Effects of Dietary Flaxseed Oil and Ascorbic Acid on the Reproductive Performance of South African Indigenous Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Site and Animals
2.3. Experimental Design and Treatment Diets
2.4. Experiment I: Semen Sample Collection, Processing, and Evaluation
2.4.1. Semen Volume, pH, and Sperm Concentration
2.4.2. Sperm Motility Evaluation
2.4.3. Sperm Cell Plasma Membrane Integrity (Hyper-Osmotic Swelling Test)
2.4.4. Malondialdehyde Level
2.4.5. Sperm Cell Abnormalities and Viability
2.5. Experiment II: Hand-Mating and Pregnancy Diagnosis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ngcobo, J.N.; Nedambale, T.L.; Nephawe, K.A.; Mpofu, T.J.; Chokoe, T.C.; Ramukhithi, F.V. An Update on South African Indigenous Sheep Breeds’ Extinction Status and Difficulties during Conservation Attempts: A Review. Diversity 2022, 14, 516. [Google Scholar] [CrossRef]
- Ramsay, K.; Harris, L.; Kotzé, A. Landrace Breeds: South Africa’s Indigenous and Locally Developed Farm Animals. In Landrace Breeds: South Africa’s Indigenous and Locally Developed Farm Animals; Farm Animal Conservation Trust: Onderstepoort, South Africa, 1998. [Google Scholar]
- Soma, P.; Kotze, A.; Grobler, J.P.; van Wyk, J.B. South African Sheep Breeds: Population Genetic Structure and Conservation Implications. Small Rumin. Res. 2012, 103, 112–119. [Google Scholar] [CrossRef]
- Kunene, N.W.; Bezuidenhout, C.C.; Nsahlai, I.V. Genetic and Phenotypic Diversity in Zulu Sheep Populations: Implications for Exploitation and Conservation. Small Rumin. Res. 2009, 84, 100–107. [Google Scholar] [CrossRef]
- Mavule, B.S.; Sarti, F.M.; Lasagna, E.; Kunene, N.W. Morphological Differentiation amongst Zulu Sheep Populations in KwaZulu-Natal, South Africa, as Revealed by Multivariate Analysis. Small Rumin. Res. 2016, 140, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Mezzera, M. Domestic Animal Diversity Information System (DAD-IS)–User Manual; Food and Agriculture Organization of the United Nations: Rome, Italy; Available online: https://www.fao.org/dad-is/en/ (accessed on 28 October 2022).
- Mavule, B.S.; Muchenje, V.; Bezuidenhout, C.C.; Kunene, N.W. Morphological Structure of Zulu Sheep Based on Principal Component Analysis of Body Measurements. Small Rumin. Res. 2013, 111, 23–30. [Google Scholar] [CrossRef]
- Ngcobo, J.N.; Ramukhithi, F.V.; Nephawe, K.A.; Mpofu, T.J.; Chokoe, T.C.; Nedambale, T.L. Flaxseed Oil as a Source of Omega N-3 Fatty Acids to Improve Semen Quality from Livestock Animals: A Review. Animals 2021, 11, 3395. [Google Scholar] [CrossRef]
- Wathes, D.C.; Abayasekara, D.R.E.; Aitken, R.J. Polyunsaturated Fatty Acids in Male and Female Reproduction1. Biol. Reprod. 2007, 77, 190–201. [Google Scholar] [CrossRef]
- Zanussi, H.P.; Shariatmadari, F.; Sharafi, M.; Ahmadi, H. Dietary Supplementation with Flaxseed Oil as Source of Omega-3 Fatty Acids Improves Seminal Quality and Reproductive Performance in Aged Broiler Breeder Roosters. Theriogenology 2019, 130, 41–48. [Google Scholar] [CrossRef]
- Khan, H. Dietary Flaxseed Supplementation Effect on Bovine Semen Quality Parameters. Veterinaria 2015, 3, 9–13. [Google Scholar]
- Perumal, P.; Chang, S.; Khate, K.; Vupru, K.; Bag, S. Flaxseed Oil Modulates Semen Production and Its Quality Profiles, Freezability, Testicular Biometrics and Endocrinological Profiles in Mithun. Theriogenology 2019, 136, 47–59. [Google Scholar] [CrossRef]
- Leahy, T.; Gadella, B.M. Sperm Surface Changes and Physiological Consequences Induced by Sperm Handling and Storage. Reproduction 2011, 142, 759. [Google Scholar] [CrossRef] [PubMed]
- Habibi, M.; Zamiri, M.J.; Akhlaghi, A.; Shahverdi, A.H.; Alizadeh, A.R.; Jaafarzadeh, M.R. Effect of Dietary Fish Oil with or without Vitamin E Supplementation on Fresh and Cryopreserved Ovine Sperm. Anim. Prod. Sci. 2017, 57, 441. [Google Scholar] [CrossRef]
- Shahid, M.S.; Wu, Y.; Xiao, Z.; Raza, T.; Dong, X.; Yuan, J. Duration of the Flaxseed Diet Promotes Deposition of N-3 Fatty Acids in the Meat and Skin of Peking Ducks. Food Nutr. Res. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Nazir, G.; Ghuman, S.P.S.; Singh, J.; Honparkhe, M.; Ahuja, C.S.; Dhaliwal, G.S.; Sangha, M.K.; Saijpaul, S.; Agarwal, S.K. Improvement of Conception Rate in Postpartum Flaxseed Supplemented Buffalo with Ovsynch+CIDR Protocol. Anim. Reprod. Sci. 2013, 137, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.V.; Malla, B.A.; Kumar, S.; Tyagi, A.K. Polyunsaturated Fatty Acids in Male Ruminant Reproduction—A Review. Asian-Australas. J. Anim. Sci. 2016, 30, 622–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, K.E.; Hofmo, P.O.; Tverdal, A.; Miller, R.R. Within and between Breed Differences in Freezing Tolerance and Plasma Membrane Fatty Acid Composition of Boar Sperm. Reproduction 2006, 131, 887–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moallem, U.; Neta, N.; Zeron, Y.; Zachut, M.; Roth, Z. Dietary α-Linolenic Acid from Flaxseed Oil or Eicosapentaenoic and Docosahexaenoic Acids from Fish Oil Differentially Alter Fatty Acid Composition and Characteristics of Fresh and Frozen-Thawed Bull Semen. Theriogenology 2015, 83, 1110–1120. [Google Scholar] [CrossRef]
- Gulliver, C.E.; Friend, M.A.; King, B.J.; Clayton, E.H. The Role of Omega-3 Polyunsaturated Fatty Acids in Reproduction of Sheep and Cattle. Anim. Reprod. Sci. 2012, 131, 9–22. [Google Scholar] [CrossRef]
- Souza, R.S.; Barbosa, L.P.; Aguiar, C.S.; Vieira, R.L.A.; Ribeiro, M.O.; de Araújo, R.C.d.S.A.; de Andrade Silva, M.A.; Santana, A.L.A. Cryopreservation of Semen from Goats Fed a Diet Supplemented with Flaxseed. Rev. Bras. Saúde Prod. Anim. 2019, 20, e0112020. [Google Scholar] [CrossRef]
- Sönmez, M.; Türk, G.; Yüce, A. The Effect of Ascorbic Acid Supplementation on Sperm Quality, Lipid Peroxidation and Testosterone Levels of Male Wistar Rats. Theriogenology 2005, 63, 2063–2072. [Google Scholar] [CrossRef] [Green Version]
- Ezazi, H.; Abdi-Benemar, H.; Taghizadeh, A.; Khalili, B.; Seifdavati, J.; Jafaroghli, M.; Elghandour, M.M.; Salem, A.Z. The Influence of Dietary Sunflower Oil, Rich in N-6 Polyunsaturated Fatty Acids, in Combination with Vitamin C on Ram Semen Parameters, Sperm Lipids and Fertility. J. Sci. Food Agric. 2019, 99, 3803–3810. [Google Scholar] [CrossRef]
- Boldura, O.-M.; Marc, S.; Otava, G.; Hutu, I.; Balta, C.; Tulcan, C.; Mircu, C. Utilization of Rosmarinic and Ascorbic Acids for Maturation Culture Media in Order to Increase Sow Oocyte Quality Prior to IVF. Molecules 2021, 26, 7215. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.K.; Nandi, S.; Gupta, P.S.P.; Mondal, S. Antioxidants Supplementation Improves the Quality of in Vitro Produced Ovine Embryos with Amendments in Key Development Gene Expressions. Theriogenology 2022, in press. [Google Scholar] [CrossRef]
- Ramukhithi, F.V.; Nedambale, T.L.; Sutherland, B.; Greyling, J.P.C.; Lehloenya, K.C. Oestrous Synchronisation and Pregnancy Rate Following Artificial Insemination (AI) in South African Indigenous Goats. J. Appl. Anim. Res. 2012, 40, 292–296. [Google Scholar] [CrossRef]
- Lehloenya, K.C.; Greyling, J.P.C.; Schwalbach, L.M.J. Reproductive Performance of South African Indigenous Goats Following Oestrous Synchronisation and AI. Small Rumin. Res. 2005, 57, 115–120. [Google Scholar] [CrossRef]
- Nutrient Requirements of Sheep-Google Books. Available online: https://books.google.co.za/books?hl=en&lr=&id=hcbPz4AfdoEC&oi=fnd&pg=PR1&dq=Nutrient+Requirements+of+Sheep,+Sixth+Revised&ots=v5dghSM4Xg&sig=-qg7qqkgJqlnljKU-jZ-hYHiy4Y&redir_esc=y#v=onepage&q=Nutrient%20Requirements%20of%20Sheep%2C%20Sixth%20Revised&f=false (accessed on 15 December 2022).
- Gunun, N.; Ouppamong, T.; Khejornsart, P.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; Kaewpila, C.; Kang, S.; Gunun, P. Effects of Rubber Seed Kernel Fermented with Yeast on Feed Utilization, Rumen Fermentation and Microbial Protein Synthesis in Dairy Heifers. Fermentation 2022, 8, 288. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International-20th Edition. 2016. Available online: https://www.techstreet.com/standards/official-methods-of-analysis-of-aoac-international-20th-edition-2016?product_id=1937367 (accessed on 23 December 2022).
- Maxwell, W.M.C.; Johnson, L.A. Membrane Status of Boar Spermatozoa after Cooling or Cryopreservation. Theriogenology 1997, 48, 209–219. [Google Scholar] [CrossRef]
- Chatiza, F.; Mokwena, P.W.; Nedambale, T.L.; Pilane, C. Effect of Antioxidants (Taurine, Cysteine, -Tocopherol) on Liquid Preserved Kolbroek Boar Semen Characteristics. Afr. J. Biotechnol. 2018, 17, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Chella, L.; Kunene, N.; Lehloenya, K. A Comparative Study on the Quality of Semen from Zulu Rams at Various Ages and during Different Seasons in KwaZulu-Natal, South Africa. Small Rumin. Res. 2017, 151, 104–109. [Google Scholar] [CrossRef]
- Salamon, S.; Maxwell, W.M.C. Storage of Ram Semen. Anim. Reprod. Sci. 2000, 62, 77–111. [Google Scholar] [CrossRef]
- Ngcobo, J.N.; Nephawe, K.A.; Maqhashu, A.; Nedambale, T.L. Seasonal Variations in Semen Parameters of Zulu Rams Preserved at 10 °C for 72 H During Breeding and Non-Breeding Season. AJAVS 2020, 15, 226–239. [Google Scholar] [CrossRef]
- Dolatpanah, M.B.; Towhidi, A.; Farshad, A.; Rashidi, A.; Rezayazdi, A. Effects of Dietary Fish Oil on Semen Quality of Goats. AJAS 2008, 21, 29–34. [Google Scholar] [CrossRef]
- Farrag, B. Productive Characteristics and Reproductive Responses to Estrus Synchronization and Flushing in Abou-Delik Ewes Grazing in Arid Rangelands in Halaieb-Shalateen-Abouramad Triangle of Egypt. World’s Vet. J. 2019, 9, 201–210. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen; World Health Organization: Geneva, Switzerland, 2010; p. 271. [Google Scholar]
- Munyai, P.H. Cryopreservation of South African Indigenous Ram Semen; University of the Free State: Bloemfontein, South Africa, 2012. [Google Scholar]
- Bopape, M.A.; Lehloenya, K.C.; Chokoe, T.C.; Nedambale, T.L. Comparison of Electro Ejaculator and Artificial Vagina on Semen Collection from South African Indigenous Goat Following Assessment by Computer Aided Sperm Analysis. OJAS 2015, 5, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Hafez, B.; Hafez, E.S.E. (Eds.) Front Matter. In Reproduction in Farm Animals; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2016; pp. i–xiii. ISBN 978-1-119-26530-6. [Google Scholar]
- Brito, L.F.C.; Althouse, G.C.; Aurich, C.; Chenoweth, P.J.; Eilts, B.E.; Love, C.C.; Luvoni, G.C.; Mitchell, J.R.; Peter, A.T.; Pugh, D.G.; et al. Andrology Laboratory Review: Evaluation of Sperm Concentration. Theriogenology 2016, 85, 1507–1527. [Google Scholar] [CrossRef] [PubMed]
- Samper, J.C. Artificial Insemination with Fresh and Cooled Semen. In Equine Breeding Management and Artificial Insemination; Elsevier: Amsterdam, The Netherlands, 2009; pp. 165–174. ISBN 978-1-4160-5234-0. [Google Scholar]
- Maqhashu, A.; Mapholi, N.O.; O’Neill, H.A.; Nephawe, K.A.; Ramukhithi, F.V.; Sebei, J.P.; Nxumalo, K.S.; Nedambale, T.L. Assessment of Genetic Variation in Bapedi Sheep Using Microsatellite Markers. SA J. An. Sci. 2020, 50, 318–324. [Google Scholar] [CrossRef]
- Mafolo, K.S.; Pilane, C.M.; Chitura, T.; Nedambale, T.L. Use of Phosphatidylcholine in Tris-Based Extender with or without Egg Yolk to Freeze Bapedi Ram Semen. SA J. An. Sci. 2020, 50, 389–396. [Google Scholar] [CrossRef]
- Goshme, S.; Asfaw, T.; Demiss, C.; Besufekad, S. Evaluation of Motility and Morphology of Frozen Bull Semen under Different Thawing Methods Used for Artificial Insemination in North Shewa Zone, Ethiopia. Heliyon 2021, 7, e08183. [Google Scholar] [CrossRef]
- Gholami, H.; Chamani, M.; Towhidi, A.; Fazeli, M.H. Effect of Feeding a Docosahexaenoic Acid-Enriched Nutriceutical on the Quality of Fresh and Frozen-Thawed Semen in Holstein Bulls. Theriogenology 2010, 74, 1548–1558. [Google Scholar] [CrossRef]
- Rooke, J.A.; Shao, C.C.; Speake, B.K. Effects of Feeding Tuna Oil on the Lipid Composition of Pig Spermatozoa and in Vitro Characteristics of Semen. Reproduction 2001, 121, 315–322. [Google Scholar] [CrossRef]
- Estienne, M.J.; Harper, A.F.; Crawford, R.J. Dietary Supplementation with a Source of Omega-3 Fatty Acids Increases Sperm Number and the Duration of Ejaculation in Boars. Theriogenology 2008, 70, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Sparks, N.H.C. Tissue-Specific Fatty Acid and α-Tocopherol Profiles in Male Chickens Depending on Dietary Tuna Oil and Vitamin E Provision. Poult. Sci. 2000, 79, 1132–1142. [Google Scholar] [CrossRef] [PubMed]
- Broekhuijse, M.L.W.J.; Šoštarić, E.; Feitsma, H.; Gadella, B.M. Application of Computer-Assisted Semen Analysis to Explain Variations in Pig Fertility1. J. Anim. Sci. 2012, 90, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Sharma, R.K.; Gupta, S.; Boitrelle, F.; Finelli, R.; Parekh, N.; Durairajanayagam, D.; Saleh, R.; Arafa, M.; Cho, C.L.; et al. Sperm Vitality and Necrozoospermia: Diagnosis, Management, and Results of a Global Survey of Clinical Practice. World J. Men’s Health 2022, 40, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Chemes, H.E.; Rawe, V.Y. Sperm Pathology: A Step beyond Descriptive Morphology. Origin, Characterization and Fertility Potential of Abnormal Sperm Phenotypes in Infertile Men. Hum. Reprod. Update 2003, 9, 405–428. [Google Scholar] [CrossRef]
- Correa-Pérez, J.R.; Fernández-Pelegrina, R.; Aslanis, P.; Zavos, P.M. Clinical Management of Men Producing Ejaculates Characterized by High Levels of Dead Sperm and Altered Seminal Plasma Factors Consistent with Epididymal Necrospermia. Fertil. Steril. 2004, 81, 1148–1150. [Google Scholar] [CrossRef]
- Chapman, C.K.; Rood, K.A. Understanding the Semen Evaluation Portion of the Breeding Soundness Evaluation; Utah State University Extension: Logan, UT, USA, 2016. [Google Scholar]
- Meccariello, R.; Chianese, R. Spermatozoa: Facts and Perspectives; BoD–Books on Demand: Norderstedt, Germany, 2018; ISBN 978-1-78923-170-0. [Google Scholar]
- Kebede, M.; Greyling, J.P.C.; Schwalbach, L.M.J. Effect of Season and Supplementation on Percentage Live Sperm and Sperm Abnormalities in Horro (Zebu) Bulls in Sub-Humid Environment in Ethiopia. Trop. Anim. Health Prod. 2007, 39, 149–154. [Google Scholar] [CrossRef]
- Spermatozoa Morphology Examination Using Lenshooke SQA X1 Pro Compared with Manual Method | Indonesian Journal of Medical Laboratory Science and Technology. Available online: https://journal2.unusa.ac.id/index.php/IJMLST/article/view/2059 (accessed on 15 December 2022).
- Budiharto, J.; Margiana, R.; William, W.; Supardi, S.; Narulita, P. Relationship between Spermatogenesis, DNA Fragmentation Index, and Teratozoospermia Index. Int. J. Health Sci. 2022, 6, 1827–1837. [Google Scholar] [CrossRef]
- Kunavongkrit, A.; Sang-Gasanee, K.; Phumratanaprapin, C.; Tantasuparuk, W.; Einarsson, S. A Study on the Number of Recovered Spermatozoa in the Uterine Horns and Oviducts of Gilts, after Fractionated or Non-Fractionated Insemination. J. Vet. Med. Sci. 2003, 65, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Wan, Z.; Jin, Y.; Wang, F.; Zhang, Y. SMAD2 Regulates Testicular Development and Testosterone Synthesis in Hu Sheep. Theriogenology 2021, 174, 139–148. [Google Scholar] [CrossRef]
- Walker, W.H. Molecular Mechanisms of Testosterone Action in Spermatogenesis. Steroids 2009, 74, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Grotto, D.; Maria, L.S.; Valentini, J.; Paniz, C.; Schmitt, G.; Garcia, S.C.; Pomblum, V.J.; Rocha, J.B.T.; Farina, M. Importance of the Lipid Peroxidation Biomarkers and Methodological Aspects FOR Malondialdehyde Quantification. Quím. Nova 2009, 32, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Bello, T.; Idris, S. Antioxidative Roles of Ascorbic Acid and Tocopherol in Semen Preservation—A Review. J. Anim. Prod. Res. 2019, 31, 65–72. [Google Scholar]
- Budai, C.; Egerszegi, I.; Olah, J.; Javor, A.; Kovacs, A. The Protective Effect of Antioxidants on Liquid and Frozen Stored Ram Semen-Review. J. Anim. Sci. Biotechnol. 2014, 47, 46–52. [Google Scholar]
- Sarangi, A.; Verma, A.; Patel, R.; Rath, A.; Sahu, S.; Virmani, M.; Devi, P. Vitamin E and Gluthathion as Antioxidant in Liquid Preservation of Semen: A Review. IJCMAS 2018, 7, 1680–1684. [Google Scholar] [CrossRef]
- Vasconcelos Franco, J.S.; Chaveiro, A.; Góis, A.; Moreira da Silva, F. Effects of α-Tocopherol and Ascorbic Acid on Equine Semen Quality after Cryopreservation. JEVS 2013, 33, 787–793. [Google Scholar] [CrossRef]
- Solomon, M.C., Jr.; Cho, C.-L.; Henkel, R.R. Basic Aspects of Oxidative Stress in Male Reproductive Health. In Oxidants, Antioxidants and Impact of the Oxidative Status in Male Reproduction; Elsevier: Amsterdam, The Netherlands, 2019; pp. 27–36. [Google Scholar]
- Hu, J.-H.; Tian, W.-Q.; Zhao, X.-L.; Zan, L.-S.; Wang, H.; Li, Q.-W.; Xin, Y.-P. The Cryoprotective Effects of Ascorbic Acid Supplementation on Bovine Semen Quality. Anim. Reprod. Sci. 2010, 121, 72–77. [Google Scholar] [CrossRef]
- Gizaw, S.; Tesfay, Y.; Mekasha, Y.; Mekuriaw, Z.; Gugsa, T.; Ebro, A.; Hoekstra, D.; Tegegne, A. Hormonal Oestrus Synchronization in Four Sheep Breeds in Ethiopia: Impacts on Genetic; International Livestock Research Institute: Nairobi, Kenya, 2016. [Google Scholar]
Proximate Analysis | Treatment Diets | ||||
---|---|---|---|---|---|
NC | PC | FO | AA | FO + AA | |
Dry matter (%) | 88.23 | 88.93 | 92.20 | 90.42 | 93.52 |
Ash (%) | 5.32 | 12.36 | 5.00 | 5.49 | 4.75 |
Crude protein (%) | 10.73 | 10.36 | 10.74 | 10.29 | 10.59 |
Ether extract (%) | 2.03 | 2.16 | 19.79 | 1.70 | 24.29 |
Crude fibre (%) | 29.01 | 21.71 | 25.90 | 28.71 | 20.95 |
Sheep Breeds | NC | PC | FO | AA | FO + AA |
---|---|---|---|---|---|
Zulu | One ram × Five ewes | One ram × Five ewes | One ram × Six ewes | One ram × Six ewes | One ram × Six ewes |
BaPedi | One ram × Five ewes | One ram × Five ewes | One ram × Six ewes | One ram × Six ewes | One ram × Six ewes |
Namaqua Afrikaner | One ram × Five ewes | One ram × Five ewes | One ram × Five ewes | One ram × Five ewes | One ram × Five ewes |
Breeds | Semen Volume (mL) | Semen pH | Sperm Conc. (×109) | Intact Sperm Cell Membrane (%) | Non-Intact Sperm Cell Membrane (%) |
---|---|---|---|---|---|
Zulu | 0.97 ± 0.46 a | 6.21 ± 0.07 a | 0.70 ± 0.04 a | 82.18 ± 0.95 a | 17.82 ± 0.95 a |
BaPedi | 0.85 ± 0.47 a | 6.06 ± 0.07 a | 0.73 ± 0.04 a | 80.76 ± 0.97 a | 19.24 ± 0.97 a |
Namaqua Afrikaner | 0.89 ± 0.58 a | 6.15 ± 0.07 a | 0.72 ± 0.05 a | 80.56 ± 1.20 a | 19.44 ± 1.20 a |
p-Values | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 |
Treatment diets | |||||
NC | 0.85 ± 0.69 bc | 6.18 ± 0.10 a | 0.62 ± 0.05 b | 72.80 ± 1.42 d | 27.20 ± 1.42 a |
PC | 0.70 ± 0.07 c | 6.07 ± 0.10 a | 0.73 ± 0.05 ab | 77.87 ± 1.37 c | 22.13 ± 1.37 b |
FO | 0.90 ± 0.06 ab | 6.11 ± 0.09 a | 0.79 ± 0.05 a | 85.23 ± 1.27 b | 14.77 ± 1.27c |
AA | 1.01 ± 0.07 ab | 6.16 ± 0.10 a | 0.73 ± 0.05 ab | 81.10 ± 1.42 c | 18.91 ± 1.42 b |
FO + AA | 1.05 ± 0.06 a | 6.16 ± 0.09 a | 0.74 ± 0.05 ab | 88.83 ± 1.27 a | 11.17 ± 1.27 d |
p-Values | p < 0.05 | p > 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
Breeds | PM | NPM | TM | Static | RM | MM | SM |
---|---|---|---|---|---|---|---|
Zulu | 65.55 ± 1.65 a | 26.32 ± 1.30 a | 91.87 ± 0.99 a | 7.20 ± 0.73 a | 60.54 ± 1.90 a | 10.92 ± 1.28 a | 21.31 ± 1.01 a |
BaPedi | 65.33 ± 1.68 a | 27.11 ± 1.32 a | 92.44 ± 0.99 a | 7.56 ± 0.74 a | 57.76 ± 1.92 a | 13.21 ± 1.30 a | 21.47 ± 1.02 a |
Namaqua Afrikaner | 68.35 ± 2.09 a | 23.65 ± 1.64 a | 92.01 ± 1.25 a | 7.99 ± 0.92 a | 60.85 ± 2.40 a | 12.73 ± 1.62 a | 18.43 ± 1.28 a |
p-Values | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 |
Treatment diets | |||||||
NC | 50.80 ± 2.31 c | 36.80 ± 2.11 a | 87.63 ± 0.91 c | 12.51 ± 0.91 a | 41.91 ± 3.11 c | 15.80 ± 2.11 ab | 29.8 ± 1.52 a |
PC | 60.71 ± 2.31 b | 30.10 ± 2.11 bc | 90.82 ± 0.91 b | 9.21 ± 0.91 b | 50.71 ± 3.11 b | 17.30 ± 2.11 a | 22.90 ± 1.52 b |
FO | 62.91 ± 2.31 b | 30.80 ± 2.11 b | 93.60 ± 0.91 a | 6.41 ± 0.91 c | 52.52 ± 3.11 b | 19.41± 2.11 a | 21.70 ± 1.52 bc |
AA | 65.80 ± 1.91 b | 25.20 ± 1.80 cd | 90.90 ± 0.80 b | 9.01 ± 0.80 b | 56.31 ± 2.70 b | 15.62 ± 1.91 ab | 19.01 ± 1.31 bc |
FO + AA | 71.90 ± 1.91 a | 23.80 ± 1.80 d | 95.81 ± 0.80 a | 4.11 ± 0.80 c | 66.50 ± 2.70 a | 11.50 ± 1.91 b | 17.80 ± 1.31 c |
p-Values | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
Parameters | Sperm Viability (%) | Sperm Morphology (%) | Sperm Abnormalities (%) | ||||
---|---|---|---|---|---|---|---|
Live | Dead | Normal | Abnormal | Primary | Secondary | Tertiary | |
Breeds | |||||||
Zulu | 80.72 ± 0.93 a | 19.29 ± 0.93 a | 80.24 ± 1.07 a | 19.76 ± 1.07 a | 6.572 ± 0.36 a | 6.58 ± 0.36 a | 6.59 ± 0.36 a |
BaPedi | 80.05 ± 0.94 a | 19.95 ± 0.94 a | 80.39 ± 1.09 a | 19.61 ± 1.09 a | 6.55 ± 0.36 a | 6.54 ± 0.36 a | 6.56 ± 0.37 a |
Namaqua Afrikaner | 79.84 ± 1.17 a | 20.16 ± 1.17 a | 78.16 ± 1.36 a | 21.84 ± 1.36 a | 7.14 ± 0.45 a | 7.29 ± 0.45 a | 7.26 ± 0.46 a |
p-Values | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 |
Treatment Diets | |||||||
NC | 70.30 ± 1.73 d | 29.71 ± 1.73 a | 68.11 ± 1.51 d | 32.01 ± 1.51 a | 10.71 ± 0.51 a | 10.72 ± 0.51 a | 10.61 ± 0.51 a |
PC | 76.20 ± 1.73 c | 23.8 ± 1.66 b | 75.50 ± 1.48 c | 24.50 ± 1.48 b | 8.21 ± 0.49 b | 8.20 ± 0.51 b | 8.22 ± 0.49 b |
FO | 86.40 ± 1.73 b | 12.27 ± 1.66 c | 86.27 ± 1.48 b | 13.73 ± 1.48 c | 4.61 ± 0.49 c | 4.55 ± 0.51 c | 4.59 ± 0.49 c |
AA | 87.40 ± 1.73 b | 12.60 ± 1.66 c | 87.73 ± 1.48 ab | 12.27 ± 1.48 cd | 4.11 ± 0.49 cd | 4.14 ± 0.51 cd | 4.10 ± 0.49 cd |
FO + AA | 93.93 ± 1.73 a | 6.07 ± 1.66 d | 91.07 ± 1.48 a | 8.93 ± 1.48 d | 2.98 ± 0.49 d | 2.98 ± 0.51 d | 2.98 ± 0.49 d |
p-Values | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
Parameters | Testosterone Concentration (ng/mL) | Malondialdehyde Level (nmol/mL) | Conception Rate (%) |
---|---|---|---|
Breeds | |||
Zulu | 17.33 ± 2.41 a | 0.37 ± 0.04 a | 93 (25/27) a |
BaPedi | 23.17 ± 2.37 a | 0.36 ± 0.04 a | 93 (26/28) a |
Namaqua Afrikaner | 20.27 ± 2.34 a | 0.37 ± 0.03 a | 78 (18/23) b |
p-Values | p > 0.05 | p > 0.05 | p < 0.05 |
Treatment diets | |||
NC | 13.40 ± 3.02 b | 0.54 ± 0.05 a | 71 (10/14) b |
PC | 21.15 ± 3.02 ab | 0.27 ± 0.04 cd | 79 (11/14) b |
FO | 21.56 ± 3.02 ab | 0.22 ± 0.04 d | 94 (16/17) a |
AA | 18.87 ± 3.24 ab | 0.43 ± 0.05 ab | 94 (16/17) a |
FO + AA | 26.31 ± 3.02 a | 0.37 ± 0.04 bc | 100 (16/16) a |
p-Values | p < 0.05 | p < 0.05 | p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngcobo, J.N.; Nedambale, T.L.; Nephawe, K.A.; Chokoe, T.C.; Ramukhithi, F.V. Effects of Dietary Flaxseed Oil and Ascorbic Acid on the Reproductive Performance of South African Indigenous Sheep. Ruminants 2023, 3, 9-24. https://doi.org/10.3390/ruminants3010002
Ngcobo JN, Nedambale TL, Nephawe KA, Chokoe TC, Ramukhithi FV. Effects of Dietary Flaxseed Oil and Ascorbic Acid on the Reproductive Performance of South African Indigenous Sheep. Ruminants. 2023; 3(1):9-24. https://doi.org/10.3390/ruminants3010002
Chicago/Turabian StyleNgcobo, Jabulani Nkululeko, Tshimangadzo Lucky Nedambale, Khathutshelo Agree Nephawe, Tlou Caswell Chokoe, and Fhulufhelo Vincent Ramukhithi. 2023. "Effects of Dietary Flaxseed Oil and Ascorbic Acid on the Reproductive Performance of South African Indigenous Sheep" Ruminants 3, no. 1: 9-24. https://doi.org/10.3390/ruminants3010002
APA StyleNgcobo, J. N., Nedambale, T. L., Nephawe, K. A., Chokoe, T. C., & Ramukhithi, F. V. (2023). Effects of Dietary Flaxseed Oil and Ascorbic Acid on the Reproductive Performance of South African Indigenous Sheep. Ruminants, 3(1), 9-24. https://doi.org/10.3390/ruminants3010002