Antifungal Activity of Angelica gigas with Enhanced Water Solubility of Decursin and Decursinol Angelate by Hot-Melt Extrusion Technology against Candida albicans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Preparation of HME-AGN
2.3. Preparation of Extracts
2.4. The HPLC Condition
2.5. Antioxidant Activity
2.6. Antifungal Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Preparation of HME-Processed AGN Samples
3.2. The HPLC Analysis of D and DA in AGN and HME-AGN
3.3. Antioxidant Activity of AGN and HME-AGN
3.4. Antifungal Activity of AGN and HME-AGN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shehzad, A.; Parveen, S.; Qureshi, M.; Subhan, F.; Lee, Y.S. Decursin and decursinol angelate: Molecular mechanism and therapeutic potential in inflammatory diseases. Inflamm. Res. 2018, 67, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Fontamillas, G.; Kim, S.W.; Kim, H.-U.; Kim, S.-J.; Park, T.S.; Park, B.-C. Effects of Angelica gigas Nakai on the production of decursin- and decursinol angelate-enriched eggs. J. Sci. Food Agric. 2019, 99, 3117–3123. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.-J.; Kwon, M.-R.; Chung, M.-S. Pilot-scale subcritical-water extraction of nodakenin and decursin form Angelica gigas Nakai. Food Sci. Biotechnol. 2020, 29, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Park, I.S.; Kim, B.; Han, Y.; Yang, H.; Cho, U.; Kim, S.I.; Kim, J.H.; Park, J.H.Y.; Lee, K.W.; Song, Y.S. Decursin and Decursinol Angelate Suppress Adipogenesis through Activation of β-catenin Signaling Pathway in Human Visceral Adipose-Derived Stem Cells. Nutrients 2019, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, L.; Jiang, C.; Xing, C.; Kim, S.-H.; Lü, J. Anti-cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds. Anticancer Agents Med. Chem. 2012, 12, 1239–1254. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.R. Biological Activities of Extracts from Leaf of Angelica gigas Nakai. Korean J. Food Preserv. 2021, 34, 181–186. [Google Scholar]
- Cho, J.H.; Kwon, J.E.; Cho, Y.; Kim, I.; Kang, S.C. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression. Nutrients 2015, 7, 4862–4874. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Kim, S. Neuroprotective and Cognitive Enhancement Potentials of Angelica gigas Nakai Root: A Review. Sci. Pharm. 2017, 85, 21. [Google Scholar] [CrossRef]
- Ryu, S.; Jin, M.; Wang, M.-H.; Baek, J.-S.; Cho, C.-W. Effects of lipid nanoparticles on physicochemical properties, cellular uptake, and lymphatic uptake of 6-methoxflavone. J. Pharm. Investig. 2022, 52, 233–241. [Google Scholar] [CrossRef]
- Lee, H.; Bang, J.-B.; Na, Y.-G.; Lee, J.-Y.; Cho, C.-W.; Baek, J.-S.; Lee, H.-K. Development and Evaluation of Tannic Acid-Coated Nanosuspension for Enhancing Oral Bioavailability of Curcumin. Pharmaceutics 2021, 13, 1460. [Google Scholar] [CrossRef]
- Huh, H.W.; Na, Y.-G.; Kang, H.; Kim, M.; Han, M.; Pham, T.M.A.; Lee, H.; Baek, J.-S.; Lee, H.-K.; Cho, C.-W. Novel self-floating tablet for enhanced oral bioavailability of metformin based on cellulose. Int. J. Pharm. 2021, 592, 120113. [Google Scholar]
- Na, Y.-G.; Pham, T.M.A.; Byeon, J.-J.; Kim, M.-K.; Han, M.-G.; Baek, J.-S.; Lee, H.-K.; Cho, C.-W. Development and evaluation of TPGS/PVA-based nanosuspension for enhancing dissolution and oral bioavailability of ticagrelor. Int. J. Pharm. 2020, 581, 119287. [Google Scholar] [CrossRef] [PubMed]
- Genina, N.; Hadi, B.; Löbmann, K. Hot Melt Extrusion as Solvent-Free Technique for a Continuous Manufacturing of Drug-Loaded Mesoporous Silica. J. Pharm. Sci. 2018, 107, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Ashour, E.A.; Majumdar, S.; Alsheteli, A.; Alshehri, S.; Alsulays, B.; Feng, X.; Gryczke, A.; Kolter, K.; Langley, N.; Repka, M.A. Hot melt extrusion as an approach to improve solubility, permeability and oral absorption of a psychoactive natural product, piperine. J. Pharm. Pharmacol. 2016, 68, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Patil, H.; Tiwari, R.V.; Repka, M.A. Hot-Melt Extrusion: From Theory to Application in Pharmaceutical Formulation. AAPS PharmSciTech 2016, 17, 20–42. [Google Scholar] [CrossRef] [PubMed]
- Go, E.-J.; Rut, B.-R.; Ryu, S.-J.; Kim, H.-B.; Lee, H.-T.; Kwon, J.-W.; Baek, J.-S.; Lim, J.-D. An Enhanced Water Solubility and Stability of Anthocyanins in Mulberry Processed with Hot Melt Extrusion. Int. J. Mol. Sci. 2021, 22, 12377. [Google Scholar] [CrossRef]
- Hwang, I.; Kang, C.-Y.; Park, J.-B. Advances in hot-melt extrusion technology toward pharmaceutical objectives. J. Pharm. Investig. 2017, 47, 123–132. [Google Scholar] [CrossRef]
- Jiang, Y.; Piao, J.; Liu, N.; Hou, J.; Liu, J.; Hu, W. Effect of Ultrafine Powderization and Solid Dispersion Formation via Hot-Melt Extrusion on Antioxidant, Anti-Inflammatory, and the Human Kv1.3 Channel Inhibitory Activities of Angelica gigas Nakai. Bioinorg. Chem. 2020, 2020, 7846176. [Google Scholar] [CrossRef]
- Jiang, Y.; Piao, J.; Cho, H.-J.; Kang, W.-S.; Kim, H.-Y. Improvement in antiproliferative activity of Angelica gigas Nakai by solid dispersion formation via hot-melt extrusion and induction of cell cycle arrest and apoptosis in HeLa cells. Biosci. Biotechnol. Biochem. 2015, 79, 1635–1643. [Google Scholar] [CrossRef]
- Azad, M.; Kang, W.S.; Lim, J.D.; Park, C.H. Bio- Fortification of Angelica gigas Nakai Nano-Powder Using Bio-Polymer by Hot Melt Extrusion to Enhance the Bioaccessibility and Functionality of Nutraceutical Compounds. Pharmaceuticals 2020, 13, 3. [Google Scholar] [CrossRef]
- Piao, J.; Lee, J.-Y.; Weon, J.B.; Ma, C.J.; Ko, H.-J.; Kim, D.-D.; Kang, W.-S.; Cho, H.-J. Angelica gigas Nakai and Soluplus-Based Solid Formulations Prepared by Hot-Melting Extrusion: Oral Absorption Enhancing and Memory Ameliorating Effects. PLoS ONE. 2015, 10, e0124447. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.A.; Khan, M.R.; Sahreen, S.; Ahmed, M. Evaluation of phenolic contents and antioxidant activity of various solvent extracts of Sonchus asper (L.) Hill. Chem. Cent. J. 2012, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Lee, Y.-S.; Jung, S.-H.; Shin, K.H.; Kim, B.-K.; Kang, S. S Antioxidant Activities of Decursinol Angelate and Decursin from Angelica gigas Roots. Nat. Prod. Sci. 2003, 9, 170–173. [Google Scholar]
Mixing Ratio (%) | |||
---|---|---|---|
AGN | Ascorbyl Palmitate | Whey Protein Isolate | |
Control (Nonextrudate) | 100 | - | - |
F1 (Extrudate) | 100 | - | - |
F2 (Extrudate) | 80 | 10 | 10 |
Column | YMC—ODS AM C18 (250 * 4.6 mm, 5 µm, 12 nm) | |
Detector | UV-vis detector (330 nm) | |
Solvent A | Water | |
Solvent B | Acetonitrile (ACN) | |
Flow rate | 0.8 mL/min | |
Oven | 28 °C | |
Injection volume | 10 µl | |
Gradient elution system | ||
Time (min) | % A | % B |
Initial | 45 | 55 |
10 | 30 | 70 |
15 | 20 | 80 |
25 | 10 | 90 |
35 | 5 | 95 |
40 | 45 | 55 |
Decursin (D) (mg/g) * | Decursinol Angelate (DA) (mg/g) * | |
---|---|---|
Control | 0.07 ± 0.05 | 0.11 ± 0.02 |
F1 | 0.41 ± 0.20 | 0.29 ± 0.10 |
F2 | 3.01 ± 0.47 | 1.47 ± 0.23 |
Sample | IC50 (μg/mL) * |
---|---|
Control | 9478.26 ± 660.45 a |
F1 | 4671.34 ± 392.72 b |
F2 | 4417.32 ± 330.82 c |
Ascorbic acid | 103.8 ± 6.29 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, S.; Lee, H.Y.; Nam, S.-H.; Baek, J.-S. Antifungal Activity of Angelica gigas with Enhanced Water Solubility of Decursin and Decursinol Angelate by Hot-Melt Extrusion Technology against Candida albicans. Int. J. Transl. Med. 2022, 2, 515-521. https://doi.org/10.3390/ijtm2040038
Ryu S, Lee HY, Nam S-H, Baek J-S. Antifungal Activity of Angelica gigas with Enhanced Water Solubility of Decursin and Decursinol Angelate by Hot-Melt Extrusion Technology against Candida albicans. International Journal of Translational Medicine. 2022; 2(4):515-521. https://doi.org/10.3390/ijtm2040038
Chicago/Turabian StyleRyu, Suji, Ha Yeon Lee, Seoul-Hee Nam, and Jong-Suep Baek. 2022. "Antifungal Activity of Angelica gigas with Enhanced Water Solubility of Decursin and Decursinol Angelate by Hot-Melt Extrusion Technology against Candida albicans" International Journal of Translational Medicine 2, no. 4: 515-521. https://doi.org/10.3390/ijtm2040038
APA StyleRyu, S., Lee, H. Y., Nam, S. -H., & Baek, J. -S. (2022). Antifungal Activity of Angelica gigas with Enhanced Water Solubility of Decursin and Decursinol Angelate by Hot-Melt Extrusion Technology against Candida albicans. International Journal of Translational Medicine, 2(4), 515-521. https://doi.org/10.3390/ijtm2040038