extract. Pharmacogn. J. 2019, 11, 57–63. [Google Scholar] [CrossRef]
- Chedea, V.S.; Macovei, Ș.O.; Bocsan, I.C.; Măgureanu, D.C.; Levai, A.M.; Buzoianu, A.D.; Pop, R.M. Grape pomace polyphenols as a source of compounds for management of oxidative stress and inflammation—A possible alternative for non-steroidal anti-inflammatory drugs? Molecules 2022, 27, 6826. [Google Scholar] [CrossRef] [PubMed]
- Bolson-Moro, K.I.; Beutinger-Bender, A.B.; de Freitas Ferreira, D.; Speroni, C.S.; Barin, J.S.; da Silva, L.P.; Penna, N.G. Recovery of phenolic compounds from grape pomace (Vitis vinifera L.) by microwave hydrodiffusion and gravity. LWT 2021, 150, 112066. [Google Scholar] [CrossRef]
- Mollica, A.; Scioli, G.; Della-Valle, A.; Cichelli, A.; Novellino, E.; Bauer, M.; Stefanucci, A. Phenolic analysis and in vitro biological activity of red wine, pomace and grape seeds oil derived from Vitis vinifera L. cv. Montepulciano d’Abruzzo. Antioxidants 2021, 10, 1704. [Google Scholar] [CrossRef] [PubMed]
- Martínez, V.; Michaelson, D.J.; Cortez, M.V.; Leite, J.L.; da Silva, G.S. A high-yield process for extraction of hesperidin from orange (Citrus sinensis L. osbeck) peels waste, and its transformation to diosmetin, A valuable and bioactive flavonoid. Wast Biomass Valorization 2021, 12, 313–320. [Google Scholar] [CrossRef]
- Montero-Calderon, A.; Cortes, C.; Zulueta, A.; Frigola, A.; Esteve, M.J. Green solvents and Ultrasound-Assisted Extraction of bioactive orange (Citrus sinensis) peel compounds. Sci. Rep. 2019, 9, 16120. [Google Scholar] [CrossRef] [PubMed]
- Pagano, I.; Campone, L.; Celano, R.; Piccinelli, A.L.; Rastrelli, L. Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. J. Chromatogr. A 2021, 1651, 462295. [Google Scholar] [CrossRef] [PubMed]
- Navidad-Murrieta, M.S.; Pérez-Larios, A.; Sanchéz-Burgos, J.A.; Ragazzo-Sánchez, J.A.; Luna-Bárcenas, G.; Sáyago-Ayerdi, S.G. Use of a taguchi design in Hibiscus sabdariffa extracts encapsulated by spray-drying. Foods 2020, 9, 128. [Google Scholar] [CrossRef]
- Aranda-Ledesma, N.E.; González-Hernández, M.D.; Rojas, R.; Paz-González, A.D.; Rivera, G.; Luna-Sosa, B.; Martínez-Ávila, G.C.G. Oil and polyphenolic compounds of Flourensia cernua leaves: Chemical profiling and functional properties. Agronomy 2022, 12, 2274. [Google Scholar] [CrossRef]
- Ge, X.; Jing, L.; Zhao, K.; Su, C.; Zhang, B.; Zhang, Q.; Li, W. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chem. 2021, 335, 127655. [Google Scholar] [CrossRef]
- Monroy-García, I.N.; Carranza-Torres, I.E.; Carranza-Rosales, P.; Oyón-Ardoiz, M.; García-Estévez, I.; Ayala-Zavala, J.F.; Viveros-Valdez, E. Phenolic profiles and biological activities of extracts from edible wild fruits Ehretia tinifolia and Sideroxylon lanuginosum. Foods 2021, 10, 2710. [Google Scholar] [CrossRef] [PubMed]
- Antony, A.; Farid, M. Effect of temperatures on polyphenols during extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Bravo, F.I.; Aragonès, G.; Muguerza, B.; Arola-Arnal, A. Optimization of a polyphenol extraction method for sweet orange pulp (Citrus sinensis L.) to identify phenolic compounds consumed from sweet oranges. PLoS ONE 2019, 14, e0211267. [Google Scholar] [CrossRef] [PubMed]
- Tien-Le, X.; Vi-Luu, V.L.; Quac-Toan, T.; Bach, L.G.; Truc, T.T.; Hai-Ha, P.T. Extraction process of polyphenols from soybean (Glycine max L.) sprouts: Optimization and evaluation of antioxidant activity. Processes 2019, 7, 489. [Google Scholar] [CrossRef]
- Sridhar, A.; Ponnuchamy, M.; Senthil-Kumar, P.; Kapoor, A.; Vo, D.V.N.; Prabhakar, S. Techniques and modeling of polyphenol extraction from food: A review. Environ. Chem. Lett. 2021, 19, 3409–3443. [Google Scholar] [CrossRef]
- Alonso-Riaño, P.; Sanz-Diez, M.T.; Blanco, B.; Beltrán, S.; Trigueros, E.; Benito-Román, O. Water ultrasound-assisted extraction of polyphenol compounds from brewer’s spent grain: Kinetic study, extract characterization, and concentration. Antioxidants 2020, 9, 265. [Google Scholar] [CrossRef] [PubMed]
- Maciel-Bindes, M.M.; Luiz-Cardoso, V.; Miranda-Reis, M.H.; Boffito, D.C. Maximization of the polyphenols extraction yield from green tea leaves and sequential clarification. J. Food Eng. 2019, 241, 97–104. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochemistry 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Pătrăuanu, O.A.; Lazăr, L.; Popa, V.I.; Volf, I. Influence Of Particle Size And Size Distribution On Kinetic Mechanism Of Spruce Bark Polyphenols Extraction. Development 2019, 8, 11. [Google Scholar] [CrossRef]
- Norshazila, S.; Koy, C.N.; Rashidi, O.; Ho, L.H.; Azrina, I.; Zaizuliana, N.R.; Zarinah, Z. The effect of time, temperature and solid to solvent ratio on pumpkin carotenoids extracted using food grade solvents. Sains Malays. 2017, 46, 231–237. [Google Scholar] [CrossRef]
- Ávila-Hernández, J.G.; Aguilar-Zárate, P.; Carrillo-Inungaray, M.; Michel, M.R.; Wong-Paz, J.E.; Muñiz-Márquez, D.B.; Martínez-Ávila, G.C.G. The secondary metabolites from Beauveria bassiana PQ2 inhibit the growth and spore germination of Gibberella moniliformis LIA. Braz. J. Microbiol. 2022, 53, 143–152. [Google Scholar] [CrossRef]
- Roy, R.K. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Prado, J.M.; Veggi, P.C.; Meireles, M.A.A. Scale-Up Issues and Cost of Manufacturing Bioactive Compounds by Supercritical Fluid Extraction and Ultrasound Assisted Extraction. In Global Food Security and Wellness; Barbosa-Cánovas, G.V., Guevara, M.L., Cano, P., Palou, E., Eds.; Springer: Cham, Switzerland, 2017; Volume 8, pp. 377–433. [Google Scholar] [CrossRef]
- Esclapez, M.D.; García-Pérez, J.V.; Mulet, A.; Cárcel, J.A. Ultrasound-assisted extraction of natural products. Food Eng. Rev. 2011, 3, 108–120. [Google Scholar] [CrossRef]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Scurria, A.; Sciortino, M.; Garcia, A.R.; Pagliaro, M.; Avellone, G.; Fidalgo, A.; Ilharco, L.M. Red Orange and Bitter Orange IntegroPectin: Structure and Main Functional Compounds. Molecules 2022, 27, 3243. [Google Scholar] [CrossRef] [PubMed]
- García-Becerra, L.; Mitjans, M.; Rivas-Morales, C.; Verde-Star, J.; Oranday-Cárdenas, A.; María, P.V. Antioxidant comparative effects of two grape pomace Mexican extracts from vineyards on erythrocytes. Food Chem. 2016, 194, 1081–1088. [Google Scholar] [CrossRef]
- Ageyeva, N.M.; Tikhonova, A.N.; Biryukova, S.A.; Biryukova, S.A.; Globa, E.V. Grape pomace treatment methods and their effects on storage. Foods Raw Mater. 2021, 9, 215–223. Available online: https://jfrm.ru/en/issues/1879/1885/ (accessed on 19 June 2024). [CrossRef]
- El-Beltagi, H.S.; Eshak, N.S.; Mohamed, H.I.; Bendary, E.S.; Danial, A.W. Physical characteristics, mineral content, and antioxidant and antibacterial activities of Punica granatum or Citrus sinensis Peel extracts and their applications to improve cake quality. Plants 2022, 11, 1740. [Google Scholar] [CrossRef]
- Singh, B.; Pal-Singh, J.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Int. Food Res. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Zeng, X.; Yan, H.; Xu, M.; Zeng, Q.; Xu, C.; Zhang, J. Composition and antioxidant potential assessment of extracts from Gannanzao Navel Orange (Citrus sinensis Osbeck Cv. Gannanzao) peel. Nat. Prod. Res. 2021, 35, 702–706. [Google Scholar] [CrossRef]
- Vasyliev, G.S.; Vorobyova, V.I.; Linyucheva, O.V. Evaluation of reducing ability and antioxidant activity of fruit pomace extracts by spectrophotometric and electrochemical methods. J. Anal. Chem. 2020, 2020, 8869436. [Google Scholar] [CrossRef]
- Kabbas-Junior, T.; de Moura, C.; Mendanha-Cruz, T.; Marques, M.B.; Carmo, M.A.V.D.; Deolindo, C.T.P.; Granato, D. Optimization of the Green Chemistry-like Extraction of Phenolic Compounds from Grape (Vitis labrusca L.) and Blackberry (Rubus fruticosus L.) Seeds with Concomitant Biological and Antioxidant Activity Assessments. Plants 2023, 12, 2618. [Google Scholar] [CrossRef] [PubMed]
- Gaafar, A.A.; Asker, M.S.; Ali, M.A.; Salama, Z.A. The effectiveness of the functional components of grape (Vitis vinifera) pomace as antioxidant, antimicrobial, and antiviral agents. Jordan J. Biol. Sci. 2019, 12, 625–635. [Google Scholar]
- Luque-Alcaraz, A.G.; Velazquez-Antillón, M.; Hernández-Téllez, C.N.; Graciano-Verdugo, A.Z.; García-Flores, N.; Iriqui-Razcón, J.L.; Hernández-Abril, P.A. Antioxidant Effect of Nanoparticles Composed of Zein and Orange (Citrus sinensis) Extract Obtained by Ultrasound-Assisted Extraction. Materials 2022, 15, 4838. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Feng, Y.; Duan, Y.; Ma, H.; Zhang, H. Purification and identification of novel antioxidant peptides from watermelon seed protein hydrolysates and their cytoprotective effects on H2O2-induced oxidative stress. Food Chem. 2020, 327, 127059. [Google Scholar] [CrossRef]
- Hussain, O.A.; Abdel-Rahim, E.A.; Badr, A.N.; Hathout, A.S.; Rashed, M.M.; Fouzy, A.S. Total phenolics, flavonoids, and antioxidant activity of agricultural wastes, and their ability to remove some pesticide residues. Toxicol. Rep. 2022, 9, 628–635. [Google Scholar] [CrossRef]
- Bellur-Nagarajaiah, S.; Prakash, J. Chemical composition, and bioactivity of pomace from selected fruits. Int. J. Fruit Sci. 2016, 16, 423–443. [Google Scholar] [CrossRef]
- Guo, C.; Shan, Y.; Yang, Z.; Zhang, L.; Ling, W.; Liang, Y.; Zhang, J. Chemical composition, antioxidant, antibacterial, and tyrosinase inhibition activity of extracts from Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) peel. J. Sci. Food Agric. 2020, 100, 2664–2674. [Google Scholar] [CrossRef]
- Spiegel, M.; Kapusta, K.; Kołodziejczyk, W.; Saloni, J.; Żbikowska, B.; Hill, G.A.; Sroka, Z. Antioxidant activity of selected phenolic acids–ferric reducing antioxidant power assay and QSAR analysis of the structural features. Molecules 2020, 25, 3088. [Google Scholar] [CrossRef]
- Zhu, A.; Guo, Y.; Liu, G.; Song, M.; Liang, Y.; Cai, Y.; Yin, Y. Hydroxyl radical formation upon dark oxidation of reduced iron minerals: Effects of iron species and environmental factors. Chin. Chem. Lett. 2019, 30, 2241–2244. [Google Scholar] [CrossRef]
- Senthamil Selvi, R.; Anish-Kumar, R.Z.; Bhaskar, A. Phytochemical investigation, and in vitro antioxidant activity of Citrus sinensis peel extract. Pharm. Lett. 2016, 8, 159–165. [Google Scholar]
- Lala, M.; Modak, D.; Paul, S.; Sarkar, I.; Dutta, A.; Kumar, A.; Sen, A. Potent bioactive methanolic extract of wild orange (Citrus macroptera Mont.) shows antioxidative, anti-inflammatory, and antimicrobial properties in vitro, in vivo, and in silico studies. Bull. Natl. Res. Cent. 2020, 44, 1–15. [Google Scholar] [CrossRef]
- Chidambara-Murthy, K.N.; Singh, R.P.; Jayaprakasha, G.K. Antioxidant activities of grape (Vitis vinifera) pomace extracts. J. Agric. Food Chem. 2002, 50, 5909–5914. [Google Scholar] [CrossRef]
- Ould-Yerou, K.; Ibri, K.; Bouhadi, D.; Hariri, A.; Meddah, B.; Touil, A.T. The use of orange (Citrus sinensis) peel as antimicrobial and anti-oxidant agents. J. Fundam. Appl. Sci. 2017, 9, 1351–1357. [Google Scholar] [CrossRef]
- Cisneros-Yupanqui, M.; Lante, A.; Mihaylova, D.; Krastanov, A.I.; Rizzi, C. The α-amylase and α-glucosidase inhibition capacity of grape pomace: A review. Food Bioprocess Technol. 2023, 16, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Oikeh, E.I.; Oviasogie, F.E.; Omoregie, E.S. Quantitative phytochemical analysis and antimicrobial activities of fresh and dry ethanol extracts of Citrus sinensis (L.) Osbeck (sweet Orange) peels. Clin. Phytosci. 2020, 6, 1–6. [Google Scholar] [CrossRef]
- Huamán-Castilla, N.L.; Campos, D.; García-Ríos, D.; Parada, J.; Martínez-Cifuentes, M.; Mariotti-Celis, M.S.; Pérez-Correa, J.R. Chemical properties of Vitis vinifera carménère pomace extracts obtained by hot pressurized liquid extraction, and their inhibitory effect on type 2 diabetes mellitus related enzymes. Antioxidants 2021, 10, 472. [Google Scholar] [CrossRef] [PubMed]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant activity and polyphenols characterization of four monovarietal grape pomaces from Salento (Apulia, Italy). Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef]
- Asabi, O.A.; Oisemuzeimen, J.O.; Abiodun, O.O.; Kubiat, B.E. Antioxidant and In-vitro Antidiabetic Activities of Fermented Peels of Citrus x Sinensis (L.) Osbeck (Rutaceae). Prog. Chem. Biochem. Res. 2021, 4, 414–425. Available online: https://ir.unilag.edu.ng/handle/123456789/11212 (accessed on 28 June 2024).
- Woźniak, M.; Mrówczyńska, L.; Kwaśniewska-Sip, P.; Waśkiewicz, A.; Nowak, P.; Ratajczak, I. Effect of the solvent on propolis phenolic profile and its antifungal, antioxidant, and in vitro cytoprotective activity in human erythrocytes under oxidative stress. Molecules 2020, 25, 4266. [Google Scholar] [CrossRef]
- Olchowik-Grabarek, E.; Swiecicka, I.; Andreeva-Kovaleskaya, Z.; Solonin, A.; Bonarska-Kujawa, D.; Kleszczyńska, H.; Zamaraeva, M. Role of structural changes induced in biological membranes by hydrolysable tannins from sumac leaves (Rhus typhina L.) in their antihemolytic and antibacterial effects. J. Membr. Biol. 2014, 247, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Azantsa, B.G.; Mbong, M.A.A.; Takuissu, G.R.; Matsinkou, R.S.; Djuikoo, I.L.; Youovop, J.F.; Oben, J.E. Anti-hemolytic, anti-lipid peroxidation and antioxidant properties of three plants locally used to treat metabolic disorders: Allium sativum, Persea americana and Citrus sinensis. J. Food Res. 2019, 8, 89–100. [Google Scholar] [CrossRef]
- Hajimehdipoor, H.; Shahrestani, R.; Shekarchi, M. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res. J. Pharmacogn. 2014, 1, 35–40. Available online: https://www.rjpharmacognosy.ir/article_5776.html (accessed on 20 May 2024).
- Nogales-Bueno, J.; Baca-Bocanegra, B.; Rooney, A.; Hernández-Hierro, J.M.; Byrne, H.J.; Heredia, F.J. Study of phenolic extractability in grape seeds by means of ATR-FTIR and Raman spectroscopy. Food Chem. 2017, 232, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Rajhard, S.; Hladnik, L.; Vicente, F.A.; Srčič, S.; Grilc, M.; Likozar, B. Solubility of luteolin and other polyphenolic compounds in water, nonpolar, polar aprotic and protic solvents by applying FTIR/HPLC. Processes 2021, 9, 1952. [Google Scholar] [CrossRef]
Factors | Levels | ||
---|---|---|---|
1 | 2 | 3 | |
Particle size (mm) | 0.42 | 0.30 | 0.25 |
Temperature (°C) | 40 | 50 | 60 |
Solvent concentration (ethanol %) | 30 | 50 | 70 |
Extraction time (min) | 5 | 15 | 30 |
Run | Factors | Response (Yield mg∙g−1) from C. sinensis | Response (Yield mg∙g−1) from V. vinifera | |||
---|---|---|---|---|---|---|
Particle | Temperature | Concentration | Time | |||
8 | 3 | 2 | 1 | 3 | 19.49 ± 1.46 | 60.76 ± 1.96 |
5 | 2 | 2 | 3 | 1 | 16.40 ± 4.52 | 49.65 ± 6.85 |
6 | 2 | 3 | 1 | 2 | 44.71 ± 3.75 | 45.18 ± 1.42 |
1 | 1 | 1 | 1 | 1 | 27.10 ± 3.28 | 44.26 ± 10.78 |
2 | 1 | 2 | 2 | 2 | 28.73 ± 8.85 | 55.59 ± 1.32 |
9 | 3 | 3 | 2 | 1 | 34.98 ± 7.93 | 45.60 ± 1.08 |
7 | 3 | 1 | 3 | 2 | 35.50 ± 2.67 | 46.63 ± 10.46 |
4 | 2 | 1 | 2 | 3 | 36.89 ± 1.47 | 42.81 ± 11.31 |
3 | 1 | 3 | 3 | 3 | 34.53 ± 8.71 | 50.19 ± 3.05 |
Factors | SS | df | MS | F | p | Percentage (%) |
---|---|---|---|---|---|---|
Particle | 132.98 | 2 | 66.49 | 7.11 | 0.00 | 7.97 |
Temperature | 574.30 | 2 | 287.15 | 30.72 | 0.00 | 34.47 |
Concentration | 19.54 | 2 | 9.77 | 1.04 | 0.37 | 1.17 |
Time | 102.02 | 2 | 51.01 | 5.45 | 0.01 | 6.12 |
Concentration by Time | 707.28 | 4 | 176.82 | 18.91 | 0.00 | 42.43 |
Error | 130.84 | 14 | 9.34 | 7.84 | ||
Total | 1666.99 | 26 | 100.00 |
Factors | SS | df | MS | F | p | Percentage (%) |
---|---|---|---|---|---|---|
Particle | 40.93 | 2 | 20.46 | 7.45 | 0.00 | 1.66 |
Temperature | 1297.52 | 2 | 648.76 | 236.30 | 0.00 | 52.75 |
Concentration | 103.69 | 2 | 51.84 | 18.88 | 0.00 | 4.21 |
Time | 469.33 | 2 | 234.66 | 85.47 | 0.00 | 19.07 |
Temperature by Concentration | 510.27 | 4 | 127.56 | 46.46 | 0.00 | 20.74 |
Error | 38.43 | 14 | 2.74 | 1.56 | ||
Total | 2460.20 | 26 | 100.00 |
Factors | Sample | |
---|---|---|
V. vinifera | C. sinensis | |
Particle (mm) | 0.25 | 0.30 |
Temperature (°C) | 50 | 60 |
Concentration (%) | 30 | 50 |
Time (min) | 30 | 15 |
Theoretical yield (mg∙g−1) | 60.76 | 47.81 |
Actual yield (mg∙g−1) | 64.03 ± 2.73 | 45.94 ± 4.69 |
Sample | Flavonoids | ABTS∙+ IC50 | FRAP | Hydroxyl Radicals (OH•) |
---|---|---|---|---|
(QE µg∙mL−1) | (TE µg∙mL−1) | (GAE µg∙mL−1) | Inhibition (%) | |
V. vinifera | 77.23 ± 25.31 | 53.69 ± 3.14 | 10.00 ± 1.83 | 38.70 ± 4.67 |
C. sinensis | 54.50 ± 5.19 | 455.49 ± 20.21 * | 18.23 ± 1.98 * | 46.88 ± 8.02 |
Sample | In Vitro | Ex Vivo |
---|---|---|
α-Amylase Inhibition (%) | Hemolysis Inhibition (%) | |
V. vinifera | 20.69 ± 1.38 | 73.12 ± 0.79 |
C. sinensis | 23.47 ± 2.17 | 76.61 ± 0.79 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda-Ledesma, N.E.; Aguilar-Quintero, I.; Robledo-Jiménez, C.L.; Aguilar-Zárate, P.; Rojas, R.; Martínez-Ávila, G.C.G. Optimizing the Extraction Process of Bioactive Compounds for Sustainable Utilization of Vitis vinifera and Citrus sinensis Byproducts. Biomass 2024, 4, 826-842. https://doi.org/10.3390/biomass4030046
Aranda-Ledesma NE, Aguilar-Quintero I, Robledo-Jiménez CL, Aguilar-Zárate P, Rojas R, Martínez-Ávila GCG. Optimizing the Extraction Process of Bioactive Compounds for Sustainable Utilization of Vitis vinifera and Citrus sinensis Byproducts. Biomass. 2024; 4(3):826-842. https://doi.org/10.3390/biomass4030046
Chicago/Turabian StyleAranda-Ledesma, Nestor Everardo, Israel Aguilar-Quintero, Claudia Lizeth Robledo-Jiménez, Pedro Aguilar-Zárate, Romeo Rojas, and Guillermo Cristian Guadalupe Martínez-Ávila. 2024. "Optimizing the Extraction Process of Bioactive Compounds for Sustainable Utilization of Vitis vinifera and Citrus sinensis Byproducts" Biomass 4, no. 3: 826-842. https://doi.org/10.3390/biomass4030046
APA StyleAranda-Ledesma, N. E., Aguilar-Quintero, I., Robledo-Jiménez, C. L., Aguilar-Zárate, P., Rojas, R., & Martínez-Ávila, G. C. G. (2024). Optimizing the Extraction Process of Bioactive Compounds for Sustainable Utilization of Vitis vinifera and Citrus sinensis Byproducts. Biomass, 4(3), 826-842. https://doi.org/10.3390/biomass4030046