Breath Analysis for Early Detection of Rising Ketone Bodies in Postpartum Dairy Cows Classified as at Risk of Ketosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Ethics
2.2. Sampling and Analysis
2.2.1. Blood Sampling and Analysis
2.2.2. Breath Sampling and Analysis
2.2.3. Urine Sampling and Analysis
2.2.4. Milk Sampling and Analysis
2.3. Statistical Analysis
3. Results
3.1. General Results
3.2. Validation of the Acetone Measuring Method
3.3. Validation of the Rapid Test for Blood BHB
3.4. Relation between Blood BHB and Ketone Bodies in Breath
3.5. Relation between Blood BHB and Ketone Bodies in Urine and Milk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gross, J.J.; Bruckmaier, R.M. Invited Review: Metabolic Challenges and Adaptation during Different Functional Stages of the Mammary Gland in Dairy Cows: Perspectives for Sustainable Milk Production. J. Dairy Sci. 2019, 102, 2828–2843. [Google Scholar] [CrossRef]
- Januś, E.; Borkowska, D. Occurrence of Ketone Bodies in the Urine of Cows during the First Three Months after Calving and Their Association with Milk Yield. Arch. Anim. Breed. 2013, 56, 581–588. [Google Scholar] [CrossRef]
- van der Drift, S.; Jorritsma, R. Veel Variatie in Ketose. Veeteelt 2012, 2, 45. [Google Scholar]
- Veenhuizen, J.J.; Drackley, J.K.; Richard, M.J.; Sanderson, T.P.; Miller, L.D.; Young, J.W. Metabolic Changes in Blood and Liver During Development and Early Treatment of Experimental Fatty Liver and Ketosis in Cows. J. Dairy Sci. 1991, 74, 4238–4253. [Google Scholar] [CrossRef] [PubMed]
- Kaert, O.; Oll, U. Does the Supplemental Dietary Fat Increase Ketosis and Fattening of the Liver in Dairy Cows. Trans. Est. Acad. Agric. Soc. 1997, 30–33. [Google Scholar]
- Bergman, E.N. Hyperketonemia-Ketogenesis and Ketone Body Metabolism. J. Dairy Sci. 1971, 54, 936–948. [Google Scholar] [CrossRef]
- van der Drift, S. Ketosis in Dairy Cows: Etiologic Factors, Monitoring, Treatment. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2013. [Google Scholar]
- Berg, J.; Tymoczko, J.; Stryer, L. Biochemistry, 7th ed.; Freeman Publishers: New York, NY, USA, 2012. [Google Scholar]
- Bruckmaier, R.M.; Gross, J.J. Lactational Challenges in Transition Dairy Cows. Anim. Prod. Sci. 2017, 57, 1471–1481. [Google Scholar] [CrossRef]
- Baird, G.D.; Hibbit, K.G.; Hunter, G.D.; Lund, P.; Stubbs, M.; Krebs, H.A. Biochemical Aspects of Bovine Ketosis. Biochem. J. 1968, 107, 683–689. [Google Scholar] [CrossRef]
- Herdt, T.H. Ruminant Adaptation to Negative Energy Balance. Influences on the Etiology of Ketosis and Fatty Liver. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 215–230. [Google Scholar] [CrossRef]
- Veech, R.L.; Chance, B.; Kashiwaya, Y.; Lardy, H.A.; Cahill, G.F. Ketone Bodies, Potential Therapeutic Uses. IUBMB Life 2001, 51, 241–247. [Google Scholar]
- Nishida, T.; Kurihara, M.; Terada, F.; Shibata, M. Energy requirements of pregnant Holstein dairy cows carrying single or twin Japanese black fetuses in late pregnancy. Anim. Sci. Technol. 1997, 68, 572–578. [Google Scholar]
- Vlasova, A.N.; Saif, L.J. Bovine Immunology: Implications for Dairy Cattle. Front. Immunol. 2021, 12, 643206. [Google Scholar] [CrossRef] [PubMed]
- Suthar, V.S.; Canelas-Raposo, J.; Deniz, A.; Heuwieser, W. Prevalence of Subclinical Ketosis and Relationships with Postpartum Diseases in European Dairy Cows. J. Dairy Sci. 2013, 96, 2925–2938. [Google Scholar] [CrossRef] [PubMed]
- Itoh, N.; Koiwa, M.; Hatsugaya, A.; Yokota, H.; Taniyama, H.; Okada, H.; Kudo, K. Comparative Analysis of Blood Chemical Values in Primary Ketosis and Abomasal Displacement in Cows. J. Vet. Med. Ser. A Physiol. Pathol. Clin. Med. 1998, 45, 293–298. [Google Scholar] [CrossRef]
- Rovers, M. Ketosis in Dairy Cows and the Role of Choline. Int. Dairy Top. 2014, 13, 60–62. [Google Scholar]
- Steeneveld, W.; Amuta, P.; van Soest, F.J.S.; Jorritsma, R.; Hogeveen, H. Estimating the Combined Costs of Clinical and Subclinical Ketosis in Dairy Cows. PLoS ONE 2020, 15, e0230448. [Google Scholar] [CrossRef]
- Guliński, P. Ketone Bodies—Causes and Effects of Their Increased Presence in Cows’ Body Fluids: A Review. Vet. World 2021, 14, 1492–1503. [Google Scholar] [CrossRef]
- Küntzel, A.; Oertel, P.; Trefz, P.; Miekisch, W.; Schubert, J.K.; Köhler, H.; Reinhold, P. Animal Science Meets Agricultural Practice: Preliminary Results of an Innovative Technical Approach for Exhaled Breath Analysis in Cattle under Field Conditions. Berl. Munch. Tierarztl. Wochenschr. 2018, 131, 417–443. [Google Scholar]
- Djokovic, R.; Ilic, Z.; Kurcubic, V.; Petrovic, M.; Cincovic, M.; Petrovic, M.; Caro-Perovic, V. Diagnosis of Subclinical Ketosis in Dairy Cows. Biotechnol. Anim. Husb. 2019, 35, 111–125. [Google Scholar] [CrossRef]
- Palmer, M. Human Metabolism; University of Waterloo: Waterloo, Ont, Canada, 2015. [Google Scholar]
- Comstock, J.; Garber, A. Clinical Methods: The History, Physical, and Laboratory Examinations; Butterworths: Boston, MA, USA, 1990. [Google Scholar]
- Iwersen, M.; Falkenberg, U.; Voigtsberger, R.; Forderung, D.; Heuwieser, W. Evaluation of an Electronic Cowside Test to Detect Subclinical Ketosis in Dairy Cows. J. Dairy Sci. 2009, 92, 2618–2624. [Google Scholar] [CrossRef] [PubMed]
- Free, H.M.; Smeby, R.R.; Cook, M.H.; Free, A.H. A Comparative Study of Qualitative Tests for Ketones in Urine and Serum. Clin. Chem. 1958, 4, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.; Metre, D.V.; Pusterla, N. Large Animal Internal Medicine; Mosby Harcourt: St. Louis, MO, USA, 2002. [Google Scholar]
- Haven, M.V.; Koning, C.D.; Wemmenhove, H.; Westerbeek, R. Handboek Melkwinning; Praktijkonderzoek Rundvee, Schapen en Paarden: Lelystad, The Netherlands, 1996. [Google Scholar]
- Jezek, J.; Cincovic, M.R.; Nemec, M.; Belic, B.; Djokovic, R.; Klinkon, M.; Staric, J. Beta-Hydroxybutyrate in Milk as Screening Test for Subclinical Ketosis in Dairy Cows. Pol. J. Vet. Sci. 2017, 20, 507–512. [Google Scholar] [CrossRef]
- Enjalbert, F.; Nicot, M.C.; Bayourthe, C.; Moncoulon, R. Ketone Bodies in Milk and Blood of Dairy Cows: Relationship between Concentrations and Utilization for Detection of Subclinical Ketosis. J. Dairy Sci. 2001, 84, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Dobbelaar, P.; Mottram, T.; Nyabadza, C.; Hobbs, P.; Elliott-Martin, R.J.; Schukken, Y.H. Detection of Ketosis in Dairy Cows by Analysis of Exhaled Breath. Vet. Q. 1996, 18, 151–152. [Google Scholar] [CrossRef]
- Dingboom, L.G.; van Erp-van der Kooij, E. Validation of a Breath Sampling Method for Its Possible Role in Early Warning for Ketosis. In Proceedings of the 54th International Congress of the International Society for Applied Ethology (ISAE), Online, 2–6 August 2021; Dwyer, C.M., Harris, M., Rahman, S.A., Waiblinger, S., Rodenburg, T.B., Eds.; International Society for Applied Ethology: Bristol, UK, 2021; p. 200. [Google Scholar]
- Mottram, T.T.; Masson, L. Dumb Animals and Smart Machines: The Implications of Modern Milking Systems for Integrated Management of Dairy Cows. BSAP Occas. Publ. 2001, 28, 77–84. [Google Scholar] [CrossRef]
- Sturm, V.; Efrosinin, D.; Öhlschuster, M.; Gusterer, E.; Drillich, M.; Iwersen, M. Combination of Sensor Data and Health Monitoring for Early Detection of Subclinical Ketosis in Dairy Cows. Sensors 2020, 20, 1484. [Google Scholar] [CrossRef] [Green Version]
- Ghimenti, S.; Lomonaco, T.; Bellagambi, F.G.; Tabucchi, S.; Onor, M.; Trivella, M.G.; Ceccarini, A.; Fuoco, R.; Di Francesco, F. Comparison of Sampling Bags for the Analysis of Volatile Organic Compounds in Breath. J. Breath Res. 2015, 9, 047110. [Google Scholar] [CrossRef]
- Krogh, M.A.; Toft, N.; Enevoldsen, C. Latent Class Evaluation of a Milk Test, a Urine Test, and the Fat-to-Protein Percentage Ratio in Milk to Diagnose Ketosis in Dairy Cows. J. Dairy Sci. 2011, 94, 2360–2367. [Google Scholar] [CrossRef]
- IBM Corp. SPSS Statistics for Windows; Version 28; IBM Corp: Armonk, NY, USA, 2021. [Google Scholar]
- Ranganathan, P.; Pramesh, C.; Aggarwal, R. Common Pitfalls in Statistical Analysis: Measures of Agreement. Perspect. Clin. Res. 2017, 8, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Mottram, T.T.; Dobbelaar, P.; Schukken, Y.H.; Hobbs, P.J.; Bartlett, P.N. An Experiment to Determine the Feasibility of Automatically Detecting Hyperketonaemia in Dairy Cows. Livest. Prod. Sci. 1999, 61, 7–11. [Google Scholar] [CrossRef]
- Suntrup, D.J.; Ratto, T.V.; Ratto, M.; McCarter, J.P. Characterization of a High-Resolution Breath Acetone Meter for Ketosis Monitoring. PeerJ 2020, 8, e9969. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, K.; Wilhelm, J.; Fürll, M. Vergleichende Betrachtung Ausgewählter Blutparameter von Hochleistungskühen Bei Unterschiedlichen Entnahmestellen. Tierärztliche Prax. Ausgabe G Großtiere/Nutztiere 2013, 41, 7–14. [Google Scholar] [CrossRef]
- Mahrt, A.; Burfeind, O.; Heuwieser, W. Effects of Time and Sampling Location on Concentrations of β-Hydroxybutyric Acid in Dairy Cows. J. Dairy Sci. 2014, 97, 291–298. [Google Scholar] [CrossRef]
- Itle, A.J.; Huzzey, J.M.; Weary, D.M.; von Keyserlingk, M.A.G. Clinical Ketosis and Standing Behavior in Transition Cows. J. Dairy Sci. 2015, 98, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Filar, J. Studies about the level of beta-hydroxybutyrate, acetoacetate and acetone in the blood of healthy and ketonic cows. Wiener Tieraerztliche Monatsschrift 1979, 66, 377–380. [Google Scholar]
- Sato, H.; Shiogama, Y. Acetone and Isopropanol in Ruminal Fluids and Feces of Lactating Dairy Cows. J. Vet. Med. Sci. 2011, 72, 297–300. [Google Scholar] [CrossRef]
- Oertel, P.; Küntzel, A.; Reinhold, P.; Köhler, H.; Schubert, J.K.; Kolb, J.; Miekisch, W. Continuous Real-Time Breath Analysis in Ruminants: Effect of Eructation on Exhaled VOC Profiles. J. Breath Res. 2018, 12, 036014. [Google Scholar] [CrossRef]
- Nikkhah, A.; Furedi, C.J.; Kennedy, A.D.; Crow, G.H.; Plaizier, J.C. Effects of Feed Delivery Time on Feed Intake, Milk Production, and Blood Metabolites of Dairy Cows. J. Dairy Sci. 2008, 91, 4249–4260. [Google Scholar] [CrossRef]
- Vanholder, T.; Papen, J.; Bemers, R.; Vertenten, G.; Berge, A.C.B. Risk Factors for Subclinical and Clinical Ketosis and Association with Production Parameters in Dairy Cows in the Netherlands. J. Dairy Sci. 2015, 98, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Lassen, J.; Løvendahl, P.; Madsen, J. Accuracy of Noninvasive Breath Methane Measurements Using Fourier Transform Infrared Methods on Individual Cows. J. Dairy Sci. 2012, 95, 890–898. [Google Scholar] [CrossRef]
- Sypniewski, M.; Strabel, T.; Cieslak, A.; Szumacher-Strabel, M.; Pszczola, M. Technical Note: Interchangeability and Comparison of Methane Measurements in Dairy Cows with 2 Noninvasive Infrared Systems. J. Dairy Sci. 2019, 102, 9512–9517. [Google Scholar] [CrossRef] [PubMed]
- Hammond, K.J.; Humphries, D.J.; Crompton, L.A.; Green, C.; Reynolds, C.K. Methane Emissions from Cattle: Estimates from Short-Term Measurements Using a GreenFeed System Compared with Measurements Obtained Using Respiration Chambers or Sulphur Hexafluoride Tracer. Anim. Feed Sci. Technol. 2015, 203, 41–52. [Google Scholar] [CrossRef]
Cow Number | Lactation | Dry Days | BCS at Calving |
---|---|---|---|
12 | 4 | 57 | 4 |
13 | 3 | 74 | 3 |
29 | 3 | 59 | 3.5 |
51 | 2 | 59 | 4.5 |
81 | 3 | 78 | 4 |
113 | 2 | 80 | 3.5 |
337 | 3 | 98 | 4.5 |
Cow Number | Ketone Body and Sample Type | Mean ± SD | Min, Max., Samples | Classified as Ketotic (K) or Non-Ketotic (Non-K) |
---|---|---|---|---|
12 | BHB in blood | 1.1 ± 0.4 | 0.4, 1.7, 6 | K |
Acetone in breath | 8.3 ± 4.6 | 2.3, 16.2, 7 | ||
Acetoacetate in urine | 1.1 ± 1.4 | 0.0, 4.0, 7 | ||
BHB in milk | 64 ± 47 | 0, 100, 7 | ||
13 | BHB in blood | 0.9 ± 0.4 | 0.4, 1.5, 6 | K |
Acetone in breath | 8.0 ± 2.6 | 4.3, 11.0, 8 | ||
Acetoacetate in urine | 0.8 ± 0.7 | 0.0, 1.5, 9 | ||
BHB in milk | 69 ± 37 | 0, 100, 8 | ||
29 | BHB in blood * | 0.9 ± 0.2 | 0.5, 1.1, 8 | Non-K |
Acetone in breath | 12.5 ± 3.6 | 7.3, 17.2, 9 | ||
Acetoacetate in urine | 0.3 ± 0.3 | 0.0, 0.5, 8 | ||
BHB in milk | 43 ± 53 | 0, 100, 7 | ||
51 | BHB in blood | 0.7 ± 0.05 | 0.7, 0.8, 6 | Non-K |
Acetone in breath | 7.1 ± 2.1 | 5.3, 10.9, 6 | ||
Acetoacetate in urine | 0.1 ± 0.2 | 0.0, 0.5, 6 | ||
BHB in milk | 70 ± 45 | 0, 100, 7 | ||
81 | BHB in blood | 2.0 ± 1.0 | 0.8, 2.6, 3 | K |
Acetone in breath | 10.7 ± 2.3 | 7.5, 13.8, 8 | ||
Acetoacetate in urine | 3.8 ± 3.7 | 0.0, 8.0, 9 | ||
BHB in milk | 114 ± 38 | 100, 200, 7 | ||
113 | BHB in blood | 1.3 ± 0.5 | 0.7, 2.2, 9 | K |
Acetone in breath | 14.3 ± 2.0 | 9.8, 16.7, 9 | ||
Acetoacetate in urine | 2.0 ± 2.5 | 0.0, 8.0, 9 | ||
BHB in milk | 138 ± 151 | 0, 500, 8 | ||
337 | BHB in blood | 0.9 ± 0.2 | 0.7, 1.3, 8 | Non-K |
Acetone in breath | 10.7 ± 4.7 | 6.7, 20.0, 7 | ||
Acetoacetate in urine | 0.5 ± 0.5 | 0.0, 1.5, 8 | ||
BHB in milk | 71 ± 49 | 0, 100, 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Erp-van der Kooij, E.; Derix, J.; van Gorp, S.; Timmermans, A.; Krijnen, C.; Fodor, I.; Dingboom, L. Breath Analysis for Early Detection of Rising Ketone Bodies in Postpartum Dairy Cows Classified as at Risk of Ketosis. Ruminants 2023, 3, 39-54. https://doi.org/10.3390/ruminants3010005
van Erp-van der Kooij E, Derix J, van Gorp S, Timmermans A, Krijnen C, Fodor I, Dingboom L. Breath Analysis for Early Detection of Rising Ketone Bodies in Postpartum Dairy Cows Classified as at Risk of Ketosis. Ruminants. 2023; 3(1):39-54. https://doi.org/10.3390/ruminants3010005
Chicago/Turabian Stylevan Erp-van der Kooij, Elaine, Janiek Derix, Stijn van Gorp, Amy Timmermans, Charles Krijnen, István Fodor, and Liesbeth Dingboom. 2023. "Breath Analysis for Early Detection of Rising Ketone Bodies in Postpartum Dairy Cows Classified as at Risk of Ketosis" Ruminants 3, no. 1: 39-54. https://doi.org/10.3390/ruminants3010005
APA Stylevan Erp-van der Kooij, E., Derix, J., van Gorp, S., Timmermans, A., Krijnen, C., Fodor, I., & Dingboom, L. (2023). Breath Analysis for Early Detection of Rising Ketone Bodies in Postpartum Dairy Cows Classified as at Risk of Ketosis. Ruminants, 3(1), 39-54. https://doi.org/10.3390/ruminants3010005