Early Empirical Antibiotic Therapy Modification in Sepsis Using Beta-Lacta Test Directly on Blood Cultures
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design and Patients
2.2. Microbiological Procedures
2.2.1. Blood Cultures
2.2.2. BetaLacta Test (BLT)
2.3. Antimicrobial Susceptibility Testing
Antimicrobial Adaptation Strategies according to the BLT
3. Results
3.1. Characteristics of Study Population
3.2. Bacteriological Data
3.3. Microbiological Performance of the BLT
3.4. Empirical Antibiotic Therapy
3.5. Clinical Impact of BLT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef] [PubMed]
- Battle, S.E.; Bookstaver, P.B.; Justo, J.A.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Association between inappropriate empirical antimicrobial therapy and hospital length of stay in Gram-negative bloodstream infections: Stratification by prognosis. J. Antimicrob. Chemother. 2017, 72, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Gradel, K.O.; Jensen, U.S.; Schønheyder, H.C.; Østergaard, C.; Knudsen, J.D.; Wehberg, S.; Søgaard, M. Danish Collaborative Bacteraemia Network (DACOBAN) Impact of appropriate empirical antibiotic treatment on recurrence and mortality in patients with bacteraemia: A population-based cohort study. BMC Infect. Dis. 2017, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Bassetti, M.; Tiseo, G.; Giordano, C.; Nencini, E.; Russo, A.; Graziano, E.; Tagliaferri, E.; Leonildi, A.; Barnini, S.; et al. Time to appropriate antibiotic therapy is a predictor of outcome in patients with bloodstream infection caused by KPC-producing Klebsiella pneumoniae. Crit. Care 2020, 24, 29. [Google Scholar] [CrossRef] [PubMed]
- Bayot, M.L.; Bragg, B.N. Antimicrobial Susceptibility Testing. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Pilmis, B.; Thy, M.; Diep, J.; Krob, S.; Périllaud, C.; Couzigou, C.; Vidal, B.; Mizrahi, A.; Lourtet-Hascoët, J.; Le Monnier, A.; et al. Clinical impact of rapid susceptibility testing on MHR-SIR directly from blood cultures. J. Antimicrob. Chemother. 2019, 74, 3063–3068. [Google Scholar] [CrossRef]
- Peri, A.M.; Stewart, A.; Hume, A.; Irwin, A.; Harris, P.N.A. New Microbiological Techniques for the Diagnosis of Bacterial Infections and Sepsis in ICU Including Point of Care. Curr. Infect. Dis. Rep. 2021, 23, 12. [Google Scholar] [CrossRef]
- Renvoisé, A.; Decré, D.; Amarsy-Guerle, R.; Huang, T.-D.; Jost, C.; Podglajen, I.; Raskine, L.; Genel, N.; Bogaerts, P.; Jarlier, V.; et al. Evaluation of the βLacta Test, a Rapid Test Detecting Resistance to Third-Generation Cephalosporins in Clinical Strains of Enterobacteriaceae. J. Clin. Microbiol. 2013, 51, 4012–4017. [Google Scholar] [CrossRef]
- Compain, F.; Bensekhri, H.; Rostane, H.; Mainardi, J.-L.; Lavollay, M. β LACTA test for rapid detection of Enterobacteriaceae resistant to third-generation cephalosporins from positive blood cultures using briefly incubated solid medium cultures. J. Med. Microbiol. 2015, 64, 1256–1259. [Google Scholar] [CrossRef]
- Hasso, M.; Porter, V.; Simor, A.E. Evaluation of the β-Lacta Test for Detection of Extended-Spectrum-β-Lactamase (ESBL)-Producing Organisms Directly from Positive Blood Cultures by Use of Smudge Plates. J. Clin. Microbiol. 2017, 55, 3560–3562. [Google Scholar] [CrossRef] [Green Version]
- Walewski, V.; Podglajen, I.; Lefeuvre, P.; Dutasta, F.; Neuschwander, A.; Tilouche, L.; Carbonnelle, E.; Ferroni, A. Early detection with the β-LACTATM test of extended-spectrum β-lactamase-producing Enterobacteriaceae in blood cultures. Diagn. Microbiol. Infect. Dis. 2015, 83, 216–218. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, A.; Amzalag, J.; Couzigou, C.; Péan De Ponfilly, G.; Pilmis, B.; Le Monnier, A. Clinical impact of rapid bacterial identification by MALDI-TOF MS combined with the bêta-LACTATM test on early antibiotic adaptation by an antimicrobial stewardship team in bloodstream infections. Infect. Dis. 2018, 50, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for interpretation of MICs and Zone Diameters, Version 11.0. 2021. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf (accessed on 1 November 2020).
- Jarlier, V.; Nicolas, M.H.; Fournier, G.; Philippon, A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev. Infect. Dis. 1988, 10, 867–878. [Google Scholar] [CrossRef]
- Mohanty, S.; Gaind, R.; Ranjan, R.; Deb, M. Use of the cefepime-clavulanate ESBL Etest for detection of extended-spectrum beta-lactamases in AmpC co-producing bacteria. J. Infect. Dev. Ctries. 2009, 4, 24–29. [Google Scholar] [CrossRef]
- Polsfuss, S.; Bloemberg, G.V.; Giger, J.; Meyer, V.; Böttger, E.C.; Hombach, M. Practical approach for reliable detection of AmpC beta-lactamase-producing Enterobacteriaceae. J. Clin. Microbiol. 2011, 49, 2798–2803. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.; Zahar, J.-R.; Lesprit, P.; Ruppe, E.; Leone, M.; Chastre, J.; Lucet, J.-C.; Paugam-Burtz, C.; Brun-Buisson, C.; Timsit, J.-F.; et al. Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams. Clin. Microbiol. Infect. 2015, 21, 649.e1–649.e10. [Google Scholar] [CrossRef]
- Kumar, A.; Ellis, P.; Arabi, Y.; Roberts, D.; Light, B.; Parrillo, J.E.; Dodek, P.; Wood, G.; Kumar, A.; Simon, D.; et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009, 136, 1237–1248. [Google Scholar] [CrossRef]
- Garnier, M.; Rozencwajg, S.; Pham, T.; Vimont, S.; Blayau, C.; Hafiani, M.; Fulgencio, J.-P.; Bonnet, F.; Mainardi, J.-L.; Arlet, G.; et al. Evaluation of early antimicrobial therapy adaptation guided by the BetaLACTA® test: A case-control study. Crit. Care 2017, 21, 161. [Google Scholar] [CrossRef]
- Dépret, F.; Aubry, A.; Fournier, A.; Charles-Nelson, A.; Katsahian, S.; Compain, F.; Mainardi, J.L.; Fernandez-Gerlinger, M.P. β LACTA testing may not improve treatment decisions made with MALDI-TOF MS-informed antimicrobial stewardship advice for patients with Gram-negative bacteraemia: A prospective comparative study. J. Med. Microbiol. 2018, 67, 183–189. [Google Scholar] [CrossRef]
- Poirel, L.; Fernández, J.; Nordmann, P. Comparison of Three Biochemical Tests for Rapid Detection of Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae. J. Clin. Microbiol. 2016, 54, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Amzalag, J.; Mizrahi, A.; Naouri, D.; Nguyen, J.C.; Ganansia, O.; Le Monnier, A. Optimization of the β LACTA test for the detection of extended-spectrum-β-lactamase-producing bacteria directly in urine samples. Infect. Dis. 2016, 48, 695–698. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 170) | |
---|---|
Demographic data | |
Male/female, n (%)/n (%) | 81 (48)/89 (52) |
Age (years), median (IQR) | 71 (58–80) |
ICU admission, n (%) | 13 (7.6) |
Healthcare-associated infections, n (%) | 83 (48.8%) |
Sources of infection, n (%) | |
Urinary tract | 81 (47.7%) |
Intra-abdominal | 41 (24.1%) |
Primary bacteremia | 12 (7.1%) |
Catheter-related | 11 (6.5%) |
Respiratory tract | 11 (6.5%) |
Skin and soft tissue | 6 (3.5%) |
Febrile neutropenia | 5 (2.9%) |
Maternal-fetal | 1 (0.6%) |
Neuromeningeal | 1 (0.6%) |
Bone and joint infection | 1 (0.6%) |
Monobacterial infection, n (%) | 158 (93) |
Polybacterial infection, n (%) | 12 (7) |
Enterobacterales Species | Total, n (%) | 3GC-S Strains | 3GC-R Strains | ||
---|---|---|---|---|---|
ESBL | AmpC | Positive BLT, n (%) | |||
Groups 0, 1 and 2 | |||||
Escherichia coli | 104 (61.2) | 83 | 17 * | 4 | 16 (76.2) |
Klebsiella pneumoniae | 35 (20.5) | 30 | 5 ** | 0 | 3 (60) |
Klebsiella oxytoca | 3 (1.8) | 3 | 0 | 0 | 0 (0) |
Klebsiella variicola | 2 (1.2) | 1 | 1 | 0 | 1 (100) |
Proteus mirabilis | 3 (1.7) | 3 | 0 | 0 | 0 (0) |
Citrobacter koseri | 2 (1.2) | 2 | 0 | 0 | 0 (0) |
Salmonella spp | 4 (2.4) | 4 | 0 | 0 | 0 (0) |
Group 3 | |||||
Enterobacter cloacae | 13 (7.6) | 8 | 1 | 4 | 0 (0) |
Morganella morganii | 1 (0.6) | 1 | 0 | 0 | 0 (0) |
Citrobacter freundii | 2 (1.2) | 2 | 0 | 0 | 0 (0) |
Serratia marcescens | 1 (0.6) | 1 | 0 | 0 | 0 (0) |
Total | 170 | 138 | 24 | 8 | 20 (62.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizrahi, A.; Jaureguy, F.; Petit, H.; Péan de Ponfilly, G.; Carbonnelle, E.; Le Monnier, A.; Zahar, J.-R.; Pilmis, B. Early Empirical Antibiotic Therapy Modification in Sepsis Using Beta-Lacta Test Directly on Blood Cultures. Int. J. Transl. Med. 2022, 2, 448-455. https://doi.org/10.3390/ijtm2030034
Mizrahi A, Jaureguy F, Petit H, Péan de Ponfilly G, Carbonnelle E, Le Monnier A, Zahar J-R, Pilmis B. Early Empirical Antibiotic Therapy Modification in Sepsis Using Beta-Lacta Test Directly on Blood Cultures. International Journal of Translational Medicine. 2022; 2(3):448-455. https://doi.org/10.3390/ijtm2030034
Chicago/Turabian StyleMizrahi, Assaf, Françoise Jaureguy, Héloise Petit, Gauthier Péan de Ponfilly, Etienne Carbonnelle, Alban Le Monnier, Jean-Ralph Zahar, and Benoît Pilmis. 2022. "Early Empirical Antibiotic Therapy Modification in Sepsis Using Beta-Lacta Test Directly on Blood Cultures" International Journal of Translational Medicine 2, no. 3: 448-455. https://doi.org/10.3390/ijtm2030034
APA StyleMizrahi, A., Jaureguy, F., Petit, H., Péan de Ponfilly, G., Carbonnelle, E., Le Monnier, A., Zahar, J. -R., & Pilmis, B. (2022). Early Empirical Antibiotic Therapy Modification in Sepsis Using Beta-Lacta Test Directly on Blood Cultures. International Journal of Translational Medicine, 2(3), 448-455. https://doi.org/10.3390/ijtm2030034