Does Seawater Nitrogen Better Predict the Baseline Farmed Yield for Sugar Kelp (Saccharina latissima) Rather than the Final Yield?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Farm Sites and Timing
2.2. Seawater Nitrogen
2.3. Sampling Biomass
2.4. Carbon and Nitrogen
2.5. Statistical Analysis
3. Results
3.1. Seawater Nitrogen
Location | Year | Month | Line Spacing (m) | Biomass (kg/m) | Nitrate (μM) | Ammonium (μM) | Total N (μM) | %C | %N | C:N | δ13C | δ15N |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AK | ||||||||||||
2020 | June | 4.57 | 11.58 (±1.50) | 1.00 (±0.13) | 1.96 (±0.68) | 2.96 (±0.75) | 19.33 (±4.99) | 2.41 (±0.41) | 7.99 (±1.70) | −20.05 (±1.33) | 6.52 (±1.00) | |
2021 | June | 4.57 | 12.70 (±3.49) | 1.57 (±0.15) | 0.97 (±0.29) | 2.54 (±0.29) | 23.03 (±2.25) | 1.52 (±0.39) | 16.07 (±4.57) | −17.64 (±1.67) | 6.77 (±1.19) | |
CT1 | ||||||||||||
2020 | May | 15.24 | 17.67 (±4.45) | 0.28 (±0.15) | 0.39 (±0.15) | 0.68 (±0.27) | 24.83 (±4.69) | 2.46 (±0.43) | 10.09 (±0.92) | −16.35 (±1.39) | 9.30 (±0.76) | |
2021 | May | 15.24 | 21.40 (±5.16) | 0.72 (±0.08) | 0.85 (±0.88) | 1.57 (±0.95) | 27.65 (±3.17) | 1.71 (±0.42) | 17.44 (±6.15) | −21.69 (±1.16) | 7.10 (±0.47) | |
CT2 | ||||||||||||
2020 | May | 9.14 | 2.03 (±4.29) | 0.12 (±0.01) | 0.18 (±0.00) | 0.30 (±0.01) | 35.50 (±1.72) | 0.79 (±0.41) | 50.27 (±13.25) | −24.41 (±1.19) | 8.74 (±0.73) | |
2021 | June | 9.14 | 7.66 (±0.52) | 0.50 (±0.03) | 0.57 (±0.05) | 1.07 (±0.07) | 28.58 (±2.54) | 1.75 (±0.34) | 17.18 (±5.11) | −17.52 (±0.72) | 11.15 (±0.61) | |
ME | ||||||||||||
2020 | May | 9.14 | 15.92 (±2.38) | 0.18 (±0.02) | 2.06 (±0.18) | 2.23 (±0.18) | 26.03 (±3.98) | 2.75 (±0.33) | 9.47 (±0.95) | −16.58 (±1.07) | 6.06 (±1.33) | |
2021 | June | 9.14 | 14.04 (±3.90) | 2.71 (±0.07) | 0.96 (±0.28) | 3.66 (±0.32) | 29.31 (±3.22) | 2.37 (±0.27) | 12.45 (±1.59) | −14.16 (±2.48) | 6.01 (±0.78) | |
RI | ||||||||||||
2020 | April | 6.10 | 9.91 (±2.13) | 0.20 (±0.05) | 0.45 (±0.37) | 0.65 (±0.39) | 27.78 (±2.48) | 0.98 (±0.29) | 31.03 (±11.18) | −20.74 (±0.94) | 7.16 (±0.29) | |
2021 | April | 6.10 | 3.08 (±2.96) | 0.21 (±0.03) | 0.68 (±0.84) | 0.89 (±0.81) | 31.71 (±2.62) | 0.57 (±0.16) | 60.23 (±17.16) | −25.54 (±1.43) | 5.08 (±0.61) |
DF | Denom DF | F | p-Value | |
---|---|---|---|---|
Biomass (kg/m) | ||||
Year | 1 | 37.359 | 0.368 | 0.548 |
Farm | 4 | 22.166 | 17.810 | <0.001 |
Farm × Year | 9 | 15.395 | 42.108 | <0.001 |
Seawater nitrate (μM) | ||||
Year | 1 | 17.741 | 9.214 | 0.007 |
Farm | 4 | 10.313 | 15.363 | <0.001 |
Farm × Year | 9 | 7.837 | 345.50 | <0.001 |
Seawater ammonium (μM) | ||||
Year | 1 | 20.192 | 0.882 | 0.359 |
Farm | 4 | 11.519 | 5.238 | 0.012 |
Farm × Year | 6 | 5.623 | 1.717 | 0.271 |
Seawater total N (μM) | ||||
Year | 1 | 26.977 | 1.398 | 0.247 |
Farm | 4 | 11.954 | 16.085 | <0.001 |
Farm × Year | 9 | 7.408 | 75.672 | <0.001 |
Tissue %C | ||||
Year | 1 | 27.916 | 2.447 | 0.129 |
Farm | 4 | 12.441 | 7.189 | 0.003 |
Farm × Year | 9 | 7.978 | 23.559 | <0.001 |
Tissue %N | ||||
Year | 1 | 26.419 | 3.994 | 0.056 |
Farm | 4 | 12.091 | 33.775 | <0.001 |
Farm × Year | 9 | 7.923 | 39.039 | <0.001 |
Tissue C:N | ||||
Year | 1 | 18.151 | 5.889 | 0.026 |
Farm | 4 | 11.065 | 6.385 | 0.006 |
Farm × Year | 9 | 7.829 | 539.22 | <0.001 |
Tissue δ13C | ||||
Year | 1 | 24.73 | 8.308 | 0.008 |
Farm | 4 | 12.123 | 10.36 | <0.001 |
Farm × Year | 9 | 7.986 | 74.467 | <0.001 |
Tissue δ15N | ||||
Year | 1 | 25.387 | 3.768 | 0.063 |
Farm | 4 | 12.412 | 9.029 | 0.001 |
Farm × Year | 9 | 7.842 | 20.118 | <0.001 |
3.2. Harvested Biomass and Correlative Relationships
3.3. Tissue Carbon and Nitrogen
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santelices, B. Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr. Mar. Biol. Annu. Rev. 1990, 28, 177–276. [Google Scholar]
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; et al. Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 2014, 49, 29–320. [Google Scholar] [CrossRef]
- Kim, J.K.; Kraemer, G.P.; Yarish, C. Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary. Aquaculture 2014, 433, 148–156. [Google Scholar] [CrossRef]
- Kim, J.K.; Kraemer, G.P.; Yarish, C. Use of sugar kelp aquaculture in Long Island Sound and the Bronx River Estuary for nutrient extraction. Mar. Ecol. Prog. Ser. 2015, 531, 155–166. [Google Scholar] [CrossRef]
- Hurd, C.L.; Harrison, P.J.; Bischof, K.; Lobban, C.S. Seaweed Ecology and Physiology; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Steneck, R.S.; Graham, M.H.; Bourque, B.J.; Corbett, D.; Erlandson, J.M.; Estes, J.A.; Tegner, M.J. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 2018, 29, 436–459. [Google Scholar] [CrossRef]
- Kite-Powell, H.L.; Ask, E.; Augyte, S.; Bailey, D.; Decker, J.; Goudey, C.A.; Grebe, G.; Lic, Y.; Lindell, S.; Manganelli, D.; et al. Estimating production cost for large-scale seaweed farms. Appl. Phycol. 2022, 3, 435–445. [Google Scholar] [CrossRef]
- Endo, H.; Sato, Y.; Kaneko, K.; Takahashi, D.; Nagasawa, K.; Okumura, Y.; Agatsuma, Y. Ocean warming combined with nutrient enrichment increases the risk of herbivory during cultivation of the marine macroalga Undaria Pinnatifida. ICES J. Mar. Sci. 2021, 78, 402–409. [Google Scholar] [CrossRef]
- Zhang, Y.; Nair, S.; Zhang, Z.; Zhao, J.; Zhao, H.; Lu, L.; Chang, L.; Jiao, N. Adverse environmental perturbations may threaten kelp farming sustainability by exacerbating Enterobacterales diseases. Environ. Sci. Technol. 2024, 58, 5796–5810. [Google Scholar] [CrossRef]
- Fredersdorf, J.; Müller, R.; Becker, S.; Wiencke, C.; Bischof, K. Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 2009, 160, 483–492. [Google Scholar] [CrossRef]
- Bearham, D.; Vanderklift, M.A.; Gunson, J.R. Temperature and light explain spatial variation in growth and productivity of the kelp Ecklonia radiata. Mar. Ecol. Prog. Ser. 2013, 476, 59–70. [Google Scholar] [CrossRef]
- Stephens, T.A.; Hepburn, C.D. Mass-transfer gradients across kelp beds influence Macrocystis pyrifera growth over small spatial scales. Mar. Ecol. Prog. Ser. 2014, 515, 97–109. [Google Scholar] [CrossRef]
- Hurd, C.L. Shaken and stirred: The fundamental role of water motion in resource acquisition and seaweed productivity. Perspect. Phycol. 2017, 4, 73–81. [Google Scholar] [CrossRef]
- Davis, T.R.; Larkin, M.F.; Forbes, A.; Veenhof, R.J.; Scott, A.; Coleman, M.A. Extreme flooding and reduced salinity causes mass mortality of nearshore kelp forests. Estuar. Coast. Shelf Sci. 2022, 275, 107960. [Google Scholar] [CrossRef]
- Krause-Jensen, D.; Duarte, C.M. Expansion of vegetated coastal ecosystems in the future Arctic. Front. Mar. Sci. 2016, 3, 77. [Google Scholar] [CrossRef]
- Teagle, H.; Hedges, J.I. Amino acid compositions and δ15N of suspended particulate organic matter in the South Atlantic: Implications for δ15N of deep-sea sedimentary organic matter. Geochim. Cosmochim. Acta 1997, 61, 4321–4339. [Google Scholar]
- Schiel, D.R.; Foster, M.S. The population biology of large brown seaweeds: Ecological consequences of multi-phase life histories in dynamic coastal environments. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 343–372. [Google Scholar] [CrossRef]
- Egan, B.; Yarish, C. Productivity and life history of Laminaria longicruris at its southern limit in the Western Atlantic Ocean. Mar. Ecol. Prog. Ser. 1990, 67, 263–273. [Google Scholar] [CrossRef]
- Ibrahim, A.; Olsen, A.; Lauvset, S.; Rey, F. Seasonal variations of the surface nutrients and hydrography in the Norwegian Sea. Int. J. Environ. Sci. Dev. 2014, 5, 496–505. [Google Scholar] [CrossRef]
- Forbord, S.; Matsson, S.; Brodahl, G.E.; Bluhm, B.A.; Broch, O.J.; Handå, A.; Metaxas, A.; Skiermo, J.; Steinhovden, K.B.; Olsen, Y. Latitudinal, seasonal and depth-dependent variation in growth, chemical composition and biofouling of cultivated Saccharina latissima (Phaeophyceae) along the Norwegian coast. J. Appl. Phycol. 2020, 32, 2215–2232. [Google Scholar] [CrossRef]
- Lüning, K.; Neushul, M. Light and temperature demands for growth and reproduction of laminarian gametophytes in southern and central California. Mar. Biol. 1978, 45, 297–309. [Google Scholar] [CrossRef]
- Redfield, A.C. The biological control of chemical factors in the environment. Am. Sci. 1958, 46, 230A, 205–221. [Google Scholar]
- Shi, J.; Wei, H.; Zhao, L.; Yuan, Y.; Fang, J.; Zhang, J. A physical–biological coupled aquaculture model for a suspended aquaculture area of China. Aquaculture 2011, 318, 412–424. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, W.; Ren, J.S.; Lin, F. A model for the growth of mariculture kelp Saccharina japonica in Sanggou Bay, China. Aquac. Environ. Interact. 2016, 8, 273–283. [Google Scholar] [CrossRef]
- Wang, B.; Cao, L.; Micheli, F.; Naylor, R.L.; Fringer, O.B. The effects of intensive aquaculture on nutrient residence time and transport in a coastal embayment. Environ. Fluid Mech. 2018, 18, 1321–1349. [Google Scholar] [CrossRef]
- Delaux, S.; Stevens, C.L.; Popinet, S. High-resolution computational fluid dynamics modelling of suspended shellfish structures. Environ. Fluid Mech. 2011, 11, 405–425. [Google Scholar] [CrossRef]
- Zhou, J.; Venayagamoorthy, S.K. Near-field mean flow dynamics of a cylindrical canopy patch suspended in deep water. J. Fluid Mech. 2019, 858, 634–655. [Google Scholar] [CrossRef]
- Yan, C.; McWilliams, J.C.; Chamecki, M. Generation of attached Langmuir circulations by a suspended macroalgal farm. J. Fluid Mech. 2021, 915, A76. [Google Scholar] [CrossRef]
- Plew, D.R.; Stevens, C.L.; Spigel, R.H.; Hartstein, N.D. Hydrodynamic implications of large offshore mussel farms. IEEE J. Oceanic Eng. 2005, 30, 95–108. [Google Scholar] [CrossRef]
- Plew, D.R.; Spigel, R.H.; Stevens, C.L.; Nokes, R.I.; Davidson, M.J. Stratified flow interactions with a suspended canopy. Environ. Fluid Mech. 2006, 6, 519–539. [Google Scholar] [CrossRef]
- Hurd, C.L. Water motion, marine macroalgal physiology, and production. J. Phycol. 2000, 36, 453–472. [Google Scholar] [CrossRef]
- Umanzor, S.; Stephens, T. Nitrogen and carbon removal capacity by farmed kelp Alaria marginata and Saccharina latissima varies by species. Aquac. J. 2022, 3, 1–6. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA; Available online: http://www.rstudio.com/ (accessed on 15 March 2024).
- Gerard, V.A. Growth and utilization of internal nitrogen reserves by the giant kelp Macrocystis pyrifera in a low-nitrogen environment. Mar. Biol. 1982, 66, 27–35. [Google Scholar] [CrossRef]
- Bodycomb, R.; Pomeroy, A.W.; Morris, R.L. Kelp aquaculture as a nature-based solution for coastal protection: Wave attenuation by suspended canopies. J. Mar. Sci. Eng. 2023, 11, 1822. [Google Scholar] [CrossRef]
- Cornwall, C.E.; Boyd, P.W.; McGraw, C.M.; Hepburn, C.D.; Pilditch, C.A.; Morris, J.N.; Smith, A.M.; Hurd, C.L. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 2014, 9, e97235. [Google Scholar] [CrossRef]
- Kregting, L.; Blight, A.J.; Elsaβer, B.; Savadige, G. The influence of water motion on the growth rate of the kelp Laminaria digitata. J. Exp. Mar. Biol. Ecol. 2016, 478, 86–95. [Google Scholar] [CrossRef]
- Coleman, L.J.; Martone, P.T. Morphological plasticity in the kelp Nereocystis luetkeana (Phaeophyceae) is sensitive to the magnitude, direction, and location of mechanical loading. J. Phycol. 2020, 56, 1414–1427. [Google Scholar] [CrossRef] [PubMed]
- Visch, W.; Nylund, G.M.; Pavia, H. Growth and biofouling in kelp aquaculture (Saccharina latissima): The effect of location and wave exposure. J. Appl. Phycol. 2020, 32, 3199–3209. [Google Scholar] [CrossRef]
- Zhu, G.; Ebbing, A.; Bouma, T.J.; Timmermans, K.R. Morphological and physiological plasticity of Saccharina latissima (Phaeophyceae) in response to different hydrodynamic conditions and nutrient availability. J. Appl. Phycol. 2021, 33, 2471–2483. [Google Scholar] [CrossRef]
- Flavin, K.; Flavin, N.; Flahive, B. Kelp Farming Manual: A Guide to the Processes, Techniques, and Equipment for Farming Kelp in New England Waters. Ocean Approved. 2013. Available online: https://algaefoundationatec.org/aces/library/Kelp%20Farming%20Manual.pdf (accessed on 15 March 2024).
- Roleda, M.Y.; Hurd, C.L. Seaweed nutrient physiology: Application of concepts to aquaculture and bioremediation. Phycologia 2019, 58, 552–562. [Google Scholar] [CrossRef]
- Harlin, M.M.; Craigie, J.S. Nitrate uptake by Laminaria longicruris (Phaeophycaea). J. Phycol. 1978, 14, 454–467. [Google Scholar] [CrossRef]
- Gordillo, F.J.; Dring, M.J.; Savidge, G. Nitrate and phosphate uptake characteristics of three brown algae cultured at low salinity. Mar. Ecol. Prog. Ser. 2002, 234, 111–118. [Google Scholar] [CrossRef]
- Nepper-Davidsen, J.; Magnusson, M.; Glasson, C.R.; Lawton, R.J. Line configuration and farming depth markedly affect survival and growth in the kelp Ecklonia radiata. N. Z. J. Mar. Freshw. Res. 2023, 1–17. [Google Scholar] [CrossRef]
- Augyte, S.; Yarish, C.; Redmond, S.; Kim, J.K. Cultivation of a morphologically distinct strain of the sugar kelp, Saccharina latissima forma angustissima, from coastal Maine, USA, with implications for ecosystem services. J. Appl. Phycol. 2017, 29, 1967–1976. [Google Scholar] [CrossRef]
- Li, Y.; Umanzor, S.; Ng, C.; Huang, M.; Marty-Rivera, M.; Bailey, D.; Aydlett, M.; Jannink, J.; Lindell, S.; Yarish, C. Skinny kelp (Saccharina angustissima) provides valuable genetics for the biomass improvement of farmed sugar kelp (Saccharina latissima). J. Appl. Phycol. 2022, 34, 2551–2563. [Google Scholar] [CrossRef]
- Goecke, F.; Klemetsdal, G.; Ergon, Å. Cultivar development of kelps for commercial cultivation—Past lessons and future prospects. Front. Mar. Sci. 2020, 8, 110. [Google Scholar] [CrossRef]
- Hu, Z.M.; Shan, T.F.; Zhang, Q.S.; Liu, F.L.; Jueterbock, A.; Wang, G.; Sun, Z.M.; Wang, X.Y.; Chen, W.Z.; Critchley, A.T.; et al. Kelp breeding in China: Challenges and opportunities for solutions. Rev. Aquac. 2024, 16, 855–871. [Google Scholar] [CrossRef]
Harvest | 2-Month Average | |||
---|---|---|---|---|
p-Value | r² Value | p-Value | r² Value | |
Biomass (kg/m) | ||||
Nitrate | 0.036 | 0.088 | 0.227 | 0.044 |
Ammonium | 0.233 | 0.043 | 0.151 | 0.062 |
Total N | 0.019 | 0.110 | 0.192 | 0.052 |
Tissue %C | ||||
Nitrate | 0.004 | 0.146 | <0.001 | 0.364 |
Ammonium | 0.005 | 0.137 | 0.010 | 0.158 |
Total N | <0.001 | 0.249 | <0.001 | 0.341 |
Tissue %N | ||||
Nitrate | 0.001 | 0.181 | 0.024 | 0.119 |
Ammonium | <0.001 | 0.197 | <0.001 | 0.387 |
Total N | <0.001 | 0.326 | <0.001 | 0.183 |
Tissue C | ||||
Nitrate | 0.007 | 0.126 | 0.002 | 0.224 |
Ammonium | 0.007 | 0.123 | 0.002 | 0.230 |
Total N | <0.001 | 0.220 | 0.001 | 0.247 |
Tissue δ13C | ||||
Nitrate | 0.093 | 0.038 | <0.001 | 0.319 |
Ammonium | 0.029 | 0.076 | <0.001 | 0.321 |
Total N | 0.014 | 0.102 | <0.001 | 0.349 |
Tissue δ15N | ||||
Nitrate | 0.012 | 0.105 | 0.151 | 0.033 |
Ammonium | <0.001 | 0.337 | 0.042 | 0.093 |
Total N | <0.001 | 0.323 | 0.102 | 0.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stephens, T.; Li, Y.; Yarish, C.; Rogers, M.C.; Umanzor, S. Does Seawater Nitrogen Better Predict the Baseline Farmed Yield for Sugar Kelp (Saccharina latissima) Rather than the Final Yield? Phycology 2024, 4, 370-383. https://doi.org/10.3390/phycology4030020
Stephens T, Li Y, Yarish C, Rogers MC, Umanzor S. Does Seawater Nitrogen Better Predict the Baseline Farmed Yield for Sugar Kelp (Saccharina latissima) Rather than the Final Yield? Phycology. 2024; 4(3):370-383. https://doi.org/10.3390/phycology4030020
Chicago/Turabian StyleStephens, Tiffany, Yaoguang Li, Charles Yarish, Matthew C. Rogers, and Schery Umanzor. 2024. "Does Seawater Nitrogen Better Predict the Baseline Farmed Yield for Sugar Kelp (Saccharina latissima) Rather than the Final Yield?" Phycology 4, no. 3: 370-383. https://doi.org/10.3390/phycology4030020
APA StyleStephens, T., Li, Y., Yarish, C., Rogers, M. C., & Umanzor, S. (2024). Does Seawater Nitrogen Better Predict the Baseline Farmed Yield for Sugar Kelp (Saccharina latissima) Rather than the Final Yield? Phycology, 4(3), 370-383. https://doi.org/10.3390/phycology4030020