The Evolutionary Reasons of Epigenetics
Abstract
:1. Evolution: Mutation and Selection
2. Molecular Aspects and Gene Expression
2.1. The Initiation of Transcription
2.2. The Transcriptional Machinery
3. Spatial Containment of DNA
4. The Problem of Transcription Machinery Access to DNA
5. Molecular Aspects of Epigenetics
5.1. Control of Chromatin Structure
5.2. DNA Methylation
6. Three-Dimensional Nuclear Organization
7. Epigenetic Control, Phenotypic Plasticity, and Evolution
8. Epigenetic Modifications as Direct Sources of DNA Mutagenesis
8.1. DNA Methylation
8.2. DNA Association with Histones
8.3. Transposons and Insertional Mutations
8.4. Repeated Sequences
9. Conclusions: Evolutionary Significance of Epigenetics
Funding
Conflicts of Interest
References
- Lin, R.-C.; Ferreira, B.T.; Yuan, Y.-W. The molecular basis of phenotypic evolution: Beyond the usual suspects. Trends Genet. 2024, 40, 668–680. [Google Scholar] [CrossRef]
- Mayr, E.; Provine, W.B. The evolutionary synthesis. Bull. Am. Acad. Arts Sci. 1981, 34, 17–32. [Google Scholar] [CrossRef]
- Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.C.; Chiang, C.-M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 2006, 41, 105–178. [Google Scholar] [CrossRef]
- Malik, S.; Roeder, R.G. Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators. Nat. Rev. Genet. 2023, 24, 767–782. [Google Scholar] [CrossRef] [PubMed]
- Andersson, R.; Sandelin, A. Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 2020, 21, 71–87. [Google Scholar] [CrossRef]
- Waddington, C.H. The Strategy of the Genes: Free Download, Borrow, and Streaming. Internet Archive. Available online: https://archive.org/details/in.ernet.dli.2015.547782 (accessed on 19 November 2024).
- Dekker, J.; Mirny, L.A. The chromosome folding problem and how cells solve it. Cell 2024, 187, 6424–6450. [Google Scholar] [CrossRef]
- Kornberg, R.D. Chromatin structure: A repeating unit of histones and DNA. Science 1974, 184, 868–871. [Google Scholar] [CrossRef] [PubMed]
- Luger, K.; Mäder, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997, 389, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Olins, A.L.; Olins, D.E. Spheroid chromatin units (ν bodies). Science 1974, 183, 330–332. [Google Scholar] [CrossRef]
- Wolffe, A.P.; Brown, D.D. DNA replication in vitro erases a Xenopus 5S RNA gene transcription complex. Cell 1986, 47, 121–130. [Google Scholar] [CrossRef]
- Workman, J.L.; Roeder, R.G. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 1987, 51, 1079–1091. [Google Scholar] [CrossRef]
- Almer, A.; Hinnen, A.; Hörz, W. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 1986, 5, 2729–2734. [Google Scholar] [CrossRef]
- Wall, G.; Varga-Weisz, P.D.; Sandaltzopoulos, R.; Becker, P.B. Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila Hsp26 promoter in vitro. EMBO J. 1995, 14, 1935–1947. [Google Scholar] [CrossRef] [PubMed]
- Vavra, K.J.; Allis, C.D.; Gorovsky, M.A. Regulation of Histone Acetylation in Tetrahymena Macro- and Micronuclei. J. Biol. Chem. 1982, 257, 2591–2598. Available online: https://pubmed.ncbi.nlm.nih.gov/7061439/ (accessed on 27 November 2024). [CrossRef]
- Gh, T.; Colavito-Shepanski, M.; Grunstein, M. Extensive Purification and Characterization of Chromatin-Bound Histone Acetyltransferase from Saccharomyces Cerevisiae. J. Biol. Chem. 1984, 259, 14406–14412. Available online: https://pubmed.ncbi.nlm.nih.gov/6389549/ (accessed on 27 November 2024).
- Millán-Zambrano, G.; Burton, A.; Bannister, A.J.; Schneider, R. Histone post-translational modifications—Cause and consequence of genome function. Nat. Rev. Genet. 2022, 23, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Swygert, S.G.; Peterson, C.L. Chromatin dynamics: Interplay between remodeling enzymes and histone modifications. Biochim. Biophys. Acta 2014, 1839, 292–308. [Google Scholar] [CrossRef]
- Biswas, S.; Rao, C.M. Epigenetic tools (the writers, the readers, and the erasers) and their implications in cancer therapy. Eur. J. Pharmacol. 2018, 847, 208–218. [Google Scholar] [CrossRef]
- Suganuma, T.; Workman, J.L. Chromatin and metabolism. Annu. Rev. Biochem. 2018, 87, 511–532. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Tu, B.P. Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2013, 110, 7318–7323. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Bennion, G.R.; Goldberg, M.W.; Allen, T.D. ATP dependent histone phosphorylation and nucleosome assembly in a human cell free extract. Nucleic Acids Res. 1991, 19, 5999–6005. [Google Scholar] [CrossRef]
- Chiang, P.K.; Gordon, R.K.; Tal, J.; Zeng, G.C.; Doctor, B.P.; Pardhasaradhi, K.; McCann, P.P. S-Adenosylmethionine and Methylation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1996, 10, 471–480. Available online: https://pubmed.ncbi.nlm.nih.gov/8647346/ (accessed on 27 November 2024).
- Sato, T.; Sassone-Corsi, P. Nutrition, metabolism, and epigenetics: Pathways of circadian reprogramming. EMBO Rep. 2022, 23, e202152412. [Google Scholar] [CrossRef]
- Kuo, M.T.; Mandel, J.L.; Chambon, P. DNA methylation: Correlation with DNase I sensitivity of chicken ovalbumin and conalbumin chromatin. Nucleic Acids Res. 1979, 7, 2105–2119. [Google Scholar] [CrossRef] [PubMed]
- Rigal, M.; Mathieu, O. A “mille-feuille” of silencing: Epigenetic control of transposable elements. Biochim. Biophys. Acta 2011, 1809, 561–570. [Google Scholar] [CrossRef]
- Chen, X.; Lin, H.; Li, G. The influence of high-order chromatin state in the regulation of stem cell fate. Biochem. Soc. Trans. 2022, 50, 1673–1684. [Google Scholar] [CrossRef] [PubMed]
- Stephenson-Gussinye, A.; Furlan-Magaril, M. Chromosome conformation capture technologies as tools to detect structural variations and their repercussion in chromatin 3D configuration. Front. Cell Dev. Biol. 2023, 11, 1219968. [Google Scholar] [CrossRef] [PubMed]
- Papadogkonas, G.; Papamatheakis, D.A.; Spilianakis, C. 3D genome organization as an epigenetic determinant of transcription regulation in T cells. Front. Immunol. 2022, 13, 921375. [Google Scholar] [CrossRef]
- Romero-Mujalli, G.A.; Fuchs LI, R.; Haase, M.; Hildebrandt, J.P.; Weissing, F.J.; Revilla, T.A. Emergence of phenotypic plasticity through epigenetic mechanisms. Evol. Lett. 2024, 8, 178–191. [Google Scholar] [CrossRef]
- Santilli, F.; Boskovic, A. Mechanisms of transgenerational epigenetic inheritance: Lessons from animal model organisms. Curr. Opin. Genet. Dev. 2023, 73, 102024. [Google Scholar] [CrossRef] [PubMed]
- Duncan, B.K.; Miller, J.H. Mutagenic deamination of cytosine residues in DNA. Nature 1980, 287, 560–561. [Google Scholar] [CrossRef]
- Walsh, C.P.; Xu, G.L. Cytosine methylation and DNA repair. Curr. Top. Microbiol. Immunol. 2006, 301, 293–315. [Google Scholar] [CrossRef]
- Makova, K.D.; Hardison, R.C. The effects of chromatin organization on variation in mutation rates in the genome. Nat. Rev. Genet. 2015, 16, 378–390. [Google Scholar] [CrossRef]
- Hinz, J.M.; Rodriguez, Y.; Smerdon, M.J. Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme. Proc. Natl. Acad. Sci. USA 2010, 107, 15144–15149. [Google Scholar] [CrossRef] [PubMed]
- Deniz, Ö.; Frost, J.M.; Branco, M.R. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 2019, 20, 417–428. [Google Scholar] [CrossRef]
- Friedli, M.; Trono, D. The developmental control of transposable elements and the evolution of higher species. Annu. Rev. Cell Dev. Biol. 2015, 31, 429–451. [Google Scholar] [CrossRef]
- Peng, J.C.; Karpen, G.H. Epigenetic regulation of heterochromatic DNA stability. Curr. Opin. Genet. Dev. 2008, 18, 184–190. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camilloni, G. The Evolutionary Reasons of Epigenetics. DNA 2025, 5, 6. https://doi.org/10.3390/dna5010006
Camilloni G. The Evolutionary Reasons of Epigenetics. DNA. 2025; 5(1):6. https://doi.org/10.3390/dna5010006
Chicago/Turabian StyleCamilloni, Giorgio. 2025. "The Evolutionary Reasons of Epigenetics" DNA 5, no. 1: 6. https://doi.org/10.3390/dna5010006
APA StyleCamilloni, G. (2025). The Evolutionary Reasons of Epigenetics. DNA, 5(1), 6. https://doi.org/10.3390/dna5010006