Applications and Challenges of DNA-Based Electrochemical Biosensors for Monitoring Health: A Systematic Review
Abstract
:1. Introduction
2. Literature Review
2.1. Electrochemical DNA Biosensor
2.2. Hybridization DNA Biosensors
3. Methodology
4. Results
4.1. Application Area of DNA Detection
4.2. Detection of Biomolecules Based on Their Interactions with DNA
4.3. Materials Used for DNA Detection
5. Challenges and Concerns
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Welch, E.C.; Powell, J.M.; Clevinger, T.B.; Fairman, A.E.; Shukla, A. Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials. Adv. Funct. Mater. 2021, 31, 2104126. [Google Scholar] [CrossRef]
- Chandrasekar, N.; Balaji, R.; Perala, R.S.; Nik Humaidi, N.Z.; Shanmugam, K.; Liao, Y.C.; Hwang, M.T.; Govindaraju, S. A brief review of graphene-based biosensors developed for rapid detection of COVID-19 biomarkers. Biosensors 2023, 13, 307. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, Y.; Yang, Q.; Yuan, N.; Zhang, W. Review of electrochemical dna biosensors for detecting food borne pathogens. Sensors 2019, 19, 4916. [Google Scholar] [CrossRef] [PubMed]
- Benvidi, A.; Abbasi, Z.; Tezerjani, M.; Banaei, M.; Zare, H.; Molahosseini, H.; Jahanbani, S. A highly selective dna sensor based on graphene oxide-silk fibroin composite and aunps as a probe oligonucleotide immobilization platform. Acta Chim. Slov. 2018, 65, 278–288. [Google Scholar] [CrossRef]
- Cui, L.; Hu, J.; Wang, M.; Li, C.; Zhang, C. Label-free and immobilization-free electrochemical magnetobiosensor for sensitive detection of 5-hydroxymethylcytosine in genomic dna. Anal. Chem. 2018, 91, 1232–1236. [Google Scholar] [CrossRef]
- Mikaeeli Kangarshahi, B.; Naghib, S.M.; Rabiee, N. DNA/RNA-based electrochemical nanobiosensors for early detection of cancers. Crit. Rev. Clin. Lab. Sci. 2024, 61, 473–495. [Google Scholar] [CrossRef]
- Singh, R.; Gupta, R.; Bansal, D.; Bhateria, R.; Sharma, M. A review on recent trends and future developments in electrochemical sensing. ACS Omega 2024, 9, 7336–7356. [Google Scholar] [CrossRef]
- Mahmoodi, P.; Rezayi, M.; Rasouli, E.; Gholami, M.; Karimi, E.; Alias, Y. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical dna nanobiosensor for hpv-18 detection in real samples. J. Nanobiotechnol. 2020, 18, 11. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.; Xu, Q.; Xu, L.; Liang, W.; Li, Y.; Ding, M.; Aldalbahi, A.; Ge, Z.; Wang, L.; et al. Bacterial analysis using an electrochemical dna biosensor with poly-adenine-mediated dna self-assembly. ACS Appl. Mater. Interfaces 2018, 10, 6895–6903. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Niri, A.; Faridi-Majidi, R.; Saber, R.; Khosravani, M.; Adabi, M. Electrospun carbon nanofiber-based electrochemical biosensor for the detection of hepatitis B virus. Biointerface Res. Appl. Chem. 2019, 9, 4022–4026. [Google Scholar]
- Stephen, B.; Suchanti, S.; Jain, D.; Dhaliwal, H.; Vp, S.; Kaur, R.; Mishra, R.; Singh, A. Dna biosensor based detection for neglected tropical disease: Moving towards smart diagnosis. Sens. Rev. 2022, 42, 517–525. [Google Scholar] [CrossRef]
- Chen, R.; Chen, H.; Peng, H.; Zheng, Y.; Lin, Z.; Lin, X. Multi-walled carbon nanotube array modified electrode with 3d sensing interface as electrochemical dna biosensor for multidrug-resistant gene detection. Biosensors 2023, 13, 764. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Zhu, P.; Li, S.; Jiang, Y.; Ma, Y.; Shi, Q.; Zhang, X.; Shu, X.; Wang, Z.; Sun, L.; et al. Electrochemical biosensor based on topological insulator Bi2Se3 tape electrode for HIV-1 DNA detection. Microchim. Acta 2022, 189, 285. [Google Scholar] [CrossRef]
- Kavita, V. DNA biosensors-a review. J. Bioeng. Biomed. Sci. 2017, 7, 222. [Google Scholar]
- Kokkinos, C. Electrochemical DNA biosensors based on labeling with nanoparticles. Nanomaterials 2019, 9, 1361. [Google Scholar] [CrossRef]
- Tran, L.T.; Tran, H.V.; Trung, T.; Nguyen, N.T.; Bui, D.; Tran, P.Q.; Chu, T.V. A highly sensitive electrochemical dna sensor based on nanostructured electrode of multi-walled carbon nanotubes/manganese dioxide nano-flowers-like/polyaniline nanowires nanocomposite. J. Electrochem. Soc. 2021, 168, 057518. [Google Scholar] [CrossRef]
- Chu, T.V.; Tran, L.T.; Tran, H.V.; Tran, T.; Nguyen, N.T.; Bui, D.; Tran, P.Q. Multi-Walled Carbon Nanotubes/Manganese Dioxide Nano- Flowers-like/Polyaniline Nanowires Nanocomposite Modified Electrode: A New Platform for a Highly Sensitive Electrochemical Impedance Dna Sensor. 2021. Available online: https://www.researchsquare.com/article/rs-280743/v1 (accessed on 1 June 2024).
- Guo, Y.; Su, S.; Wei, X.; Zhong, Y.; Su, Y.; Huang, Q.; Fan, C.; He, Y. A silicon-based electrochemical sensor for highly sensitive, specific, label-free and real-time dna detection. Nanotechnology 2013, 24, 444012. [Google Scholar] [CrossRef]
- Sun, W.; Wang, X.; Wang, W.; Lu, Y.; Xi, J.; Zheng, W.; Wu, F.; Ao, H.; Li, G. Electrochemical dna sensor for staphylococcus aureus nuc gene sequence with zirconia and graphene modified electrode. J. Solid State Electrochem. 2015, 19, 2431–2438. [Google Scholar] [CrossRef]
- Piunno, P.A.; Krull, U.J.; Hudson, R.H.; Damha, M.J.; Cohen, H. Fiber optic biosensor for fluorimetric detection of DNA hybridization. Anal. Chim. Acta 1994, 288, 205–214. [Google Scholar] [CrossRef]
- Pollet, J.; Delport, F.; Janssen, K.P.; Jans, K.; Maes, G.; Pfeiffer, H.; Wevers, M.; Lammertyn, J. Fiber optic SPR biosensing of DNA hybridization and DNA–protein interactions. Biosens. Bioelectron. 2009, 25, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Wang, Y.; Zhou, X.; Wang, S.; Zhang, Y.; Zhao, Y.; Nguyen, L.V.; Ebendorff-Heidepriem, H.; Peng, L.; Warren-Smith, S.C.; et al. In situ temperature-compensated DNA hybridization detection using a dual-channel optical fiber sensor. Anal. Chem. 2021, 93, 10561–10567. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, H.M.; Serea, E.S.A.; Salah-Eldin, R.E.; Al-Hafiry, S.A.; Ali, M.K.; Shalan, A.E.; Lanceros-Méndez, S. Recent progress in graphene- and related carbon-nanomaterial-based electrochemical biosensors for early disease detection. ACS Biomater. Sci. Eng. 2022, 8, 964–1000. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Wang, Z.; Huang, L.; Ning, Y.; Zhang, Z.; Zhang, G. Ultrasensitive label-free detection of pna–dna hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 2014, 8, 2632–2638. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Magnieto, J.; Azene, E.G.; Knoops, J.; Knippenberg, S.; Delcourt, C.; Thomas, A.; Richeter, S.; Mehdi, A.; Dubois, P.; Lazzaroni, R.; et al. Self-assembly and hybridization mechanisms of dna with cationic polythiophene. Soft Matter 2015, 11, 6460–6471. [Google Scholar] [CrossRef]
- Zhan, X.; Hao, M.; Wang, Q.; Li, W.; Xiao, H.; Feng, C.; Jiang, L.; Wang, C.; Wang, X.; Wang, Z. Highly sensitive detection of deoxyribonucleic acid hybridization using au-gated alinn/gan high electron mobility transistor-based sensors. Chin. Phys. Lett. 2017, 34, 047301. [Google Scholar] [CrossRef]
- Zaffino, R.L.; Mir, M.; Samitier, J. Label-free detection of dna hybridization and single point mutations in a nano-gap biosensor. Nanotechnology 2014, 25, 105501. [Google Scholar] [CrossRef]
- Nguyen, S.H.; Nguyen, V.; Tran, M.T. Bacillus subtilis dna fluorescent sensors based on hybrid mos2 nanosheets. PLoS ONE 2024, 19, e0297581. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Lv, J.; Jia, Z. Efficient fluorescence resonance energy transfer between quantum dots and gold nanoparticles based on porous silicon photonic crystal for dna detection. Sensors 2017, 17, 1078. [Google Scholar] [CrossRef]
- Li, S.; Li, F.; Wang, Y.; Wang, L. Universal dynamic dna assembly-programmed surface hybridization effect for single-step, reusable, and amplified electrochemical nucleic acid biosensing. Anal. Chem. 2017, 89, 3108–3115. [Google Scholar] [CrossRef]
- Yue, W.; Tang, C.; Wang, C.; Chen, B.; Liu, S.; Xie, X.; Hua, H.; Zhang, Z.; Li, D. An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of dna hybridization. RSC Adv. 2017, 7, 44559–44567. [Google Scholar] [CrossRef]
- Topkaya, S.N.; Ozkan-Ariksoysal, D. Prostate cancer biomarker detection with carbon nanotubes modified screen printed electrodes. Electroanalysis 2015, 28, 1077–1084. [Google Scholar] [CrossRef]
- Asadzadeh-Firouzabadi, A.; Zare, H.R.; Nasirizadeh, N. Electrochemical biosensor for detection of target dna sequence and single-base mismatch related to helicobacter pylori using chlorogenic acid as hybridization indicator. J. Electrochem. Soc. 2015, 163, B43–B48. [Google Scholar] [CrossRef]
- Bhoyar, L.; Mehar, P.; Chavali, K. An overview of DNA degradation and its implications in forensic caseworks. Egypt. J. Forensic Sci. 2024, 14, 15. [Google Scholar] [CrossRef]
- Liu, X.; Tan, W. A fiber-optic evanescent wave dna biosensor based on novel molecular beacons. Anal. Chem. 1999, 71, 5054–5059. [Google Scholar] [CrossRef]
- Laureyn, W.; Stakenborg, T.; Jacobs, P. Genetic and otherdna-based biosensor applications. In Handbook of Biosensors and Biochips; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Duan, Y.; Li, J.; Jin, J.; Xu, H.; Wang, F.; Shi, J.; Tong, X.; Wang, Q.; Zhang, Y.; Peng, W.; et al. An Ion-Competition Assisted Fiber Optic Plasmonic DNA Biosensing Platform for Iodide Detection. IEEE Sens. J. 2024, 24, 10105–10112. [Google Scholar] [CrossRef]
- Velayutham, J.; Hansda, S.; Sethy, N.K.; Vashist, A.; Manickam, P. DNA Aptamer Integrated Hydrogel Nanocomposites on Screen Printed Gold Electrodes for Point-of-Care Detection of Testosterone in Human Serum. ChemBioChem 2024, 25, e202400294. [Google Scholar] [CrossRef]
- Chang, H.; Yuan, Y.; Shi, N.; Guan, Y. Electrochemical dna biosensor based on conducting polyaniline nanotube array. Anal. Chem. 2007, 79, 5111–5115. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Y.; Tan, H.; Wu, C.; Wu, Z.; Shen, G.; Yu, R. Gold nanoparticle based signal enhancement liquid crystal biosensors for dna hybridization assays. Chem. Commun. 2012, 48, 2861. [Google Scholar] [CrossRef]
- Sun, P.; Niu, K.; Du, H.; Li, R.; Chen, J.; Lu, X. Sensitive electrochemical biosensor for rapid screening of tumor biomarker tp53 gene mutation hotspot. Biosensors 2022, 12, 658. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, C. Improved sensitivity for the electrochemical biosensor with an adjunct probe. Anal. Chem. 2010, 82, 9500–9505. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Fan, H.; Zhao, K.; Chen, M.; He, P.; Fang, Y. Electrochemical dna biosensors based on palladium nanoparticles combined with carbon nanotubes. Electroanalysis 2008, 20, 131–136. [Google Scholar] [CrossRef]
- Xi, H.; Juhas, M.; Zhang, Y. G-quadruplex based biosensor: A potential tool for sars-cov-2 detection. Biosens. Bioelectron. 2020, 167, 112494. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Liu, W.; Chen, S.; Deng, W.; Dou, Y.; Zhao, Z.; Li, J.; Li, Z.; Yin, H.; Li, Y.; et al. A carbon-based dna framework nano–bio interface for biosensing with high sensitivity and a high signal-to-noise ratio. ACS Sens. 2020, 5, 3979–3987. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, L.; Pan, Y.; Zhang, K.; Zhang, Y. A novel electrochemical dna biosensor fabricated with layer-by-layer covalent attachment of multiwalled carbon nanotubes and gold nanoparticles. Electroanalysis 2008, 20, 1220–1226. [Google Scholar] [CrossRef]
- Kaewphinit, T.; Santiwatanakul, S.; Promptmas, C.; Chansiri, K. Detection of non-amplified mycobacterium tuberculosis genomic dna using piezoelectric dna-based biosensors. Sensors 2010, 10, 1846–1858. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Ma, Q.D.; Wu, L. Recent advances of small molecule detection in nanopore sensing. Talanta 2024, 227, 126323. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, B.I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
DNA Sensor Type | Area of Use | Method | Target | Analytical Characteristics |
---|---|---|---|---|
Electrochemical DNA Sensor | Medical diagnostics | Electrochemical detection | Cancer biomarkers | High sensitivity and selectivity, quantitative analysis |
Fluorescent DNA Sensor | Environmental monitoring | Fluorescence spectroscopy | Pathogens | Rapid response, real-time monitoring |
Nanoparticle-based Sensor | Food safety | Colorimetric detection | Bacterial contaminants | Easy to use, visual detection |
Microarray DNA Sensor | Genetic testing | Hybridization | Genetic mutations | High throughput, multiplexing capabilities |
Aptamer-based Sensor | Therapeutic monitoring | Binding assay | Drugs and proteins | High specificity, reusable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, H.S.; Feng, Y.; Biswas, G.; Hossain, M.Z. Applications and Challenges of DNA-Based Electrochemical Biosensors for Monitoring Health: A Systematic Review. DNA 2024, 4, 300-317. https://doi.org/10.3390/dna4030020
Mondal HS, Feng Y, Biswas G, Hossain MZ. Applications and Challenges of DNA-Based Electrochemical Biosensors for Monitoring Health: A Systematic Review. DNA. 2024; 4(3):300-317. https://doi.org/10.3390/dna4030020
Chicago/Turabian StyleMondal, Himadri Shekhar, Yiwei Feng, Gitisree Biswas, and Md Zakir Hossain. 2024. "Applications and Challenges of DNA-Based Electrochemical Biosensors for Monitoring Health: A Systematic Review" DNA 4, no. 3: 300-317. https://doi.org/10.3390/dna4030020
APA StyleMondal, H. S., Feng, Y., Biswas, G., & Hossain, M. Z. (2024). Applications and Challenges of DNA-Based Electrochemical Biosensors for Monitoring Health: A Systematic Review. DNA, 4(3), 300-317. https://doi.org/10.3390/dna4030020