Celosia trigyna Linn (Cucurbitaceae) Annihilate Human Breast, Colon, and Lung Cancer Cells: Combination of Cheap Template for Anticancer Screening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Collection and Authentication
2.3. Plant Extraction
2.4. Phytochemical Screening of Plant Material
2.5. Solvent Partitioning of the Extract
2.6. Biological Assay of Crude Extracts
2.6.1. Determination of Cytotoxic Effects Using Tadpoles (Raniceps ranninus)
2.6.2. Antiproliferative Studies Using Sorghum bicolor
2.6.3. In Vitro Cytotoxicity Assay Using Saccharomyces cerevisiae
2.6.4. Determination of Antioxidant Activity
2.6.5. In Vitro Cytotoxicity against Human Cancer Cell Lines (Sulforhodamine-B (SRB) Assay)
3. Results and Discussion
Analysis of Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal Plants: Past History and Future Perspective. J. HerbMed Pharmacol. 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Shukla, S.; Mehta, A. Anticancer Potential of Medicinal Plants and Their Phytochemicals: A Review. Rev. Bras. Bot. 2015, 38, 199–210. [Google Scholar] [CrossRef]
- Salmerón-Manzano, E.; Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. Worldwide Research Trends on Medicinal Plants. Int. J. Environ. Res. Public Health 2020, 17, 3376. [Google Scholar] [CrossRef] [PubMed]
- Ohiagu, F.O.; Chikezie, P.C.; Chikezie, C.M.; Enyoh, C.E. Anticancer Activity of Nigerian Medicinal Plants: A Review. Futur. J. Pharm. Sci. 2021, 7, 1–21. [Google Scholar] [CrossRef]
- Roy, A.; Attre, T.; Bharadvaja, N. Anticancer Agent from Medicinal Plants: A Review. New Apects Med. Plants Pharmacogn. 2017, 1, 54. [Google Scholar]
- Stewart, B.W.; Wild, C.P. World Cancer Report 2014; World Health Organization: Geneva, Switzerland; IARC Nonserial Publication: Lyon, France, 2014. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 359. [Google Scholar] [CrossRef]
- McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv. Nutr. 2016, 7, 418–419. [Google Scholar] [CrossRef] [Green Version]
- Boyle, P.; Levin, B. World CanCer Report 2008. Cancer Control 2008, 199, 1828–1840. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Barker, K.; Eickmeyer, S. Therapeutic Exercise. Med. Clin. N. Am. 2020, 104, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Wild, C.; Weiderpass, E.; Stewart, B. World Cancer Report: Cancer Research for Cancer Prevention; International Agency for Research on Cancer: Lyon, France, 2020; ISBN 978-92-832-0448-0. Available online: http://publications.iarc.fr/586 (accessed on 23 November 2022).
- Mazzola, R.; Corradini, S.; Eidemüeller, M.; Figlia, V.; Fiorentino, A.; Giaj-Levra, N.; Nicosia, L.; Ricchetti, F.; Rigo, M.; Musola, M.; et al. Modern Radiotherapy in Cancer Treatment during Pregnancy. Crit. Rev. Oncol. Hematol. 2019, 136, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.W.; Kuo, M.T. Improving Radiotherapy in Cancer Treatment: Promises and Challenges. Oncotarget 2017, 8, 62742–62758. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Shuang, D.; Jing, Z.; Xi, C.; Ou, W.; Ran, F.; Yu, Q.; Wang, J.; Qing, H.; Sheng, H. Interim Guideline for Treatment Options on Cancer Patients during Pandemic of SARS-CoV-2. Open Access Online-First Publ. Res. Pap. COVID-19 2020, 47, 227–234. [Google Scholar]
- Xiao, Y.X.; Yang, W.X. KIFC1: A Promising Chemotherapy Target for Cancer Treatment? Oncotarget 2016, 7, 48656. [Google Scholar] [CrossRef] [Green Version]
- Lopes, C.M.; Dourado, A.; Oliveira, R. Phytotherapy and Nutritional Supplements on Breast Cancer. Biomed. Res. Int. 2017, 2017, 1–42. [Google Scholar] [CrossRef]
- Sowemimo, A.; van de Venter, M.; Baatjies, L.; Koekemoer, T. Cytotoxic Activity of Selected Nigerian Plants. Afr. J. Tradit. Complement. Altern. Med. 2009, 6, 526–528. [Google Scholar] [CrossRef] [Green Version]
- Ofusori, A.E.; Moodley, R.; Jonnalagadda, S.B. Elemental Distribution in the Edible Leaves of Celosia trigyna from the Western and Northern Regions of Nigeria. J. Environ. Sci. Health—Part B Pestic. Food Contam. Agric. Wastes 2019, 54, 61–69. [Google Scholar] [CrossRef]
- Nath, P.; Ohri, D.; Pal, M. Nuclear DNA Content in Celosia (Amaranthaceae ). Plant Syst. Evol. 1992, 182, 253–257. [Google Scholar] [CrossRef]
- El-Desouky, S.K.; Abdelgawad, A.A.; El-Hagrassi, A.M.; Hawas, U.W.; Kim, Y.K. Chemical Composition, Cytotoxic and Antioxidant Activities of Celosia trigyna L. Grown in Saudi Arabia. Acta Pol. Pharm.—Drug Res. 2019, 76, 691–699. [Google Scholar] [CrossRef]
- Onen, P.; Ocira, D.; Omara, T.; Nyeko, J.; Okwir, A. Preliminary Phytochemical Screening of Plumbago zeylanica L. Roots and Its Aphrodisiac Effect in Male Rats. Asian J. Appl. Chem. Res. 2021, 8, 24–31. [Google Scholar] [CrossRef]
- Adebayo, M.A.; Adedokun, O.A.; Akinpelu, L.A.; Okafor, P.O. Evaluation of Anti-Diarrheal Activity of Methanol Root Bark Extract of Milicia Excelsa (Welw) CC Berg (Moraceae) in Rats. Drug Res. 2019, 69, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Ayinde, B.A.; Agbakwuru, U. Cytotoxic and Growth Inhibitory Effects of the Methanol Extract Struchium Sparganophora Ktze (Asteraceae) Leaves. Pharmacogn. Mag. 2010, 6, 293–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikpefan, E.O.; Ayinde, B.A.; Mudassar, B.A.; Farooq, A.D. Anticancer and Antioxidant Studies of the Methanol Extract and Fractions of Conyza sumatrensis (Retz.) E. H. Walker (Asteraceae). Niger. J. Nat. Prod. Med. 2020, 23, 77–82. [Google Scholar] [CrossRef]
- Buschini, A.; Poli, P.; Rossi, C. Saccharomyces Cerevisiae as an Eukaryotic Cell Model to Assess Cytotoxicity and Genotoxicity of Three Anticancer Anthraquinones. Mutagenesis 2003, 18, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Roberto, A.; Caetano, P.P. A High-Throughput Screening Method for General Cytotoxicity Part I Chemical Toxicity Método Rápido Para Triagem Da Citotoxicidade Geral Parte I Toxicidade Química. Rev. Lusófona De Ciências E Tecnologias Da Saúde 2005, 2, 95–100. [Google Scholar]
- Oluwasegun, A.N.A. In vitro Free Radical Scavenging Activity and Total Phenolic Content of Kigelia Africana (LAM). Int. J. Sci. Res. 2014, 3, 368–370. [Google Scholar]
- Adedokun, O.; Gbolade, A.; Ayinde, B. 13, 14-Epoxyoleanan-3-Ol-Acetate: A Male Fertility Enhancing Constituent from Hexane Fraction of Momordica Charantia Linn (Curcubitaceae). Turk. J. Pharm. Sci. 2021, 19, 180–186. [Google Scholar] [CrossRef]
- Esther Ogunjinmi, O.; Oguntola Ogunjinmi, S.; Oluwagbemiga Alayande, S.; Omelebele Nwoke, E.; Adewale Adedosu, T. Evaluation of Antioxidant Activities of Celosia trigyna (Linn) Extracts African Extinction Vegetable. Sci. J. Chem. 2020, 8, 102. [Google Scholar] [CrossRef]
- Adedokun, O.; Ume, O.; Odunola, M.; Nnamani, D.; Jesumirhewe, C.; Ojo, T.; Aniebue, I. Evaluation of Toxicological Profile of Methanol Leaf Extract of Waltheria Indica (Sterculiaceae). GSC Biol. Pharm. Sci. 2021, 17, 34–43. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B Colorimetric Assay for Cytotoxicity Screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Thabit, M.G.; El Bialy, S.A.A.; Nasr, M.N.A. Synthesis and Biological Evaluation of New 3-(4-Substituted Phenyl)Aminoquinoxaline Derivatives as Anticancer Agents. Heterocycl. Commun. 2015, 21, 25–35. [Google Scholar] [CrossRef]
- Gunasekaran, J.; Sankaran, M. Anti Cancer; Anti Oxidant; Cytotoxicity; Lupeol Analogue; MCF-7 Cells Progress in Bioscience and Bioengineering Chemotherapeutic Potential of Lupeol and Its Analogue (Oxime) on Human Mammary Cancer Cell Line (MCF-7). Prog. Biosci. Bioeng. 2017, 1, 18–28. [Google Scholar] [CrossRef]
Class of Phytochemicals | CT |
---|---|
Saponins | + |
Flavonoids | + |
Steroids | + |
Reducing sugars | + |
Terpenoids | + |
Alkaloids | − |
Phenolic compounds | + |
Concentration (µg/mL) | % Inhibition | |||
---|---|---|---|---|
DMSO | Nystatin (Positive Control) | C. trigyna Crude (CT) | C. trigyna Aq (CTA) | |
7.81 | 12.67 ± 1.21 | 97.25 ± 1.02 * | 44.00 ± 1.13 | 28.00 ± 1.53 |
15.6 | 16.80 ± 1.08 | 98.21 ± 0.98 * | 34.40 ± 2.11 | 35.20 ± 2.10 |
31.2 | 17.60 ± 0.01 | 98.78 ± 2.17 * | 26.40 ± 1.92 | 50.40 ± 1.11 |
62.5 | 30.73 ± 1.12 | 99.35 ± 2.92 * | 36.00 ± 1.15 | 60.00 ± 1.89 |
125 | 31.2 ± 1.03 | 99.59 ± 1.87 * | 48.80 ± 2.17 | 88.00 ± 2.08 * |
250 | 33.84 ± 1.03 | 99.71 ± 1.34 * | 56.00 ± 2.12 | 84.80 ± 1.62 * |
Sample | Total Phenolics (Gallic Acid Equivalent) | Total Flavonoids (Rutein Equivalent) |
---|---|---|
C. trigyna (Crude) | 87.52 ± 2.45 | 52.81 ± 1.97 |
C. trigyna (Aqueous fraction) | 81.35 ± 3.70 | 39.11 ± 2.86 |
Cell Lines | C. trigyna (CT) | C. trigyna (Aq. Fraction; CTA) |
---|---|---|
H460 | 58.15 ± 0.51 | 51.69 ± 5.13 |
MCF-7 | 41.32 ± 2.62 | 39.16 ± 9.21 |
HCT116 | 51.82 ± 8.51 | 38.52 ± 7.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oluwasegun, A.; Ntungwe, E.; Bunyamin, A.; Saraiva, L.; Princiotto, S.; Rijo, P. Celosia trigyna Linn (Cucurbitaceae) Annihilate Human Breast, Colon, and Lung Cancer Cells: Combination of Cheap Template for Anticancer Screening. Int. J. Transl. Med. 2022, 2, 574-585. https://doi.org/10.3390/ijtm2040043
Oluwasegun A, Ntungwe E, Bunyamin A, Saraiva L, Princiotto S, Rijo P. Celosia trigyna Linn (Cucurbitaceae) Annihilate Human Breast, Colon, and Lung Cancer Cells: Combination of Cheap Template for Anticancer Screening. International Journal of Translational Medicine. 2022; 2(4):574-585. https://doi.org/10.3390/ijtm2040043
Chicago/Turabian StyleOluwasegun, Adedokun, Epole Ntungwe, Ayinde Bunyamin, Lucilia Saraiva, Salvatore Princiotto, and Patrícia Rijo. 2022. "Celosia trigyna Linn (Cucurbitaceae) Annihilate Human Breast, Colon, and Lung Cancer Cells: Combination of Cheap Template for Anticancer Screening" International Journal of Translational Medicine 2, no. 4: 574-585. https://doi.org/10.3390/ijtm2040043
APA StyleOluwasegun, A., Ntungwe, E., Bunyamin, A., Saraiva, L., Princiotto, S., & Rijo, P. (2022). Celosia trigyna Linn (Cucurbitaceae) Annihilate Human Breast, Colon, and Lung Cancer Cells: Combination of Cheap Template for Anticancer Screening. International Journal of Translational Medicine, 2(4), 574-585. https://doi.org/10.3390/ijtm2040043