Analysis of Microplastics in Industrial Processes—Systematic Analysis of Digestion Efficiency of Samples from Forestry, Wastewater Treatment Plants and Biogas Industries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Industrial Sample Collection
2.2. Digestion Procedure
2.3. Analytical Methods
2.4. Method Validation
2.5. Contamination Control
2.6. Classification of MPs
3. Results
3.1. Liquid Sample Results
3.2. Sludge Samples
3.3. Method Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Study | Industries Studied and Type of Sample Studied (Liquid/Sludge) | Methods Used | Methods Validated | Enzymes Used | Enzyme Effects Studied Individually | Reference |
---|---|---|---|---|---|---|
Long et al. | WWTP, liquid | Raman | Yes, with a flowmeter and camera | none | no | [29] |
Hidayaturrahman et al. | WWTP, liquid | Microscope | no | none | no | [30] |
Xu et al. | WWTP, liquid | FTIR | no | none | no | [11] |
Bitter et al. | Polymer processing, WWTP, liquid | DSC | no | none | no | [27] |
Franco et al. | Food, furniture, marine construction, liquid | FTIR, microscope | no | none | no | [28] |
Magalhaes et al. | Paint, resin, textile, pharmaceutical, PVC, liquid | FTIR, fluorescence microscopy | no | none | no | [31] |
Catarino et al. | None, natural samples | FTIR | Yes, with standard sized MPs | Only protease | yes | [49] |
Li et al. | Sewage treatment, sludge | FTIR | no | none | no | [53] |
Cole et al. | None, biological samples | Microscope | no | Only protease | yes | [52] |
Hrovat et al. | Forest, biogas, WWTP, liquid and sludge | FTIR and Raman | YES, with cryogenically milled MPs | Protease, cellulase, amylase | YES | This study |
Appendix B
Appendix C
References
- Hartmann, N.B.; Huffer, T.; Thomspon, R.C.; Hassellov, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking The Same Language? Recommendations for a definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 63, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Uurasjärvi, E.; Pääkkönen, M.; Setälä, O.; Koistinen, A.; Lehtiniemi, M. Microplastics accumulate to thin layers in the stratified Baltic Sea. Environ. Pollut. 2021, 268, 115700. [Google Scholar] [CrossRef] [PubMed]
- Karapanagioti, H.K.; Kalavrouziotis, I.K. Micropalstics in Water and Wastewater; IWA Publishing: London, UK, 2019. [Google Scholar] [CrossRef]
- Neelavannan, K.; Sen, I.S.; Lone, A.M.; Gopinath, K. Microplastics in the high-altitude Himalayas: Assessment of microplastic contamination in freshwater lake sediments, Northwest Himalaya (India). Chemosphere 2021, 290, 133354. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.K.; Paglialonga, L.; Czech, E.; Tamminga, M. Microplastic pollution in lakes and lake shoreline sediments—A case study on Lake Bolsena and Lake Chiusi (central Italy). Environ. Pollut. 2016, 213, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhou, M.; Chen, X.; Hu, L.; Xu, Y.; Fu, W.; Li, C. A comparative review of microplastics in lake system from different countries and regions. Chemosphere 2022, 286, 131806. [Google Scholar] [CrossRef]
- Malla-Pradhan, R.; Pradhan, B.L.; Phoungthong, K.; Joshi, T.P. Microplastic in Freshwater Environment: A Review on Techniques and Abundance for Microplastic Detection in Lake Water. Trends Sci. 2023, 20, 5202. [Google Scholar] [CrossRef]
- Sillanpää, M.; Khadir, A.; Muthu, S.S. Microplastic Pollution in Aquatic Media: Occurrence, Detection, and Removal; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Enfrin, M.; Dumee, L.F.; Lee, J. Nano/microplastics in water and wastewater treatment processes—Origin, impact and potential solutions. Water Res. 2019, 161, 621–638. [Google Scholar] [CrossRef]
- Priya, A.; Anusha, G.; Thanigaivel, S.; Karthick, A.; Mohanavel, V.; Velmurugan, P.; Balasubramanian, B.; Ravichandran, M.; Kamyab, H.; Kirpichnikova, I.M.; et al. Removing Microplastics from wastewater using leading-edge treatment technologies: A solution to microplastic pollution—A review. Bioprocess. Biosyst. Eng. 2022, 46, 309–321. [Google Scholar] [CrossRef]
- Xu, X.; Jian, Y.; Xue, Y.; Hou, Q.; Wang, L. Microplastics in the wastewater treatment plants (WWTPSs): Occurrence and removal. Chemosphere 2019, 235, 1089–1096. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D.L. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 2017, 112, 93–99. [Google Scholar] [CrossRef]
- Sefiloglu, F.Ö.; Stratmann, C.N.; Brits, M.; van Velzen, M.J.M.; Groenewoud, Q.; Vethaak, A.D.; Dris, R.; Gasperi, J.; Lamoree, M.H. Comparative microplastic analysis in urban waters using µ-FTIR and Py-GC-MS: A case study in Amsterdam. Environ. Pollut. 2024, 351, 124088. [Google Scholar] [CrossRef] [PubMed]
- Löder, M.G.J.; Kuczera, M.; Mintenig, S.; Lorenz, C.; Gerdts, G. Focal plane array detector-based micro-Fourier transform infrared imaging for the analysis of microplastics in environmental samples. Env. Chem. 2015, 12, 563. [Google Scholar] [CrossRef]
- Tagg, A.S.; Sapp, M.; Harrison, J.P.; Ojeda, J.J. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal. Chem. 2015, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, M.; Yuan, L.; Huang, G.; Chen, X.; Shi, W. Degradation degree analysis of environmental microplastics by micro FT-IR imaging technology. Chemosphere 2021, 274, 129779. [Google Scholar] [CrossRef]
- Pezacki, J.P.; Blake, J.A.; Danielson, D.C.; Kennedy, D.C.; Lyn, R.K.; Singaravelu, R. Chemical contrast for imaging living systems: Molecular vibrations drive CARS microscopy. Nat. Chem. Biol. 2011, 7, 137–145. [Google Scholar] [CrossRef]
- Watts, A.J.R.; Lewis, C.; Goodhead, R.M.; Beckett, S.J.; Moger, J.; Tyler, C.R.; Galloway, T.S. Uptake and retention of microplastics by the shore crab carcinus maenas. Env. Sci. Technol. 2014, 48, 8823–8830. [Google Scholar] [CrossRef]
- Sobhani, Z.; Amin, M.A.; Naidu, R.; Megharaj, M.; Fang, C. Identification and visualization of microplastics by Raman mapping. Anal. Chim. Acta 2019, 1077, 191–199. [Google Scholar] [CrossRef]
- Jin, N.; Song, Y.; Ma, R.; Li, J.; Li, G.; Zhang, D. Characterization and identification of microplastics using Raman spectroscopy coupled with multivariate analysis. Anal. Chim. Acta 2022, 1197, 339519. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Rochman, C.M. Microwave-Assisted Extraction for Quantification of Microplastics Using Pyrolysis-Gas Chromatography/Mass Spectrometry. Env. Chem. 2021, 40, 2733–2741. [Google Scholar] [CrossRef]
- Fischer, M.; Scholz-Böttcher, B.M. Microplastics analysis in environmental samples-recent pyrolysis-gas chromatography-mass spectrometry method improvements to increase the reliability of mass-related data. Anal. Methods 2019, 11, 2489–2497. [Google Scholar] [CrossRef]
- Fischer, M.; Scholtz-Böttcher, B.M. Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography-Mass Spectrometry. Env. Sci. Technol. 2017, 51, 5052–5060. [Google Scholar] [CrossRef] [PubMed]
- Löder, M.G.J.; Imhof, H.K.; Ladehoff, M.; Löschel, L.A.; Lorenz, C.; Mintenig, S.; Piehl, S.; Primpke, S.; Schrank, I.; Laforsch, C.; et al. Enzymatic Purification of Microplastics in Environmental Samples. Env. Sci. Technol. 2017, 51, 14283–14292. [Google Scholar] [CrossRef] [PubMed]
- Courtene-Jones, W.; Quinn, B.; Murphy, F.; Gary, S.F.; Narayanaswamy, B.E. Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics. Anal. Methods 2017, 9, 1437–1445. [Google Scholar] [CrossRef]
- Lopez-Rosales, A.; Andrade, J.M.; Lopez-Mahia, P.; Muniategui-Lorenzo, S. Development of an analytical procedure to analyze microplastics in edible macroalgae using an enzymatic-oxidative digestion. Mar. Pollut. Bull. 2022, 183, 114061. [Google Scholar] [CrossRef]
- Bitter, H.; Lackner, S. First Quantification of semi-crystalline microplastics in industrial wastewaters. Chemosphere 2020, 258, 127388. [Google Scholar] [CrossRef]
- Franco, A.A.; Arellano, J.M.; Albendin, G.; Rodriguez-Barroso, R.; Zahedi, S.; Quiroga, J.M.; Coello, M.D. Mapping microplastics in Cadiz (Spain): Occurrence of microplastics in municipal and industrial wastewaters. J. Water Process Eng. 2020, 38, 101596. [Google Scholar] [CrossRef]
- Long, Z.; Pan, Z.; Wang, W.; Ren, J.; Yu, X.; Lin, L.; Lin, H.; Chen, H.; Jin, X. Microplastic Abundance, Characteristics, and Removal in Wastewater Treatment Plants in a Coastal City of China. Water Res. 2019, 155, 255–265. [Google Scholar] [CrossRef]
- Hidayaturrahman, H.; Lee, T. A Study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar. Pollut. Bull. 2019, 146, 696–702. [Google Scholar] [CrossRef]
- Magalhaes, S.; Alves, L.; Romano, A.; Medronho, B.; da Graca Rasteiro, M. Extraction and Characterization of Microplastics from Portuguese Industrial Effluents. Polymers 2022, 14, 2902. [Google Scholar] [CrossRef]
- Wei, F.; Xu, C.; Chen, C.; Wang, Y.; Lan, Y.; Long, L.; Xu, M.; Wu, J.; Shen, F.; Zhang, Y.; et al. Distribution of microplastics in the sludge of wastewater treatment plants in chengdu, China. Chemosphere 2022, 287, 132357. [Google Scholar] [CrossRef]
- Nguyen, M.K.; Hadi, M.; Lin, C.; Nguyen, H.; Thai, V.; Hoang, H.; Vo, D.N.; Tran, H. Microplastics in sewage sludge: Distribution, toxicity, identification methods and engineered technologies. Chemosphere 2022, 308, 136455. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.S.; Nair, A.T. The Fate of Microplastics in Wastewater Treatment Plants: An Overview of Source and Remediation Technologies. Environ. Technol. Innov. 2022, 28, 102815. [Google Scholar] [CrossRef]
- Ateia, M.; Ersan, G.T.; Alalm, M.G.; Boffito, D.C.; Karanfil, T. Emerging investigator series: Microplastic sources, fate, toxicity, detection, and interactions with micropollutants in aquatic ecosystems—A review of reviews. Environ. Sci.—Process. Impacts 2022, 24, 172–195. [Google Scholar] [CrossRef]
- Deng, H.; Wei, R.; Luo, W.; Hu, L.; Li, B.; Di, Y.; Shi, H. Microplastic Pollution in Water and Sediment in a Textile Industrial Area. Environ. Pollut. 2020, 258, 113658. [Google Scholar] [CrossRef] [PubMed]
- Townsend, K.R.; Lu, H.-C.; Sharley, D.J.; Pettigrove, V. Associations between Microplastic Pollution and Land Use in Urban Wetland Sediments. Environ. Sci. Pollut. Res. 2019, 26, 22551–22561. [Google Scholar] [CrossRef]
- Mora-Teddy, A.K.; Matthaei, C.D. Microplastic pollution in urban streams across New Zealand: Concentrations, composition and implications. N. Z. J. Mar. Freshw. Res. 2020, 54, 233–250. [Google Scholar] [CrossRef]
- Directive (EU) 2020/2184 of the European Parliament and of the council of 16 December 2020 on the quality of water intended for human consumption (recast) (Text with EEA relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32020L2184&qid=1725164351132 (accessed on 1 September 2024).
- Van Cauwenberghe, L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C.R. Microplastics in sediments: A review of techniques, occurrence and effects. Mar. Environ. Res. 2015, 111, 5–11. [Google Scholar] [CrossRef]
- Adhikari, S.; Kelkar, V.; Kumar, R.; Halden, E.U. Methods and challenges in the detection of microplastics and nanoplastics: A mini-review. Polym. Int. 2021, 71, 543–551. [Google Scholar] [CrossRef]
- Mallow, O.; Spacek, S.; Schwarzböck, T.; Fellner, J.; Rechberger, H. A new thermoanalytical method for the quantification of microplastics in industrial wastewater. Environ. Pollut. 2020, 259, 113862. [Google Scholar] [CrossRef]
- Hooge, A.; Hauggaard-Nielsen, H.; Heinze, W.M.; Lyngsia, G.; Ramos, T.M.; Sandgaard, M.H.; Vollertsen, J.; Syberg, K. Fate of microplastics in sewage sludge and in agricultural soils. TrAC Trends Anal. Chem. 2023, 166, 117184. [Google Scholar] [CrossRef]
- Hrovat, B.; Uurasjärvi, E.; Viitala, M.; Franco del Pino, A.; Mänttari, M.; Papamatthaiakis, N.; Haapala, A.; Peiponen, K.; Roussey, M.; Koistinen, A. Preparation of Synthetic Micro- and Nano plastics for Method Validation Studies. Sci. Total Environ. 2024, 1718, 21. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Liu, X.; Qu, M. Nanoplastics and Human Health: Hazard Identification and Biointerface. Nanomaterials 2022, 12, 1298. [Google Scholar] [CrossRef]
- Tsering, T.; Viitala, M.; Hyvönen, M.; Reinikainen, S.-P.; Mänttäri, M. The assessment of particle selection and blank correction to enhance the analysis of microplastics with Raman microspectroscopy. Sci. Total Environ. 2022, 842, 156804. [Google Scholar] [CrossRef] [PubMed]
- Uurasjärvi, E.; Sainio, E.; Setälä, O.; Lehtiniemi, M.; Koistinen, A. Validation of an imaging FTIR spectroscopic method for analyzing microplastics ingestion by Finnish lake fish (Perca fluviatilis and Coregonus Albula). Environ. Pollut. 2021, 288, 117780. [Google Scholar] [CrossRef]
- Cabernard, L.; Roscher, L.; Lorenz, C.; Gerdts, G.; Primpke, S. Comparison of Raman and Fourier Transform Infrared Spectroscopy for the Quantification of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2018, 52, 13279–13288. [Google Scholar] [CrossRef]
- Catarino, A.I.; Thompson, R.; Sanderson, W.; Henry, T.B. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environ. Toxicol. Chem. 2016, 36, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Mbachu, O.; Jenkins, G.; Pratt, C.; Kaparaju, P. Enzymatic purification of microplastics in soil. MethodsX 2021. [CrossRef]
- von Friesen, L.W.; Granberg, M.; Hasselöv, M.; Gabrielsen, G.W.; Magnusson, K. An efficient and gentle enzymatic digestion protocol for the extraction of microplastics from bivalve tissue. Mar. Pollut. Bull. 2019, 142, 129–134. [Google Scholar] [CrossRef]
- Cole, M.; Webb, H.; Lindeque, P.K.; Fileman, E.S.; Halsband, C.; Galloway, T.S. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 2014, 4, 4528. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Wang, L.; Guo, H.; Zhang, J.; Gao, D. Effects of typical sludge treatment on microplastics in China-Characteristics, abundance and micro-morphological evidence. Sci. Total Environ. 2022, 826, 154206. [Google Scholar] [CrossRef]
Sample | Pretreatment Method | No. of Particles/L | Size Range (µm) | Polymer Type | Average Size (µm) | |
---|---|---|---|---|---|---|
Location 1: effluent | ||||||
1 | H2O2 | 4 | 69–165 | PP, PET | 119 | |
2 | H2O2+PROT | 8 | 25–256 | PP | 111 | |
Location 2: process wastewater | ||||||
3 | H2O2 | 8 | 28–207 | PP | 123 | |
4 | H2O2+PROT | 27 | 17.8–244 | PA, PET, PE, PP | 73 | |
5 | H2O2+CEL | 2 | 125–288 | PE | 206 | |
6 | H2O2+AMY | 1 | 71 | PP | 71 | |
7 | H2O2+PROT+CEL | 10 | 18–70 | PP, PE | 43 | |
8 | H2O2+PROT+CEL+AMY | 8 | 35–150 | PP, PVC | 69 | |
Location 3: process wastewater | ||||||
9 | H2O2 | 16 | 37–223 | PP | 83 | |
10 | H2O2 | 1 | 34 | PET | 34 | |
11 | H2O2+PROT | 28 | 41–461 | PET, PP | 148 | |
12 | H2O2+PROT | 9 | 30–201 | PP, PS, PE | 116 | |
13 | H2O2+PROT | 17 | 38–307 | PE, PP | 102 | |
Location 4: condensate | ||||||
14 | H2O2 | 13 | 33–154 | PA, PET, PE, PS, PP | 81 | |
15 | H2O2 | 9 | 44–111 | PET, PP | 73 | |
16 | H2O2+PROT | 16 | 30–704 | PA, PET, PE, PP | 151 | |
17 | H2O2+PROT | 22 | 28–360 | PET, PE, PS, PP | 132 |
Sample | Pretreatment Method | No. of Particles/L | Size Range (µm) | Polymer Type | Average Size (µm) | |
---|---|---|---|---|---|---|
Location 1 (Digestate) | ||||||
Solid | 1 | H2O2 | 4400 (11 *) | 23–225 | PET, PS, PP, PE | 71 |
Solid | 2 | H2O2+PROT | 5333 (16 *) | 30–291 | PET, PS, PP, PE | 99 |
Solid | 3 | H2O2+PROT+CEL | 6333 (19 *) | 35–281 | PET, PS, PP, PE | 117 |
Solid | 4 | H2O2+PROT+CEL | 3194 (23 *) | 18–209 | PET, PS, PP, PE | 93 |
Location 2: (Reject water) | ||||||
Solid | 5 | H2O2 | N/A | / | / | / |
Solid | 6 | H2O2+PROT | N/A | / | / | / |
Solid | 7 | H2O2+PROT+CEL | 730 (40 *) | 30–235 | PET, PS, PP, PE | 81 |
Location 3: (Wastewater sludge) | ||||||
Solid | 8 | H2O2 | N/A | / | / | / |
Solid | 9 | H2O2+PROT | N/A | / | / | / |
Solid | 10 | H2O2+PROT+CEL | 500 (5 *) | 48–241 | PE, PP, PMMA | 128 |
Solid | 11 | H2O2+PROT+CEL | 700 (7 *) | 18–83 | PET, PE, PP | 69 |
Solid | 12 | H2O2+PROT+CEL | 400 (4 *) | 30–135 | PP | 79 |
Liquid | 13 | H2O2 | N/A | / | / | / |
Liquid | 14 | H2O2+PROT | 7 | 54–314 | PET, PE, PP | 152 |
Liquid | 15 | H2O2+PROT+CEL | 10 | 33–445 | PE, PS, PP | 180 |
Location 4: (Process influent water) | ||||||
Solid | 16 | H2O2+PROT | 230 (23 *) | 40–280 | PET, PP | 145 |
Liquid | 17 | H2O2+PROT | 1 | 175 | PP | 175 |
Sample | No. of Particles | Size Range (µm) | Polymer Type | Shapes |
---|---|---|---|---|
Pipe test | 19 | 41–335 | 4 PS, 11PP, 4PE | 1 fibre, 18 fragments |
Filtration 1 | 40 | 16–1137 | 3PET, 1PS, 28PP, 8PE | 5 fibres, 35 fragments |
Filtration 2 | 20 | 17–2113 | 1PA, 4 PE, 1 PS, 14PP | 4 fibres, 15 fragments |
Blanks | 0 | / | / | / |
Sample (Reject Water) | Filter | No. of MPs/L (Micro FTIR) | No. of MPs/L (Raman) | Polymer Type | Average Size (µm) | Size Range (µm) |
---|---|---|---|---|---|---|
1 | Silver | 40 | / | PET, PS, PE, PP | 81 | 30–235 |
2 | Gold | 33 | 25 | PET, PE, PS, PP | 78 | 18–335 |
3 | Anodisc | / | 15 | PE, PP | / | / |
Sample sets (Spiked MPs samples | Filter | % of MPs recovered (micro FTIR) | % of MPs recovered (Raman) | Polymer type | Average size | Size Range |
1 | Silver | 76 | / | PP, PE, PET, PS, PA, rec. PP, rec. PE, PVC | 101 | 17–342 |
2 | Gold | 70 | 49 | PP, PE, PET, PS, PA, rec. PP, rec. PE, PVC | 92 | 17–220 |
3 | Anodisc | / | 32 | PP, PE, PET, PS, PA, rec. PP, rec. PE, PVC | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrovat, B.; Uurasjärvi, E.; Koistinen, A. Analysis of Microplastics in Industrial Processes—Systematic Analysis of Digestion Efficiency of Samples from Forestry, Wastewater Treatment Plants and Biogas Industries. Microplastics 2024, 3, 634-652. https://doi.org/10.3390/microplastics3040039
Hrovat B, Uurasjärvi E, Koistinen A. Analysis of Microplastics in Industrial Processes—Systematic Analysis of Digestion Efficiency of Samples from Forestry, Wastewater Treatment Plants and Biogas Industries. Microplastics. 2024; 3(4):634-652. https://doi.org/10.3390/microplastics3040039
Chicago/Turabian StyleHrovat, Blaž, Emilia Uurasjärvi, and Arto Koistinen. 2024. "Analysis of Microplastics in Industrial Processes—Systematic Analysis of Digestion Efficiency of Samples from Forestry, Wastewater Treatment Plants and Biogas Industries" Microplastics 3, no. 4: 634-652. https://doi.org/10.3390/microplastics3040039
APA StyleHrovat, B., Uurasjärvi, E., & Koistinen, A. (2024). Analysis of Microplastics in Industrial Processes—Systematic Analysis of Digestion Efficiency of Samples from Forestry, Wastewater Treatment Plants and Biogas Industries. Microplastics, 3(4), 634-652. https://doi.org/10.3390/microplastics3040039