Effects of Cognitive and Metacognitive Prompts on Learning Performance in Digital Learning Environments
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Self-Regulated Learning
2.1.1. Motivation
2.1.2. Cognitive Load
2.1.3. Prior Knowledge
2.2. Learning Strategies
2.2.1. Cognitive Learning Strategies
2.2.2. Metacognitive Learning Strategies
2.2.3. Indirect and Direct Support
2.3. Prompts
Effectiveness of Prompts
2.4. Open Research Questions
3. Material and Methods
3.1. Sample
3.2. Design
3.3. Material
Learning Environment
3.4. Instruments
4. Results
4.1. Descriptive Results
4.2. Post-Knowledge and Self-Confidence in Post-Knowledge
4.3. Motivational Measures and Academic Self-Concept
4.4. Learning Strategies
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boholano, H.B.; Cajes, R.C.; Boholano, G.S. Technology based teaching and learning in junior high school. Res. Psychol. 2021, 11, 98–107. [Google Scholar] [CrossRef]
- Edisherashvili, N.; Saks, K.; Pedaste, M.; Leijen, Ä. Supporting self-regulated learning in distance learning contexts at higher education level: Systematic literature review. Front. Psychol. 2022, 12, 792422. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, S.; Li, X.; Luo, F. How grit influences high school students’ academic performance and the mediation effect of academic self-efficacy and cognitive learning strategies. Curr. Psychol. 2021, 42, 94–103. [Google Scholar] [CrossRef]
- Hayat, A.A.; Shateri, K.; Amini, M.; Shokrpour, N. Relationships between academic self-efficacy, learning-related emotions, and metacognitive learning strategies with academic performance in medical students: A structural equation model. BMC Med. Educ. 2020, 20, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theobald, M. Self-regulated learning training programs enhance university students’ academic performance, self-regulated learning strategies, and motivation: A meta-analysis. Contemp. Educ. Psychol. 2021, 66, 101976. [Google Scholar] [CrossRef]
- Berthold, K.; Röder, H.; Knörzer, D.; Kessler, W.; Renkl, A. The double-edged effects of explanation prompts. Comput. Hum. Behav. 2011, 27, 69–75. [Google Scholar] [CrossRef]
- Broadbent, J.; Poon, W.L. Self-regulated learning strategies & academic achievement in online higher education learning environments: A systematic review. Internet High. Educ. 2015, 27, 1–13. [Google Scholar] [CrossRef]
- Chen, C.-H.; Liu, T.-K.; Huang, K. Scaffolding vocational high school students’ computational thinking with cognitive and metacognitive prompts in learning about programmable logic controllers. J. Res. Technol. Educ. 2021, 29, 527–544. [Google Scholar] [CrossRef]
- Berthold, K.; Nückles, M.; Renkl, A. Do learning protocols support learning strategies and outcomes? The role of cognitive and metacognitive prompts. Learn. Instr. 2007, 17, 564–577. [Google Scholar] [CrossRef]
- Zumbach, J.; Ortler, C.; Deibl, I.; Moser, S. Using prompts to scaffold metacognition in case-based problem solving within the domain of attribution theory. J. Probl.-Based Learn. 2020, 7, 21–31. [Google Scholar] [CrossRef]
- Wirth, J. Prompting self-regulated learning throught prompts. Z. Padagog. Psychol. 2009, 23, 91–94. [Google Scholar] [CrossRef]
- Dent, A.L.; Koenka, A.C. The relation between self-regulated learning and academic achievement across childhood and adolescence: A meta-analysis. Educ. Psychol. Rev. 2016, 28, 425–474. [Google Scholar] [CrossRef]
- Broadbent, J. Comparing online and blended learner’s self-regulated learning strategies and academic performance. Internet High. Educ. 2017, 33, 24–32. [Google Scholar] [CrossRef]
- Woolfolk, A.; Schönpflug, U. Pädagogische Psychologie, 12th ed.; Pearson: Hallbergmoos, Germany, 2014. [Google Scholar]
- Lawson, D. Supporting Students’ Development of Self-Regulated Learning Using a Diagnostic Questionnaire Tool. Res. High. Educ. 2019, 12, 15–23. [Google Scholar]
- Yilmaz, R.; Karaoglan Yilmaz, F.G.; Keser, H. Vertical versus shared e-leadership approach in online project-based learning: A comparison of self-regulated learning skills, motivation and group collaboration processes. J. Comput. High. Educ. 2020, 32, 628–654. [Google Scholar] [CrossRef]
- Bui, T.H.; Kaur, A.; Trang Vu, M. Effectiveness of technology-integrated project-based approach for self-regulated learning of engineering students. Eur. J. Eng. Educ. 2022, 47, 591–605. [Google Scholar] [CrossRef]
- Carter Jr, R.A.; Rice, M.; Yang, S.; Jackson, H.A. Self-regulated learning in online learning environments: Strategies for remote learning. Inf. Learn. Sci. 2020, 121, 321–329. [Google Scholar] [CrossRef]
- Zimmerman, B.J. Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. Am. Educ. Res. J. 2008, 45, 166–183. [Google Scholar] [CrossRef]
- Ohtani, K.; Hisasaka, T. Beyond intelligence: A meta-analytic review of the relationship among metacognition, intelligence, and academic performance. Metacogn. Learn. 2018, 13, 179–212. [Google Scholar] [CrossRef]
- Boekaerts, M. Self-regulated learning: Where we are today. Int. J. Educ. Res. 1999, 31, 445–457. [Google Scholar] [CrossRef]
- Boekaerts, M. Cognitive load and self-regulation: Attempts to build a bridge. Learn. Instr. 2017, 51, 90–97. [Google Scholar] [CrossRef]
- Boekaerts, M.; Corno, L. Self-regulation in the classroom: A perspective on assessment and intervention. Appl. Psychol. 2005, 54, 199–231. [Google Scholar] [CrossRef]
- Ansell, D.B.; Spencer, N.L.I. “Think about what you’re doing and why you’re doing it”: Coach feedback, athlete self-regulation, and male youth hockey players. J. Appl. Sport Psychol. 2022, 34, 459–478. [Google Scholar] [CrossRef]
- Panadero, E. A review of self-regulated learning: Six models and four directions for research. Front. Psychol. 2017, 8, 422. [Google Scholar] [CrossRef] [Green Version]
- Artelt, C.; Demmrich, A.; Baumert, J. Selbstreguliertes Lernen. In PISA 2000. Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich; Bannert, J., Ed.; Leske + Budrich: Opladen, Germany, 2000; pp. 271–298. [Google Scholar]
- Bannert, M. Designing metacognitive support for hypermedia learning. In Instructional Design for Multimedia-Learning; Niegemann, D.L.H., Brünken, R., Eds.; Waxmann: Münster, Germany, 2004; pp. 19–30. [Google Scholar]
- Pressley, M.; Borkwski, J.G.; Schneider, W. Good information processing: What it is and how education can promote it. Int. J. Educ. Res. 1989, 13, 857–867. [Google Scholar] [CrossRef] [Green Version]
- Krapp, A. Pädagogische Psychologie: Ein Lehrbuch, 5th ed.; Beltz: Weinheim, Germany, 2006. [Google Scholar]
- Zumbach, J.; Mohraz, M. Cognitive load in hypermedia reading comprehension: Influence of text type and linearity. Comput. Hum. Behav. 2008, 24, 875–887. [Google Scholar] [CrossRef]
- Hasselhorn, M.; Gold, A.; Kunde, W.; Schneider, S. Pädagogische Psychologie: Erfolgreiches Lernen und Lehren; Kohlhammer: Stuttgart, Germany, 2017. [Google Scholar]
- Bosch, E.; Seifried, E.; Spinath, B. What successful students do: Evidence-based learning activities matter for students’ performance in higher education beyond prior knowledge, motivation, and prior achievement. Learn. Individ. Differ. 2021, 91, 102056. [Google Scholar] [CrossRef]
- Mienert, M.; Pitcher, S. Pädagogische Psychologie: Theorie und Praxis des Lebenslangen Lernens; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2011. [Google Scholar]
- Putwain, D.W. An examination of the self-referent executive processing model of test anxiety: Control, emotional regulation, self-handicapping, and examination performance. Eur. J. Psychol. Educ. 2019, 34, 341–358. [Google Scholar] [CrossRef] [Green Version]
- Ryan, R.M.; Deci, E. Self-Determination Theory: Basic Psychological Needs in Motivation, Development, and Wellness; The Guilford: New York, NY, USA, 2017. [Google Scholar]
- Ryan, R.M.; Deci, E.L. Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemp. Educ. Psychol. 2020, 61, 101860. [Google Scholar] [CrossRef]
- Kotera, Y.; Taylor, E.; Fido, D.; Williams, D.; Tsuda-McCaie, F. Motivation of UK graduate students in education: Self-compassion moderates pathway from extrinsic motivation to intrinsic motivation. Curr. Psychol. 2021, 42, 10163–10176. [Google Scholar] [CrossRef]
- Froiland, J.M.; Worrell, F.C. Intrinsic motivation, learning goals, engagement, and achievement in a diverse high school. Psychol. Sch. 2016, 53, 321–336. [Google Scholar] [CrossRef]
- Eccles, J.S.; Wigfield, A. In the mind of the actor: The structure of adolescents’ achievement task values and expectancy-related beliefs. Pers. Soc. Psychol. Bull. 1995, 21, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Eccles, J.S.; Wigfield, A. From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and sociocultural perspective on motivation. Contemp. Educ. Psychol. 2020, 61, 101859. [Google Scholar] [CrossRef]
- Zumbach, J.; Zeitlhofer, I.; Mann, B.; Hoermann, S.; Reisenhofer, B. The Appraisal Principle in Multimedia Learning: Impact of Appraisal Processes, Modality, and Codality. Multimodal. Technol. 2022, 6, 58. [Google Scholar] [CrossRef]
- Guay, F.; Ratelle, C.F.; Roy, A.; Litalien, D. Academic self-concept, autonomous academic motivation, and academic achievement: Mediating and additive effects. Learn. Individ. Differ. 2010, 20, 644–653. [Google Scholar] [CrossRef] [Green Version]
- Sweller, J. Cognitive load during problem solving: Effects on learning. Cogn. Sci. 1988, 12, 257–285. [Google Scholar] [CrossRef]
- Sweller, J. Element interactivity and intrinsic, extraneous, and germane cognitive load. Educ. Psychol. Rev. 2010, 22, 123–138. [Google Scholar] [CrossRef]
- Sweller, J. Cognitive load theory and educational technology. Educ. Technol. Res. Dev. 2020, 68, 1–16. [Google Scholar] [CrossRef]
- Anmarkrud, Ø.; Andresen, A.; Bråten, I. Cognitive load and working memory in multimedia learning: Conceptual and measurement issues. Educ. Psychol. 2019, 54, 61–83. [Google Scholar] [CrossRef]
- Moreno, R.; Mayer, R. Interactive multimodal learning environments: Special issue on interactive learning environments: Contemporary issues and trends. Educ. Psychol. Rev. 2007, 19, 309–326. [Google Scholar] [CrossRef]
- Grafe, S. Förderung von Problemlösefähigkeit beim Lernen mit Computersimulationen: Grundlagen und Schulische Anwendungen; Klinkhardt: Bad Heilbrunn, Germany, 2008. [Google Scholar]
- Arnold, J.; Kremer, K.; Mayer, J. Scaffolding in Inquiry Learning: An Empirical Study on the Impact of Learning Support. Zeitschrift für die Didaktik der Naturwissenschaften 2017, 23, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Taub, M.; Azevedo, R.; Bouchet, F.; Khosravifar, B. Can the use of cognitive and metacognitive self-regulated learning strategies be predicted by learners’ levels of prior knowledge in hypermedia-learning environments? Comput. Hum. Behav. 2014, 39, 356–367. [Google Scholar] [CrossRef]
- Moser, S.; Zumbach, J.; Deibl, I. The effect of metacognitive training and prompting on learning success in simulation-based physics learning. Sci. Educ. 2017, 101, 944–967. [Google Scholar] [CrossRef]
- Kapa, E. A metacognitive support during the process of problem solving in a computerized environment. Educ. Stud. Math. 2001, 47, 317–336. [Google Scholar] [CrossRef]
- Yang, T.-C.; Chen, M.C.; Chen, S.Y. The influences of self-regulated learning support and prior knowledge on improving learning performance. Comput. Educ. J. 2018, 126, 37–52. [Google Scholar] [CrossRef]
- Schumacher, C.; Ifenthaler, D. Investigating prompts for supporting students’ self-regulation–A remaining challenge for learning analytics approaches? Internet High. Educ. 2021, 49, 100791. [Google Scholar] [CrossRef]
- Akamatsu, D.; Nakaya, M.; Koizumi, R. Effects of metacognitive strategies on the self-regulated learning process: The mediating effects of self-efficacy. Behav. Sci. 2019, 9, 128. [Google Scholar] [CrossRef] [Green Version]
- Saraff, S.; Tripathi, M.; Biswal, R.; Saxena, A.S. Impact of metacognitive strategies on self-regulated learning and intrinsic motivation. Psychol. Res. 2020, 15, 35–46. [Google Scholar] [CrossRef]
- Winne, P.H. Cognition and metacognition within self-regulated learning. In Handbook of self-Regulation of Learning and Performance; Schunk, D.H., Greene, J.A., Eds.; Routledge/Taylor & Francis Group: New York, NY, USA, 2018; pp. 36–48. [Google Scholar]
- Dettling, R.Q. Lernstrategien und Mediennutzung im Studium: Explorative Langzeitstudie mit Lernjournalen. Dissertation, University of Zürich, Zürich, Switzerland, 2015. [Google Scholar]
- Mannon, J. Metacognition, self-regulation and self-regulated learning: What’s the difference. Impact 2020, 8, 66–69. [Google Scholar]
- Leopold, C.; Leutner, D. Der Einsatz von Lernstrategien in einer konkreten Lernsituation bei Schülern unterschiedlicher Jahrgangsstufen. ZfPäd (Zeitschrift für Pädagogik) 2002, 45, 240–258. [Google Scholar] [CrossRef]
- Wild, K.P.; Schiefele, U. Lernstrategien im Studium: Ergebnisse zur Faktorenstruktur und Reliabilität eines neuen Fragebogens. Zeitschrift Differentielle Diagnostische Psychologie 1994, 15, 185–200. [Google Scholar]
- Garcia, R.; Falkner, K.; Vivian, R. Systematic literature review: Self-Regulated Learning strategies using e-learning tools for Computer Science. Comput. Educ. J. 2018, 123, 150–163. [Google Scholar] [CrossRef]
- Azevedo, R. Theoretical, conceptual, methodological, and instructional issues in research on metacognition and self-regulated learning: A discussion. Metacogn. Learn. 2009, 4, 87–95. [Google Scholar] [CrossRef]
- Bannert, M.; Hildebrand, M.; Mengelkamp, C. Effects of a metacognitive support device in learning environments. Comput. Hum. Behav. 2009, 25, 829–835. [Google Scholar] [CrossRef]
- Bannert, M.; Mengelkamp, C. Scaffolding hypermedia learning through metacognitive prompts. Instr. Sci. 2013, 40, 193–211. [Google Scholar] [CrossRef]
- Zumbach, J.; Rammerstorfer, L.; Deibl, I. Cognitive and metacognitive support in learning with a serious game about demographic change. Comput. Hum. Behav. 2020, 103, 120–129. [Google Scholar] [CrossRef]
- Schuster, C.; Stebner, F.; Wirth, J.; Leutner, D. Förderung des Transfers metakognitiver Lernstrategien durch direktes und indirektes Training. Unterrichtswiss. 2018, 46, 409–435. [Google Scholar] [CrossRef]
- Carretti, B.; Caldarola, N.; Tencati, C.; Cornoldi, C. Improving reading comprehension in reading and listening settings: The effect of two training programmes focusing on metacognition and working memory. Br. J. Educ. Psychol. 2014, 84, 194–210. [Google Scholar] [CrossRef]
- Friedrich, H.F.; Mandl, H. Lern-und Denkstrategien-Ein Problemaufriss; Hogrefe: Göttingen, Germany, 1992. [Google Scholar]
- Winne, P.H.; Azevedo, R. Metacognition. In The Cambridge Handbook of the Learning Sciences; Sawyer, R., Ed.; Cambridge Unviersity Press: Cambridge, MA, USA, 2014; pp. 63–87. [Google Scholar]
- Zeitlhofer, I.; Zumbach, J.; Aigner, V. Effects of Pedagogical Agents on Learners’ Knowledge Acquisition and Motivation in Digital Learning Environments. Knowledge 2023, 3, 4. [Google Scholar] [CrossRef]
- Lin, X.; Hmelo, C.; Kinzer, C.K.; Secules, T.J. Designing technology to support reflection. Educ. Technol. Res. Dev. 1999, 47, 43–62. [Google Scholar] [CrossRef]
- Bannert, M. Metakognition beim Lernen mit Hypermedien; Waxmann: Münster, Germany, 2007. [Google Scholar]
- Saks, K.; Leijen, Ä. Cognitive and metacognitive strategies as predictors of language learning outcomes. Psihologija 2018, 51, 489–505. [Google Scholar] [CrossRef]
- Zhang, W.-X.; Hsu, Y.-S.; Wang, C.-Y.; Ho, Y.-T. Exploring the impacts of cognitive and metacognitive prompting on students’ scientific inquiry practices within an e-learning environment. Int. J. Sci. Educ. 2015, 37, 529–553. [Google Scholar] [CrossRef]
- Daumiller, M.; Dresel, M. Supporting self-regulated learning with digital media using motivational regulation and metacognitive prompts. J. Exp. Educ. 2019, 87, 161–177. [Google Scholar] [CrossRef] [Green Version]
- Dori, Y.J.; Avargil, S.; Kohen, Z.; Saar, L. Context-based learning and metacognitive prompts for enhancing scientific text comprehension. Int. J. Sci. Educ. 2018, 40, 1198–1220. [Google Scholar] [CrossRef] [Green Version]
- Castronovo, F.; van Meter, P.N.; Messner, J.I. Leveraging metacognitive prompts in construction educational games for higher educational gains. Int. J. Constr. Manag. 2022, 22, 19–30. [Google Scholar] [CrossRef]
- Engelmann, K.; Bannert, M.; Melzner, N. Do self-created metacognitive prompts promote short-and long-term effects in computer-based learning environments? Res. Pract. Technol. Enhanc. Learn. 2021, 16, 3. [Google Scholar] [CrossRef]
- Krieglstein, F.; Schneider, S.; Gröninger, J.; Beege, M.; Nebel, S.; Wesenberg, L.; Suren, M.; Rey, G.D. Exploring the effects of content-related segmentations and metacognitive prompts on learning with whiteboard animations. Comput. Educ. J. 2023, 194, 104702. [Google Scholar] [CrossRef]
- Pieger, E.; Bannert, M. Differential effects of students’ self-directed metacognitive prompts. Comput. Hum. Behav. 2018, 86, 165–173. [Google Scholar] [CrossRef]
- Richey, J.E.; Nokes-Malach, T.J. Comparing four instructional techniques for promoting robust knowledge. Educ. Psychol. Rev. 2015, 27, 181–218. [Google Scholar] [CrossRef]
- Teng, M.F. The effectiveness of incorporating metacognitive prompts in collaborative writing on academic English writing skills. Appl. Cogn. Psychol. 2021, 35, 659–673. [Google Scholar] [CrossRef]
- Dickhäuser, O.; Butler, R.; Tönjes, B. Das zeigt doch nur, dass ich’s nicht kann. Z. Padagog. Psychol. 2007, 39, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Pintrich, P.R.; Smith, D.A.; Garcia, T.; McKeachie, W.J. A Manual for the Use of the Motivated Strategies for Learning Questionnaire. (MSLQ); The Regents of the University of Michigan: Michigan, MI, USA, 1991. [Google Scholar]
- Klepsch, M.; Schmitz, F.; Seufert, T. Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Front. Psychol. 2017, 8, 1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, C.W.; Chapman, E. Construct Validity of the Two-Factor Revised Learning Process Questionnaire in a Singapore High School. J. Educ. Psychol. 2018, 8, 159. [Google Scholar] [CrossRef]
- Uzunbacak, S.; Klusmeyer, J. Elaborierte Untersuchungsplanung mittels E-Portfolio und Prompts. In Digitalisierung und Hochschulentwicklung: Proceedings zur 26. Tagung der Gesellschaft für Medien in der Wissenschaft e.V.; Getto, B., Kerres, P.H.M., Eds.; Waxmann: Münster, Germany, 2018; pp. 179–189. [Google Scholar]
- Persico, D.; Karl, S. Self-regulated learning in technology enhanced learning environments. In Technology Enhances Learning; Duval, E., Ed.; Springer: New York, NY, USA, 2017; pp. 115–126. [Google Scholar]
Measure | No Prompts (n = 37) | Cognitive Prompts (n = 32) | Metacognitive Prompts (n = 31) | Post-Knowledge and Self-Confidence in Post-Knowledge | ||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | p | ηp2 | |
Prior knowledge | 2.24 | 2.63 | 4.03 | 3.10 | 2.55 | 2.47 | 0.07 | 0.06 |
Post-Knowledge | 6.38 | 2.80 | 9.31 | 2.71 | 6.65 | 2.82 | - | - |
Self-confidence in Prior knowledge | 1.92 | 1.21 | 2.47 | 1.27 | 1.71 | 0.82 | 0.01 | 0.16 |
Self-confidence in Post-Knowledge | 3.03 | 0.93 | 3.66 | 0.94 | 3.00 | 0.93 | - | - |
Deep processing | 4.06 | 0.59 | 3.77 | 0.72 | 3.73 | 0.79 | 0.44 | 0.02 |
Metacognitive Planning | 4.15 | 1.11 | 4.34 | 0.93 | 4.10 | 0.76 | 0.92 | 0.002 |
Metacognitive Monitoring | 4.07 | 1.16 | 4.16 | 1.00 | 4.31 | 0.97 | 0.07 | 0.06 |
Cognitive Elaboration | 4.36 | 0.93 | 4.39 | 0.72 | 4.12 | 0.87 | 0.57 | 0.01 |
Germane Cognitive Load | 3.92 | 0.90 | 4.13 | 0.91 | 3.77 | 0.71 | 0.95 | 0.001 |
Extraneous Cognitive Load | 2.49 | 1.01 | 2.19 | 0.98 | 2.55 | 1.06 | 0.005 | 0.112 |
Group | - | - | - | - | - | - | 0.015 | 0.07 |
Intrinsic Motivation | 3.33 | 0.76 | 3.05 | 0.67 | 3.29 | 0.68 | - | - |
Extrinsic Motivation | 3.30 | 1.02 | 2.89 | 1.04 | 3.51 | 0.74 | - | - |
Academic Self-Concept | 4.13 | 0.54 | 4.24 | 0.34 | 4.00 | 0.45 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeitlhofer, I.; Hörmann, S.; Mann, B.; Hallinger, K.; Zumbach, J. Effects of Cognitive and Metacognitive Prompts on Learning Performance in Digital Learning Environments. Knowledge 2023, 3, 277-292. https://doi.org/10.3390/knowledge3020019
Zeitlhofer I, Hörmann S, Mann B, Hallinger K, Zumbach J. Effects of Cognitive and Metacognitive Prompts on Learning Performance in Digital Learning Environments. Knowledge. 2023; 3(2):277-292. https://doi.org/10.3390/knowledge3020019
Chicago/Turabian StyleZeitlhofer, Ines, Sandra Hörmann, Bettina Mann, Katharina Hallinger, and Joerg Zumbach. 2023. "Effects of Cognitive and Metacognitive Prompts on Learning Performance in Digital Learning Environments" Knowledge 3, no. 2: 277-292. https://doi.org/10.3390/knowledge3020019
APA StyleZeitlhofer, I., Hörmann, S., Mann, B., Hallinger, K., & Zumbach, J. (2023). Effects of Cognitive and Metacognitive Prompts on Learning Performance in Digital Learning Environments. Knowledge, 3(2), 277-292. https://doi.org/10.3390/knowledge3020019