The Generalized Mehler–Fock Transform over Lebesgue Spaces
Abstract
:1. Introduction and Preliminaries
2. An Inversion Formula over the Spaces
3. Boundedness Properties and Parseval–Goldstein-Type Relations over the Spaces
4. Final Observations and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehler, F.G. Ueber eine mit den kugel-und cylinderfunctionen verwandte function und ihre anwendung in der theorie elektricitatsvertheilung. Math. Anal. Bd. 1881, 18, 161–194. (In Russian) [Google Scholar] [CrossRef]
- Fock, V.A. On the representation of an arbitrary function by an integrals involving the Legendre’s functions with a complex index. Dokl. Akad. Nauk. 1943, 39, 279–283. (In Russian) [Google Scholar]
- Sneedon, I.N. The Use of Integral Transforms; Mc-Graw Hill: New York, NY, USA, 1972. [Google Scholar]
- Babloian, A.A. The solution of some dual integral equations. Prikl. Mat. Mekh. 1964, 28, 1015–1023, Erratum in Appl. Math. Mech. 1965, 28, 1227–1235. [Google Scholar]
- Jesper, J.; Pedersen, T.G. Polarizability of supported metal nanoparticles: Mehler–Fock approach. J. Appl. Phys. 2012, 112, 064312. [Google Scholar]
- Liemert, A. Explicit solution for the electrostatic potential of the conducting double sphere. J. Appl. Phys. 2014, 115, 164907. [Google Scholar] [CrossRef]
- Lenz, R. The Mehler–Fock transform and some applications in texture analysis and color processing. arXiv 2016, arXiv:1612.04573. [Google Scholar]
- González, B.J.; Negrín, E.R. Operational calculi for Kontorovich-Lebedev and Mehler–Fock transforms on distributions with compact support. Rev. Colomb. Mat. 1998, 32, 81–92. [Google Scholar]
- González, B.J.; Negrín, E.R. Lp-inequalities and Parseval-type relations for the Mehler–Fock transforms of general order. Ann. Funct. Anal. 2017, 8, 231–239. [Google Scholar] [CrossRef]
- Prasad, A.; Mandal, U.K.; Verma, S.K. Zero-order Mehler–Fock transform and Sobolev-type space. Math. Inequal. Appl. 2019, 22, 761–775. [Google Scholar] [CrossRef]
- Srivastava, H.M.; González, B.J.; Negrín, E.R. New Lp-boundedness properties for the Kontorovich-Lebedev and Mehler–Fock transforms. Integral Transform. Spec. Funct. 2016, 27, 835–845. [Google Scholar] [CrossRef]
- Yakubovich, S. An Index integral and convolution operator related to the Kontorovich-Lebedev and Mehler–Fock transforms. Complex Anal. Oper. Theory 2012, 6, 947–970. [Google Scholar] [CrossRef]
- Zemanian, A.H. Generalized Integral Transformations; Series on Pure and Applied Mathematics; Interscience Publishers/Wiley: Hoboken, NJ, USA, 1968; Volume 18. [Google Scholar]
- Braaksma, B.L.J.; Meulenbeld, B.M. Integral transforms with generalized Legendre functions as kernels. Compos. Math. 1967, 18, 235–287. [Google Scholar]
- Pathak, R.S. Integral Transforms of Generalized Functions and Their Applications; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Maan, J.; Negrín, E.R. Parseval–Goldstein-type theorems for the index 2F1-transform. Int. J. Comput. Math. 2024, 10, 69. [Google Scholar]
- Albayrak, D.; Dernek, N. On some generalized integral transforms and Parseval–Goldstein-type relations. Hacet. J. Math. Stat. 2021, 50, 526–540. [Google Scholar] [CrossRef]
- Albayrak, D. Some Parseval–Goldstein-type theorems for generalized integral transforms. Math. Sci. Appl. E-Notes 2024, 12, 81–92. [Google Scholar] [CrossRef]
- Dernek, N.; Srivastava, H.M.; Yürekli, O. Parseval–Goldstein type identities involving the L4-transform and the P4-transform and their applications. Integral Transform. Spec. Funct. 2007, 18, 397–408. [Google Scholar] [CrossRef]
- Dernek, N.; Srivastava, H.M.; Yürekli, O. Some Parseval–Goldstein type identities involving the FS,2-transform, the FC,2-transform and the P4-transform and their applications. Appl. Math. Comput. 2008, 202, 327–337. [Google Scholar]
- Karataş, H.B.; Kumar, D.; Uçar, F. Some iteration and Parseval–Goldstein type identities with their applications. Adv. Appl. Math. Sci. 2020, 29, 563–574. [Google Scholar]
- Yürekli, O. A Parseval-type Theorem Applied to Certain Integral Transforms. IMA J. Appl. Math. 1989, 42, 241–249. [Google Scholar] [CrossRef]
- Yürekli, O. A theorem on the generalized Stieltjes transform. J. Math. Anal. Appl. 1992, 168, 63–71. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Maan, J.; Negrín, E.R. A comprehensive study of generalized Lambert, generalized Stieltjes, and Stieltjes-Poisson transforms. Axioms 2024, 13, 283. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maan, J.; González, B.J.; Negrín, E.R. The Generalized Mehler–Fock Transform over Lebesgue Spaces. Foundations 2024, 4, 442-450. https://doi.org/10.3390/foundations4030028
Maan J, González BJ, Negrín ER. The Generalized Mehler–Fock Transform over Lebesgue Spaces. Foundations. 2024; 4(3):442-450. https://doi.org/10.3390/foundations4030028
Chicago/Turabian StyleMaan, Jeetendrasingh, Benito J. González, and Emilio R. Negrín. 2024. "The Generalized Mehler–Fock Transform over Lebesgue Spaces" Foundations 4, no. 3: 442-450. https://doi.org/10.3390/foundations4030028
APA StyleMaan, J., González, B. J., & Negrín, E. R. (2024). The Generalized Mehler–Fock Transform over Lebesgue Spaces. Foundations, 4(3), 442-450. https://doi.org/10.3390/foundations4030028