The Magical “Born Rule” and Quantum “Measurement”: Implications for Physics
Abstract
:1. Introduction: Quantum to Classical
2. Explicit Collapse vs. “Magical” Collapse
3. Linearity vs. Nonlinearity and Locality vs. Non-Locality
3.1. Quantum Theory
3.2. Classical Physics
3.3. The Magical “Born Rule”
4. Quantum Space ≠ Real Spacetime: Some Physical Consequences
4.1. Consequence One: No “Quantized” General Relativity
4.2. Consequence Two: No “Zero-Point Energy” or Cosmological Constant Problem
4.3. Consequence Three: Quantum “Particle” Reactions Do Not Happen in Spacetime but in Hilbert Space
4.4. Consequence Four: No Black Hole “Information Paradox”
5. Some Proposed Alternatives to “Orthodox” Quantum Mechanics
5.1. Everett/Many Worlds
5.2. Explicit Collapse
5.3. de Broglie–Bohm
6. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- von Neumann, J. Mathematische Grundlagen der Quantenmechanik; Springer: Berlin/Heidelberg, Germany, 1932; translated as Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Born, M. Zur Quantenmechanik der Stossvorgänge. Z. Phys. 1926, 37, 863. [Google Scholar] [CrossRef]
- Zurek, W.H. Pointer Basis of Quantum Apparatus: Into what Mixture does the Wave Packet Collapse? Phys. Rev. D 1981, 24, 1516. [Google Scholar] [CrossRef]
- Zurek, W.H. Environment-Induced Superselection Rules. Phys. Rev. D 1982, 26, 1862. [Google Scholar]
- Bell, J.S. On Wave Packet Reduction in the Coleman-Hepp Model. Helv. Phys. Acta 1975, 48, 93. [Google Scholar]
- Adler, S.L. Why decoherence has not solved the measurement problem: A response to P.W. Anderson. Stud. Hist. Phil. Mod. Phys. 2003, 34, 135. [Google Scholar] [CrossRef]
- Bell, J.S. Against “measurement”. Phys. World 1990, 3, 33. [Google Scholar] [CrossRef]
- Wigner, E.P. The Problem of Measurement. Am. J. Phys. 1963, 31, 6. [Google Scholar] [CrossRef]
- Wigner, E.P. Remarks on the mind-body question. In The Scientist Speculates—An Anthology of Partly-Baked Ideas; Good, I.J., Ed.; Basic Books: New York, NY, USA, 1962; p. 284. [Google Scholar]
- Hansson, J. Bell’s theorem and its tests: Proof that nature is superdeterministic—Not random. Phys. Essays. 2020, 33, 216. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman and Co.: New Haven, CT, USA, 1973; p. 6. [Google Scholar]
- Bohr, N. Atomic Physics and Human Knowledge; John Wiley & Sons: Hoboken, NJ, USA, 1958. [Google Scholar]
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwiss 1935, 23, 807, translated as The present Situationin Quantum Mechanics. Proc. Am. Phil. Soc. 1980, 124, 323. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef]
- Bohm, D. Quantum Theory; Prentice-Hall: Hoboken, NJ, USA, 1951. [Google Scholar]
- Clauser, J.F. Laboratory-Space and Configuration-Space Formulations of Quantum Mechanics, Versus Bell-Clauser-Horne-Shimony Local Realism, Versus Born’s Ambiguity; Jaeger, G., Simon, D., Sergienko, A.V., Greenberger, D., Zeilinger, A., Eds.; Chapter 3 in Quantum Arrangements; Springer-Nature: Berlin/Heidelberg, Germany, 2021; pp. 31–95. [Google Scholar]
- Pearle, P. Reduction of the state vector by a nonlinear Schrödinger equation. Phys. Rev. D 1976, 13, 857. [Google Scholar] [CrossRef]
- Ghirardi, G.C.; Rimini, A.; Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 1986, 34, 470. [Google Scholar] [CrossRef] [PubMed]
- Penrose, R. Gravity and state vector reduction. In Quantum Concepts in Space and Time; Penrose, R., Isham, C.J., Eds.; Clarendon Press: Oxford, UK, 1986; pp. 129–146. [Google Scholar]
- Diosi, L. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A 1987, 120, 377. [Google Scholar] [CrossRef]
- Hansson, J. Nonlinear gauge interactions: A possible solution to the “measurement problem” in quantum mechanics. Phys. Essays 2010, 23, 237. [Google Scholar] [CrossRef]
- Berry, M. Quantum chaology, not quantum chaos. Phys. Scr. 1989, 40, 335. [Google Scholar] [CrossRef]
- Bell, J.S. Beables for quantum field theory. In Quantum Implications: Essays in Honour of David Bohm; Hiley, B.J., Peat, F.D., Eds.; 1987; pp. 227–234. Available online: https://philpapers.org/rec/BELBFQ (accessed on 17 September 2023).
- Einstein, A. Über die Entwicklung unserer Anshauungen über das Wesen und die Konstitution der Strahlung. Phys. Zeitschr. 1909, 10, 817. [Google Scholar]
- Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195. [Google Scholar] [CrossRef]
- Freedman, S.J.; Clauser, J.F. Experimental Test of Local Hidden-Variable Theories. Phys. Rev. Lett. 1972, 28, 938. [Google Scholar] [CrossRef]
- Aspect, A.; Grangier, P.; Roger, G. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Lett. 1982, 49, 91. [Google Scholar] [CrossRef]
- Aspect, A.; Dalibard, J.; Roger, G. Experimental Test of Bell’s Inequalities Using Time- Varying Analyzers. Phys. Rev. Lett. 1982, 49, 1804. [Google Scholar] [CrossRef]
- Tittel, W.; Brendel, J.; Gisin, B.; Herzog, T.; Zbinden, H.; Gisin, N. Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A 1998, 57, 3229. [Google Scholar] [CrossRef]
- Aspect, A. Viewpoint: Closing the Door on Einstein and Bohr’s Quantum Debate. Physics 2015, 8, 123. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A. Experimental consequences of objective local theories. Phys. Rev. D 1974, 10, 526. [Google Scholar] [CrossRef]
- Hansson, J. Why Gravity is Non-Quantum. Int. J. Quant. Found. Suppl. 2023, 5, 1. [Google Scholar]
- Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 1948, 51, 793. [Google Scholar]
- Lifshitz, E.M. The Theory of Molecular Attractive Forces between Solids. J. Exp. Theor. Phys. 1956, 2, 73. [Google Scholar]
- Jaffe, R.L. Casimir effect and the quantum vacuum. Phys. Rev. D 2005, 72, 021301(R). [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Trnka, J. The Amplituhedron. J. High Energ. Phys. 2014, 2014, 30. [Google Scholar] [CrossRef]
- Hawking, S.W. Breakdown of predictability in gravitational collapse. Phys. Rev. D 1976, 14, 2460. [Google Scholar] [CrossRef]
- Everett, H. Relative State Formulation of Quantum Mechanics. Rev. Mod. Phys. 1957, 29, 454. [Google Scholar] [CrossRef]
- de Broglie, L. Non-Linear Wave Mechanics: A Causal Interpretation; Elsevier: Amsterdam, The Netherlands, 1960. [Google Scholar]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 1952, 85, 166. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Phys. Rev. 1952, 85, 180. [Google Scholar] [CrossRef]
- Hansson, J. A simple explanation of the non-appearance of physical gluons and quarks. Can. J. Phys. 2002, 80, 1093. [Google Scholar] [CrossRef]
- Hansson, J. The “Proton Spin Crisis”—A Quantum Query. Prog. Phys. 2010, 3, 51. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansson, J. The Magical “Born Rule” and Quantum “Measurement”: Implications for Physics. Foundations 2023, 3, 634-642. https://doi.org/10.3390/foundations3040038
Hansson J. The Magical “Born Rule” and Quantum “Measurement”: Implications for Physics. Foundations. 2023; 3(4):634-642. https://doi.org/10.3390/foundations3040038
Chicago/Turabian StyleHansson, Johan. 2023. "The Magical “Born Rule” and Quantum “Measurement”: Implications for Physics" Foundations 3, no. 4: 634-642. https://doi.org/10.3390/foundations3040038
APA StyleHansson, J. (2023). The Magical “Born Rule” and Quantum “Measurement”: Implications for Physics. Foundations, 3(4), 634-642. https://doi.org/10.3390/foundations3040038