Effects of Colored Noise in the Dynamic Motions and Conformational Exploration of Enzymes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Langevin Equation (LE)
2.2. Generalized Langevin Equation (GLE)
2.3. Simulation Protocol and Analysis
2.3.1. Setting up the Simulations
2.3.2. Analysis of Simulations
3. Results and Discussion
3.1. Structural Modifications of SK in the Simulations with White and Colored Noise
3.2. Differences in the Explored of the Conformational Space with the Two Types of Noise
3.3. Behavior of Time-Dependent Observables in White and Colored Noise Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldstein, R.E.; Tuval, I.; van de Meent, J.-W. Microfluidics of Cytoplasmic Streaming and Its Implications for Intracellular Transport. Proc. Natl. Acad. Sci. USA 2008, 105, 3663–3667. [Google Scholar] [CrossRef]
- Needleman, D.; Shelley, M. The Stormy Fluid Dynamics of the Living Cell. Phys. Today 2019, 72, 32–38. [Google Scholar] [CrossRef]
- Chaki, S.; Chakrabarti, R. Enhanced Diffusion, Swelling, and Slow Reconfiguration of a Single Chain in Non-Gaussian Active Bath. J. Chem. Phys. 2019, 150, 094902. [Google Scholar] [CrossRef]
- Ghosh, S.; Somasundar, A.; Sen, A. Enzymes as Active Matter. Annu. Rev. Condens. Matter Phys. 2021, 12, 177–200. [Google Scholar] [CrossRef]
- Seifert, U. Stochastic Thermodynamics of Single Enzymes and Molecular Motors. Eur. Phys. J. E 2011, 34, 26. [Google Scholar] [CrossRef]
- de Sancho, D.; Sirur, A.; Best, R.B. Molecular Origins of Internal Friction Effects on Protein-Folding Rates. Nat. Commun. 2014, 5, 4307. [Google Scholar] [CrossRef]
- Langevin, M.P. Une Formule Fondamentale de Theorie Cinetique. Ann. Chim. Phys. Ser. 1905, 5, 245–288. [Google Scholar]
- Langevin, M.P. Sur La Théorie Du Mouvement Brownien. CR Hebd. Séances Acad. Sci. 1908, 146, 530. [Google Scholar]
- Kubo, R. The Fluctuation-Dissipation Theorem. Rep. Prog. Phys. 1966, 29, 255. [Google Scholar] [CrossRef]
- Hänggi, P.; Jung, P. Colored Noise in Dynamical Systems. In Advances in Chemical Physics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1994; pp. 239–326. ISBN 978-0-470-14148-9. [Google Scholar]
- Ceriotti, M.; Bussi, G.; Parrinello, M. Colored-Noise Thermostats à La Carte. J. Chem. Theory Comput. 2010, 6, 1170–1180. [Google Scholar] [CrossRef]
- Min, W.; English, B.P.; Luo, G.; Cherayil, B.J.; Kou, S.C.; Xie, X.S. Fluctuating Enzymes: Lessons from Single-Molecule Studies. Acc. Chem. Res. 2005, 38, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Luo, G.; Karnchanaphanurach, P.; Louie, T.-M.; Rech, I.; Cova, S.; Xun, L.; Xie, X.S. Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer. Science 2003, 302, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Kou, S.C.; Xie, X.S. Generalized Langevin Equation with Fractional Gaussian Noise: Subdiffusion within a Single Protein Molecule. Phys. Rev. Lett. 2004, 93, 180603. [Google Scholar] [CrossRef] [PubMed]
- Ceriotti, M.; Bussi, G.; Parrinello, M. Langevin Equation with Colored Noise for Constant-Temperature Molecular Dynamics Simulations. Phys. Rev. Lett. 2009, 102, 020601. [Google Scholar] [CrossRef]
- Kubo, R. A Stochastic Theory of Line-Shape and Relaxation. In Fluctuation, Relaxation, and Resonance in Magnetic Systems; Ter Haar, D., Ed.; S.U.S.S.P. publications; Oliver and Boyd: Edinburgh, UK, 1962; pp. 23–68. [Google Scholar]
- McHugh, J.G.; Chantrell, R.W.; Klik, I.; Chang, C.-R. Superparamagnetic Relaxation Driven by Colored Noise. arXiv 2018, arXiv:1805.01776. [Google Scholar]
- Warmflash, A.; Adamson, D.N.; Dinner, A.R. How Noise Statistics Impact Models of Enzyme Cycles. J. Chem. Phys. 2008, 128, 225101. [Google Scholar] [CrossRef] [PubMed]
- Min, W.; Luo, G.; Cherayil, B.J.; Kou, S.C.; Xie, X.S. Observation of a Power-Law Memory Kernel for Fluctuations within a Single Protein Molecule. Phys. Rev. Lett. 2005, 94, 198302. [Google Scholar] [CrossRef] [PubMed]
- Kou, S.C. Stochastic Modeling in Nanoscale Biophysics: Subdiffusion within Proteins. Ann. Appl. Stat. 2008, 2, 501–535. [Google Scholar] [CrossRef]
- Bag, B.C.; Hu, C.-K.; Li, M.S. Colored Noise, Folding Rates and Departure from Kramers’ Behavior. Phys. Chem. Chem. Phys. 2010, 12, 11753–11762. [Google Scholar] [CrossRef]
- Martínez, I.A.; Raj, S.; Petrov, D. Colored Noise in the Fluctuations of an Extended DNA Molecule Detected by Optical Trapping. Eur. Biophys. J. 2012, 41, 99–106. [Google Scholar] [CrossRef]
- Singh, V.; Biswas, P. Conformational Transitions of Amyloid-β: A Langevin and Generalized Langevin Dynamics Simulation Study. ACS Omega 2021, 6, 13611–13619. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, V.; Biswas, P. Analysis of the Passage Times for Unfolding/Folding of the Adenine Riboswitch Aptamer. ACS Phys. Chem. Au 2022, 2, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Zwanzig, R. Nonequilibrium Statistical Mechanics; Oxford University Press: Oxford, UK; New York, NY, USA, 2001; ISBN 0-19-514018-4. [Google Scholar]
- Nam, K.; Wolf-Watz, M. Protein Dynamics: The Future Is Bright and Complicated! Struct. Dyn. 2023, 10, 014301. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.; Shao, Y.; Major, D.T.; Wolf-Watz, M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS Omega 2024, 9, 7393–7412. [Google Scholar] [CrossRef] [PubMed]
- Pisliakov, A.V.; Cao, J.; Kamerlin, S.C.L.; Warshel, A. Enzyme Millisecond Conformational Dynamics Do Not Catalyze the Chemical Step. Biophys. J. 2010, 98, 237a. [Google Scholar] [CrossRef]
- Loncharich, R.J.; Brooks, B.R.; Pastor, R.W. Langevin Dynamics of Peptides: The Frictional Dependence of Isomerization Rates of N-Acetylalanyl-N′-Methylamide. Biopolymers 1992, 32, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Coracini, J.D.; de Azevedo, W.F. Shikimate Kinase, a Protein Target for Drug Design. Curr. Med. Chem. 2014, 21, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Pal, T.; Xie, L. Biomolecular QM/MM Simulations: What Are Some of the “Burning Issues”? J. Phys. Chem. B 2021, 125, 689–702. [Google Scholar] [CrossRef] [PubMed]
- Einstein, A. Über Die von Der Molekularkinetischen Theorie Der Wärme Geforderte Bewegung von in Ruhenden Flüssigkeiten Suspendierten Teilchen. Ann. Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef]
- Callen, H.B.; Welton, T.A. Irreversibility and Generalized Noise. Phys. Rev. 1951, 83, 34–40. [Google Scholar] [CrossRef]
- McQuarrie, D.A. Statistical Mechanics, 1st ed.; University Science Books: Sausalito, CA, USA, 2000; ISBN 978-1-891389-15-3. [Google Scholar]
- Wu, X.; Brooks, B.R.; Vanden-Eijnden, E. Self-Guided Langevin Dynamics via Generalized Langevin Equation. J. Comput. Chem. 2016, 37, 595–601. [Google Scholar] [CrossRef]
- Ojeda-May, P. Exploring the Dynamics of Shikimate Kinase through Molecular Mechanics. Biophysica 2022, 2, 194–202. [Google Scholar] [CrossRef]
- Ojeda-May, P. Exploring the Dynamics of Holo-Shikimate Kinase through Molecular Mechanics. Biophysica 2023, 3, 463–475. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Foloppe, N.; MacKerell, A.D., Jr. All-Atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data. J. Comput. Chem. 2000, 21, 86–104. [Google Scholar] [CrossRef]
- Mackerell, A.D.; Feig, M.; Brooks, C.L. Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations. J. Comput. Chem. 2004, 25, 1400–1415. [Google Scholar] [CrossRef] [PubMed]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.M.; Mittal, J.; Feig, M.; MacKerell, A.D. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain Χ1 and Χ2 Dihedral Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef]
- Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 1983, 4, 187–217. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N⋅log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.Y.; Berryman, J.T.; Brozell, S.R.; Cerutti, D.S.; Cheatham III, T.E.; Cisneros, G.A.; Cruzeiro, V.W.D.; et al. Amber 2022; University of California: San Francisco, CA, USA, 2023. [Google Scholar]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Miyamoto, S.; Kollman, P.A. Settle: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models. J. Comput. Chem. 1992, 13, 952–962. [Google Scholar] [CrossRef]
- Pearson, K. LIII. On Lines and Planes of Closest Fit to Systems of Points in Space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Forouzesh, N.; Giese, T.J.; Götz, A.W.; Gohlke, H.; et al. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, L.; Fariselli, P.; Casadio, R. The Effect of Backbone on the Small-World Properties of Protein Contact Maps. Phys. Biol. 2008, 4, L1. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Zhou, J.; Sun, M.; Chen, J.; Hu, G.; Shen, B. The Construction of an Amino Acid Network for Understanding Protein Structure and Function. Amino Acids 2014, 46, 1419–1439. [Google Scholar] [CrossRef] [PubMed]
- da Silveira, C.H.; Pires, D.E.V.; Minardi, R.C.; Ribeiro, C.; Veloso, C.J.M.; Lopes, J.C.D.; Meira, W., Jr.; Neshich, G.; Ramos, C.H.I.; Habesch, R.; et al. Protein Cutoff Scanning: A Comparative Analysis of Cutoff Dependent and Cutoff Free Methods for Prospecting Contacts in Proteins. Proteins: Struct. Funct. Bioinform. 2009, 74, 727–743. [Google Scholar] [CrossRef]
- Rosvall, M.; Bergstrom, C.T. Maps of Random Walks on Complex Networks Reveal Community Structure. Proc. Natl. Acad. Sci. USA 2008, 105, 1118–1123. [Google Scholar] [CrossRef]
- Rosvall, M.; Bergstrom, C.T. Mapping Change in Large Networks. PLoS ONE 2010, 5, e8694. [Google Scholar] [CrossRef]
- Rosvall, M.; Bergstrom, C.T. Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems. PLoS ONE 2011, 6, e18209. [Google Scholar] [CrossRef]
- Edler, D.; Holmgren, A.; Rosvall, M. The MapEquation Software Package 2023. Available online: https://mapequation.org (accessed on 3 July 2024).
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of Communities in Large Networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef]
- Holmgren, A.; Edler, D.; Rosvall, M. Mapping Change in Higher-Order Networks with Multilevel and Overlapping Communities. Appl. Netw. Sci. 2023, 8, 42. [Google Scholar] [CrossRef]
- Gu, Y.; Reshetnikova, L.; Li, Y.; Wu, Y.; Yan, H.; Singh, S.; Ji, X. Crystal Structure of Shikimate Kinase from Mycobacterium Tuberculosis Reveals the Dynamic Role of the LID Domain in Catalysis. J. Mol. Biol. 2002, 319, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Krell, T.; Coggins, J.R.; Lapthorn, A.J. The Three-Dimensional Structure of Shikimate Kinase1. J. Mol. Biol. 1998, 278, 983–997. [Google Scholar] [CrossRef]
- Ojeda-May, P.; Mushtaq, A.U.; Rogne, P.; Verma, A.; Ovchinnikov, V.; Grundström, C.; Dulko-Smith, B.; Sauer, U.H.; Wolf-Watz, M.; Nam, K. Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions. Biochemistry 2021, 60, 2246–2258. [Google Scholar] [CrossRef]
- Hu, X.; Hong, L.; Dean Smith, M.; Neusius, T.; Cheng, X.; Smith, J.C. The Dynamics of Single Protein Molecules Is Non-Equilibrium and Self-Similar over Thirteen Decades in Time. Nat. Phys. 2016, 12, 171–174. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojeda-May, P.; Vergara, A. Effects of Colored Noise in the Dynamic Motions and Conformational Exploration of Enzymes. Foundations 2024, 4, 324-335. https://doi.org/10.3390/foundations4030021
Ojeda-May P, Vergara A. Effects of Colored Noise in the Dynamic Motions and Conformational Exploration of Enzymes. Foundations. 2024; 4(3):324-335. https://doi.org/10.3390/foundations4030021
Chicago/Turabian StyleOjeda-May, Pedro, and Alexander Vergara. 2024. "Effects of Colored Noise in the Dynamic Motions and Conformational Exploration of Enzymes" Foundations 4, no. 3: 324-335. https://doi.org/10.3390/foundations4030021
APA StyleOjeda-May, P., & Vergara, A. (2024). Effects of Colored Noise in the Dynamic Motions and Conformational Exploration of Enzymes. Foundations, 4(3), 324-335. https://doi.org/10.3390/foundations4030021