Effective Structural Parametric Form in Architecture Using Mycelium Bio-Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction
2.1.1. Material
2.1.2. Geometric Blocks
2.1.3. Parametric Design
2.1.4. Molds and 3D Printing
2.1.5. Assembly Method of Geometric Sub-Blocks
3. Results
- The environment and the space to be covered;
- The available local agricultural waste in the area;
- The nature of the bio-composite and its development process;
- The molds and their manufacturing and connection method.
3.1. Progressing from Simple to Extended Construction
3.1.1. The Basic 2D Arch Structure
3.1.2. Modifying Structure from 2D to 3D
3.1.3. Different Approaches to Utilizing Geometric Blocks
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, M.; Verma, S.; Chauhan, G.; Arya, M.; Kumari, A. Mycelium-Based Biocomposites: Synthesis and Applications. Environ. Sustain. 2024. [Google Scholar] [CrossRef]
- Ghazvinian, A.; Farrokhsiar, P.; Vieira, F.; Pecchia, J.; Gursoy, B. Mycelium-Based Bio-Composites for Architecture: Assessing the Effects of Cultivation Factors on Compressive Strength. In Proceedings of the Blucher Design Proceedings, Porto, Portugal, 11–13 September 2019; pp. 505–514. [Google Scholar]
- Dessi-Olive, J. Strategies for Growing Large-Scale Mycelium Structures. Biomimetics 2022, 7, 129. [Google Scholar] [CrossRef] [PubMed]
- Alaneme, K.K.; Anaele, J.U.; Oke, T.M.; Kareem, S.A.; Adediran, M.; Ajibuwa, O.A.; Anabaranze, Y.O. Mycelium Based Composites: A Review of Their Bio-Fabrication Procedures, Material Properties and Potential for Green Building and Construction Applications. Alex. Eng. J. 2023, 83, 234–250. [Google Scholar] [CrossRef]
- Thomoglou, A.K.; Voutetaki, M.E.; Fantidis, J.G.; Chalioris, C.E. Novel Natural Bee Brick with a Low Energy Footprint for “Green” Masonry Walls: Mechanical Properties. Eng. Proc. 2024, 60, 9. [Google Scholar] [CrossRef]
- Heisel, F. Design of a Load-Bearing Mycelium Structure through Informed Structural Engineering: The MycoTree at the 2017 Seoul Biennale of Architecture and Urbanism. In Proceedings of the World Congress on Sustainable Technologies (WCST-2017), Cambridge, UK, 4–6 November 2017. [Google Scholar]
- Heisel, F.; Hebel, D.E. Pioneering Construction Materials through Prototypological Research. Biomimetics 2019, 4, 56. [Google Scholar] [CrossRef]
- Karana, E.; Blauwhoff, D.; Hultink, E.-J.; Camere, S. When the material grows: A case study on designing (with) mycelium-based materials. Int. J. Des. 2018, 12, 119–136. [Google Scholar]
- Voutetaki, M.E.; Mpalaskas, A.C. Natural Fiber-Reinforced Mycelium Composite for Innovative and Sustainable Construction Materials. Fibers 2024, 12, 57. [Google Scholar] [CrossRef]
- Rigobello, A.; Colmo, C.; Ayres, P. Effect of Composition Strategies on Mycelium-Based Composites Flexural Behaviour. Biomimetics 2022, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Elsacker, E.; De Laet, L.; Peeters, E. Functional Grading of Mycelium Materials with Inorganic Particles: The Effect of Nanoclay on the Biological, Chemical and Mechanical Properties. Biomimetics 2022, 7, 57. [Google Scholar] [CrossRef]
- Attias, N.; Danai, O.; Abitbol, T.; Tarazi, E.; Ezov, N.; Pereman, I.; Grobman, Y.J. Mycelium Bio-Composites in Industrial Design and Architecture: Comparative Review and Experimental Analysis. J. Clean. Prod. 2020, 246, 119037. [Google Scholar] [CrossRef]
- Modanloo, B.; Ghazvinian, A.; Matini, M.; Andaroodi, E. Tilted Arch; Implementation of Additive Manufacturing and Bio-Welding of Mycelium-Based Composites. Biomimetics 2021, 6, 68. [Google Scholar] [CrossRef] [PubMed]
- Rigobello, A.; Ayres, P. Design Strategies for Mycelium-Based Composites. In Fungi and Fungal Products in Human Welfare and Biotechnology; Satyanarayana, T., Deshmukh, S.K., Eds.; Springer Nature: Singapore, 2023; pp. 605–635. ISBN 978-981-19885-2-3. [Google Scholar]
- Sydor, M.; Bonenberg, A.; Doczekalska, B.; Cofta, G. Mycelium-Based Composites in Art, Architecture, and Interior Design: A Review. Polymers 2021, 14, 145. [Google Scholar] [CrossRef] [PubMed]
- Beghini, L.L.; Carrion, J.; Beghini, A.; Mazurek, A.; Baker, W.F. Structural Optimization Using Graphic Statics. Struct. Multidisc. Optim. 2014, 49, 351–366. [Google Scholar] [CrossRef]
- Javadian, A.; Le Ferrand, H.; Hebel, D.E.; Saeidi, N. Application of Mycelium-Bound Composite Materials in Construction Industry: A Short Review. SOJMSE 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Sanches Previti, I.; Sachs, H. Mycelion: A Wood-Mycelium Composite-Based, Experimental Pavilion with Multiple Growth Phases. In Proceedings of the SIGraDi 2023 Accelerated Landscapes XXVII International Conference of the Ibero-American Society of Digital Graphics, Maldonado, Uruguay, 29 November–1 December 2024; pp. 410–421. [Google Scholar] [CrossRef]
- Almpani-Lekka, D.; Pfeiffer, S.; Schmidts, C.; Seo, S.-I. A Review on Architecture with Fungal Biomaterials: The Desired and the Feasible. Fungal Biol. Biotechnol. 2021, 8, 17. [Google Scholar] [CrossRef]
- Angelucci, G.; Mollaioli, F.; Tardocchi, R. A New Modular Structural System for Tall Buildings Based on Tetrahedral Configuration. Buildings 2020, 10, 240. [Google Scholar] [CrossRef]
- Fallacara, G.; Cavaliere, I.; Melchiorre, J.; Marano, G.C.; Manuello, A. Reinterpretation of Catenary Vaulted Spaces: Construction of a Prototype and Structural Evaluation through Multibody Rope Approach. Structures 2024, 66, 106746. [Google Scholar] [CrossRef]
- Manuello, A. Multi-Body Rope Approach for Grid Shells: Form-Finding and Imperfection Sensitivity. Eng. Struct. 2020, 221, 111029. [Google Scholar] [CrossRef]
- Heyman, J. The Stone Skeleton; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Lewandowska, A.; Bonenberg, A.; Sydor, M. Mycelium-Based Composites: Surveying Their Acceptance by Professional Architects. Biomimetics 2024, 9, 333. [Google Scholar] [CrossRef]
- Bagheriehnajjar, G.; Yousefpour, H.; Rahimnejad, M. Environmental Impacts of Mycelium-Based Bio-Composite Construction Materials. Int. J. Environ. Sci. Technol. 2024, 21, 5437–5458. [Google Scholar] [CrossRef]
- Akromah, S.; Chandarana, N.; Rowlandson, J.L.; Eichhorn, S.J. Potential Environmental Impact of Mycelium Composites on African Communities. Sci. Rep. 2024, 14, 11867. [Google Scholar] [CrossRef] [PubMed]
- Bitting, S.; Derme, T.; Lee, J.; Van Mele, T.; Dillenburger, B.; Block, P. Challenges and Opportunities in Scaling up Architectural Applications of Mycelium-Based Materials with Digital Fabrication. Biomimetics 2022, 7, 44. [Google Scholar] [CrossRef]
- Walter, N.; Gürsoy, B. A Study on the Sound Absorption Properties of Mycelium-Based Composites Cultivated on Waste Paper-Based Substrates. Biomimetics 2022, 7, 100. [Google Scholar] [CrossRef]
- Girometta, C.; Picco, A.M.; Baiguera, R.M.; Dondi, D.; Babbini, S.; Cartabia, M.; Pellegrini, M.; Savino, E. Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability 2019, 11, 281. [Google Scholar] [CrossRef]
- Fungus: The Plastic of the Future|Microbros. Available online: https://www.youtube.com/watch?v=htdwl30b_Zs (accessed on 22 October 2020).
- Verma, N.; Jujjavarapu, S.E.; Mahapatra, C. Green Sustainable Biocomposites: Substitute to Plastics with Innovative Fungal Mycelium Based Biomaterial. J. Environ. Chem. Eng. 2023, 11, 110396. [Google Scholar] [CrossRef]
- Gantenbein, S.; Colucci, E.; Käch, J.; Trachsel, E.; Coulter, F.B.; Rühs, P.A.; Masania, K.; Studart, A.R. Three-Dimensional Printing of Mycelium Hydrogels into Living Complex Materials. Nat. Mater. 2023, 22, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, C.; Zhang, H.; Xia, L.; Huang, Y.; Huang, H.; Wang, Y.; Qian, D.; Wang, J.; Wang, X.; et al. Eco-Friendly Fiberboard Production without Binder Using Poplar Wood Shavings Bio-Pretreated by White Rot Fungi Coriolus Versicolor. Constr. Build. Mater. 2020, 236, 117620. [Google Scholar] [CrossRef]
- Zhang, L.-Y.; Jiang, J.-H.; Wei, K.; Yin, X.; Xu, G.-K.; Zhang, J. Self-Equilibrium and Super-Stability of Rhombic Truncated Regular Tetrahedral and Cubic Tensegrities Using Symmetry-Adapted Force-Density Matrix Method. Int. J. Solids Struct. 2021, 233, 111215. [Google Scholar] [CrossRef]
- Jones, M.; Huynh, T.; Dekiwadia, C.; Daver, F.; John, S. Mycelium Composites: A Review of Engineering Characteristics and Growth Kinetics. J. Bionanosci. 2017, 11, 241–257. [Google Scholar] [CrossRef]
- Haryńska, A.; Janik, H.; Sienkiewicz, M.; Mikolaszek, B.; Kucińska-Lipka, J. PLA–Potato Thermoplastic Starch Filament as a Sustainable Alternative to the Conventional PLA Filament: Processing, Characterization, and FFF 3D Printing. ACS Sustain. Chem. Eng. 2021, 9, 6923–6938. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavriilidis, E.T.; Voutetaki, M.E.; Giouzepas, D.G. Effective Structural Parametric Form in Architecture Using Mycelium Bio-Composites. Architecture 2024, 4, 717-729. https://doi.org/10.3390/architecture4030037
Gavriilidis ET, Voutetaki ME, Giouzepas DG. Effective Structural Parametric Form in Architecture Using Mycelium Bio-Composites. Architecture. 2024; 4(3):717-729. https://doi.org/10.3390/architecture4030037
Chicago/Turabian StyleGavriilidis, Efstathios T., Maristella E. Voutetaki, and Dimitrios G. Giouzepas. 2024. "Effective Structural Parametric Form in Architecture Using Mycelium Bio-Composites" Architecture 4, no. 3: 717-729. https://doi.org/10.3390/architecture4030037
APA StyleGavriilidis, E. T., Voutetaki, M. E., & Giouzepas, D. G. (2024). Effective Structural Parametric Form in Architecture Using Mycelium Bio-Composites. Architecture, 4(3), 717-729. https://doi.org/10.3390/architecture4030037