Polymeric and Crystalline Materials for Effective and Sustainable CO2 Capture
Abstract
:1. Introduction
2. Background
2.1. General Principals of Carbon Dioxide (CO2) Capture and Sequestration
2.2. CO2 Capture Using Adsorbents and Membranes
2.3. MOFs, ZIFs, and Other Crystalline Materials for CO2 Capture
3. Petroleum-Based Polymers
3.1. Amine-Based Polymers
3.2. Polymeric Ionic Liquids
3.3. Conjugated Macrocyclic Polymers
3.4. Porous Organic Polymers
3.5. Ionic Polymers
4. Biobased Polymers
5. Performances Comparison of Polymeric and Crystalline Materials
6. Techno-Economic Comparison of CO2 Capture Technologies
7. Challenges and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AIBA | 2,2′-azobis[2-methylpropionamidine] dihydrochloride |
AlCl3 | aluminium chloride |
BDC | benzene-1,4-dicarboxylate |
BTB | 1,3,5-benzenetribenzoate |
BZ | benzoxazine |
CCS | carbon capture and storage |
CCU | carbon capture and utilization |
CH4 | methane |
CO2 | carbon dioxide |
CO2EXIDE | CO2-based electrosynthesis of ethylene oxide |
COFs | covalent–organic frameworks |
CTFs | covalent triazine-based frameworks |
DHPT | dihydroxyterephthalaldehyde |
DMF | N,N′-dimethylformamide |
EPS | expanded polystyrene |
Et3N | triethylamine |
FCU | face-centered cubic |
FeCl3 | iron (III) chloride |
H2O | water |
HCl | hydrochloric acid |
HCPs | hypercrosslinked polymers |
HPILs | hypercrosslinked poly(ionicliquid)s |
HUMs | hybrid ultramicroporous materials |
IEA | international energy agency |
Ils | ionic liquids |
KOH | potassium hydroxide |
MOFs | metal–organic frameworks |
MOPs | microporous organic polymers |
MPD | disphenolic acid methyl ester |
N2 | nitrogen |
NaBH4 | sodium borohydride |
NHC | N-heterocyclic carbene |
NOPs | nanoporous organic polymers |
OVS | octavinylsilsesquioxane |
PAFs | porous aromatic frameworks |
PANI | polyaniline |
PCN | porous coordination network |
Pd | palladium |
PDVB | poly(divinylbenzene) |
PEI | polyethylenimine |
PEO | polyethylene oxide |
PET | polyethylene terephthalate |
PILs | poly(ionic liquids) |
PIMs | polymers of intrinsic microporosity |
PLA | polylactic acid |
POFs | porous organic frameworks |
POPs | porous organic polymers |
PPNs | porous polymer networks |
PS | polystyrene |
PVAm | poly-N-vinylformamide |
PVC | polyvinyl chloride |
SBUs | secondary building units |
Sn | tin |
TCM | 2,4,6-tris(chloromethyl)-mesitylene |
THF | tetrahydrofuran |
TMPTA | N1-(3-trimethoxysilylpropyl) diethylenetriamine |
TMSCl | trimethylsilyl chloride |
TPA | triphenylamine |
ZIFs | zeolitic imidazolate frameworks |
ZnCl2 | zinc chloride |
References
- Yue, X.; Gao, Q. Contributions of natural systems and human activity to greenhouse gas emissions. Adv. Clim. Chang. Res. 2018, 9, 243–252. [Google Scholar] [CrossRef]
- Olivier, J.G.; Peters, J.A.; Janssens-Maenhout, G. Trends in Global CO2 Emissions: 2012 Report; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- Liotta, L.F.; Wu, H. CO2 Capture, Utilization and Storage: Catalysts Design. Catalysts 2024, 14, 80. [Google Scholar] [CrossRef]
- Muthuraj, R.; Mekonnen, T. Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: Co-polymers and polymer blends. Polymer 2018, 145, 348–373. [Google Scholar] [CrossRef]
- Jha, R.K.; Bhunia, H.; Basu, S. Enhancing CO2 capture through innovating monolithic graphene oxide frameworks. Environ. Res. 2024, 249, 118426. [Google Scholar] [CrossRef] [PubMed]
- Elmobarak, W.F.; Almomani, F.; Tawalbeh, M.; Al-Othman, A.; Martis, R.; Rasool, K. Current status of CO2 capture with ionic liquids: Development and progress. Fuel 2023, 344, 128102. [Google Scholar] [CrossRef]
- Li, H. CO2 capture by various nanoparticles: Recent development and prospective. J. Clean. Prod. 2023, 414, 137679. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, R. A critical review on new and efficient adsorbents for CO2 capture. Chem. Eng. J. 2024, 485, 149495. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, S.; Huang, X.; Qin, C. Recent progress and perspective on integrated CO2 capture and utilization. Curr. Opin. Green Sustain. Chem. 2023, 40, 100771. [Google Scholar] [CrossRef]
- Yuan, D.; Lu, W.; Zhao, D.; Zhou, H.C. Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv. Mater. 2011, 23, 3723–3725. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhou, M.; Yuan, D. Carbon dioxide capture in amorphous porous organic polymers. J. Mater. Chem. A 2017, 5, 1334–1347. [Google Scholar] [CrossRef]
- Gao, H.; Li, Q.; Ren, S. Progress on CO2 capture by porous organic polymers. Curr. Opin. Green Sustain. Chem. 2019, 16, 33–38. [Google Scholar] [CrossRef]
- Han, Y.; Ho, W.W. Recent advances in polymeric membranes for CO2 capture. Chin. J. Chem. Eng. 2018, 26, 2238–2254. [Google Scholar] [CrossRef]
- Sattari, A.; Ramazani, A.; Aghahosseini, H.; Aroua, M.K. The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. J. CO2 Util. 2021, 48, 101526. [Google Scholar] [CrossRef]
- Song, K.S.; Fritz, P.W.; Coskun, A. Porous organic polymers for CO2 capture, separation and conversion. Chem. Soc. Rev. 2022, 51, 9831–9852. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, G.; Hu, L.; Ge, B.; Yu, X.; Deng, J. Porous polymer materials for CO2 capture and electrocatalytic reduction. Materials 2023, 16, 1630. [Google Scholar] [CrossRef] [PubMed]
- Zaker, A.; ben Hammouda, S.; Sun, J.; Wang, X.; Li, X.; Chen, Z. Carbon-based materials for CO2 capture: Their production, modification and performance. J. Environ. Chem. Eng. 2023, 11, 109741. [Google Scholar] [CrossRef]
- Leung, D.Y.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Akeeb, O.; Wang, L.; Xie, W.; Davis, R.; Alkasrawi, M.; Toan, S. Post-combustion CO2 capture via a variety of temperature ranges and material adsorption process: A review. J. Environ. Manag. 2022, 313, 115026. [Google Scholar] [CrossRef] [PubMed]
- S Alivand, M.; Habiba, U.; Ghasemian, M.; Askari, S.; Webley, P.A. Amine-Functionalized Meso-Macroporous Polymers for Efficient CO2 Capture from Ambient Air. ACS Appl. Mater. Interfaces 2024, 16, 17411–17421. [Google Scholar] [CrossRef]
- Alalwan, H.A.; Alminshid, A.H. CO2 capturing methods: Chemical looping combustion (CLC) as a promising technique. Sci. Total Environ. 2021, 788, 147850. [Google Scholar] [CrossRef] [PubMed]
- Aminu, M.D.; Nabavi, S.A.; Rochelle, C.A.; Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef]
- Ochonma, P.; Gao, X.; Gadikota, G. Tuning Reactive Crystallization Pathways for Integrated CO2 Capture, Conversion, and Storage via Mineralization. Accounts Chem. Res. 2024, 57, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Lackner, K.S. A guide to CO2 sequestration. Science 2003, 300, 1677–1678. [Google Scholar] [CrossRef] [PubMed]
- CO2-EXIDE. Available online: http://www.co2exide.eu/ (accessed on 21 June 2024).
- Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 2008, 20, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hou, X.; Park, H.B.; Lin, H. High-performance polymers for membrane CO2/N2 separation. Chem.-Eur. J. 2016, 22, 15980–15990. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, Y.; Aki, S. Hydrogel particles for CO2 capture. Polym. J. 2024, 56, 463–471. [Google Scholar] [CrossRef]
- Yamasaki, A. An overview of CO2 mitigation options for global warming—Emphasizing CO2 sequestration options. J. Chem. Eng. Jpn. 2003, 36, 361–375. [Google Scholar] [CrossRef]
- Borgohain, R.; Pattnaik, U.; Prasad, B.; Mandal, B. A review on chitosan-based membranes for sustainable CO2 separation applications: Mechanism, issues, and the way forward. Carbohydr. Polym. 2021, 267, 118178. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Peu, S.D.; Hossain, M.S.; Nahid, M.M.A.; Karim, F.R.B.; Chowdhury, H.; Porag, M.H.; Argha, D.B.P.; Saha, S.; Islam, A.R.M.T.; et al. Advancements in adsorption based carbon dioxide capture technologies—A comprehensive review. Heliyon 2023, 9, e22341. [Google Scholar] [CrossRef] [PubMed]
- Sreenivasulu, B.; Sreedhar, I.; Suresh, P.; Raghavan, K.V. Development trends in porous adsorbents for carbon capture. Environ. Sci. Technol. 2015, 49, 12641–12661. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Ni, R.; Zhao, Y. Review on Multidimensional Adsorbents for CO2 Capture from Ambient Air: Recent Advances and Future Perspectives. Energy Fuels 2023, 37, 6365–6381. [Google Scholar] [CrossRef]
- Soo, X.Y.D.; Lee, J.J.C.; Wu, W.Y.; Tao, L.; Wang, C.; Zhu, Q.; Bu, J. Advancements in CO2 capture by absorption and adsorption: A comprehensive review. J. CO2 Util. 2024, 81, 102727. [Google Scholar] [CrossRef]
- Kunalan, S.; Palanivelu, K. Polymeric composite membranes in carbon dioxide capture process: A review. Environ. Sci. Pollut. Res. 2022, 29, 38735–38767. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Asinger, P.A.; Lee, M.J.; Han, G.; Mizrahi Rodriguez, K.; Lin, S.; Benedetti, F.M.; Wu, A.X.; Chi, W.S.; Smith, Z.P. MOF-based membranes for gas separations. Chem. Rev. 2020, 120, 8161–8266. [Google Scholar] [CrossRef] [PubMed]
- Galizia, M.; Chi, W.S.; Smith, Z.P.; Merkel, T.C.; Baker, R.W.; Freeman, B.D. 50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities. Macromolecules 2017, 50, 7809–7843. [Google Scholar] [CrossRef]
- Gkotsis, P.; Peleka, E.; Zouboulis, A. Membrane-Based Technologies for Post-Combustion CO2 Capture from Flue Gases: Recent Progress in Commonly Employed Membrane Materials. Membranes 2023, 13, 898. [Google Scholar] [CrossRef] [PubMed]
- Khalilpour, R.; Mumford, K.; Zhai, H.; Abbas, A.; Stevens, G.; Rubin, E.S. Membrane-based carbon capture from flue gas: A review. J. Clean. Prod. 2015, 103, 286–300. [Google Scholar] [CrossRef]
- Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. Membrane technologies for CO2 separation. J. Membr. Sci. 2010, 359, 115–125. [Google Scholar] [CrossRef]
- Budd, P.M.; McKeown, N.B. Highly permeable polymers for gas separation membranes. Polym. Chem. 2010, 1, 63–68. [Google Scholar] [CrossRef]
- Han, Y.; Ho, W.W. Polymeric membranes for CO2 separation and capture. J. Membr. Sci. 2021, 628, 119244. [Google Scholar] [CrossRef]
- Corrado, T.J. Development of Iptycene-Containing Polysulfones and Ladder Polymers for Gas Separation Membranes; University of Notre Dame: Notre Dame, IN, USA, 2022. [Google Scholar]
- Huang, Z.; Yin, C.; Corrado, T.; Li, S.; Zhang, Q.; Guo, R. Microporous pentiptycene-based polymers with heterocyclic rings for high-performance gas separation membranes. Chem. Mater. 2022, 34, 2730–2742. [Google Scholar] [CrossRef]
- Han, Y.; Yang, Y.; Ho, W.W. Recent progress in the engineering of polymeric membranes for CO2 capture from flue gas. Membranes 2020, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Rindfleisch, F.; DiNoia, T.P.; McHugh, M.A. Solubility of polymers and copolymers in supercritical CO2. J. Phys. Chem. 1996, 100, 15581–15587. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Jiang, D.e.; Doherty, C.M.; Hill, A.J.; Cheng, C.; Park, H.B.; Lin, H. Highly polar but amorphous polymers with robust membrane CO2/N2 separation performance. Joule 2019, 3, 1881–1894. [Google Scholar] [CrossRef]
- Harrigan, D.J.; Lawrence, J.A., III; Reid, H.W.; Rivers, J.B.; O’Brien, J.T.; Sharber, S.A.; Sundell, B.J. Tunable sour gas separations: Simultaneous H2S and CO2 removal from natural gas via crosslinked telechelic poly (ethylene glycol) membranes. J. Membr. Sci. 2020, 602, 117947. [Google Scholar] [CrossRef]
- Kammakakam, I.; O’Harra, K.E.; Jackson, E.M.; Bara, J.E. Synthesis of imidazolium-mediated Poly (benzoxazole) Ionene and composites with ionic liquids as advanced gas separation membranes. Polymer 2021, 214, 123239. [Google Scholar] [CrossRef]
- Kammakakam, I.; O’Harra, K.E.; Bara, J.E.; Jackson, E.M. Spirobisindane-Containing Imidazolium Polyimide Ionene: Structural Design and Gas Separation Performance of “Ionic PIMs”. Macromolecules 2022, 55, 4790–4802. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, C.; Yu, Y.; Hao, T.; Wang, H.; Ding, X.; Meng, J. Tuning the microstructure of crosslinked Poly (ionic liquid) membranes and gels via a multicomponent reaction for improved CO2 capture performance. J. Membr. Sci. 2020, 593, 117405. [Google Scholar] [CrossRef]
- Deng, J.; Yu, J.; Dai, Z.; Deng, L. Cross-linked PEG membranes of interpenetrating networks with ionic liquids as additives for enhanced CO2 separation. Ind. Eng. Chem. Res. 2019, 58, 5261–5268. [Google Scholar] [CrossRef]
- Kammakakam, I.; Bara, J.E.; Jackson, E.M. Synthesis and characterization of imidazolium-mediated Tröger’s base containing poly (amide)-ionenes and composites with ionic liquids for CO2 separation membranes. Polym. Chem. 2020, 11, 7370–7381. [Google Scholar] [CrossRef]
- Schwartz, N.; Harrington, J.; Ziegler, K.; Cox, P. Improving Catalytic Activity in the Electrochemical Separation of CO2 Using Membrane Electrode Assemblies. J. Electrochem. Soc. 2022, 169, 014510. [Google Scholar] [CrossRef]
- Plaza, M.G.; Martínez, S.; Rubiera, F. CO2 capture, use, and storage in the cement industry: State of the art and expectations. Energies 2020, 13, 5692. [Google Scholar] [CrossRef]
- Fang, M.; Okamoto, Y.; Koike, Y.; He, Z.; Merkel, T.C. Gas separation membranes prepared with copolymers of perfluoro (2-methylene-4, 5-dimethyl-1, 3-dioxlane) and chlorotrifluoroethylene. J. Fluor. Chem. 2016, 188, 18–22. [Google Scholar] [CrossRef]
- El-Okazy, M.A.; Liu, L.; Junk, C.P.; Kathmann, E.; White, W.; Kentish, S.E. Gas separation performance of copolymers of perfluoro (butenyl vinyl ether) and perfluoro (2, 2-dimethyl-1, 3-dioxole). J. Membr. Sci. 2021, 634, 119401. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, Q.; Bear, T.K.; Curtis, T.E.; Roeder, R.K.; Doherty, C.M.; Hill, A.J.; Guo, R. Triptycene-containing poly (benzoxazole-co-imide) membranes with enhanced mechanical strength for high-performance gas separation. J. Membr. Sci. 2018, 551, 305–314. [Google Scholar] [CrossRef]
- Luo, S.; Wiegand, J.R.; Kazanowska, B.; Doherty, C.M.; Konstas, K.; Hill, A.J.; Guo, R. Finely tuning the free volume architecture in iptycene-containing polyimides for highly selective and fast hydrogen transport. Macromolecules 2016, 49, 3395–3405. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, Q.; Zhu, L.; Lin, H.; Kazanowska, B.A.; Doherty, C.M.; Hill, A.J.; Gao, P.; Guo, R. Highly selective and permeable microporous polymer membranes for hydrogen purification and CO2 removal from natural gas. Chem. Mater. 2018, 30, 5322–5332. [Google Scholar] [CrossRef]
- Ding, M.; Flaig, R.W.; Jiang, H.L.; Yaghi, O.M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828. [Google Scholar] [CrossRef] [PubMed]
- Mehra, P.; Paul, A. Decoding carbon-based materials’ properties for high CO2 capture and selectivity. ACS Omega 2022, 7, 34538–34546. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Park, Y.; Davis, M.E. Confinement effects facilitate low-concentration carbon dioxide capture with zeolites. Proc. Natl. Acad. Sci. USA 2022, 119, e2211544119. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X. Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction. Angew. Chem. Int. Ed. 2016, 55, 2308–2320. [Google Scholar] [CrossRef] [PubMed]
- Amaraweera, S.M.; Gunathilake, C.A.; Gunawardene, O.H.; Dassanayake, R.S.; Cho, E.B.; Du, Y. Carbon capture using porous silica materials. Nanomaterials 2023, 13, 2050. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qiu, H.; Huang, L.; Meng, S.; Yang, Y. Porphyrinic Porous Aromatic Frameworks for Carbon Dioxide Adsorption and Separation. ChemPlusChem 2023, 88, e202300292. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dilipkumar, A.; Abubakar, S.; Zhao, D. Covalent organic frameworks for CO2 capture: From laboratory curiosity to industry implementation. Chem. Soc. Rev. 2023, 52, 6294–6329. [Google Scholar] [CrossRef]
- Kumar, A.; Hua, C.; Madden, D.G.; O’Nolan, D.; Chen, K.J.; Keane, L.A.J.; Perry, J.J.; Zaworotko, M.J. Hybrid ultramicroporous materials (HUMs) with enhanced stability and trace carbon capture performance. Chem. Commun. 2017, 53, 5946–5949. [Google Scholar] [CrossRef] [PubMed]
- Dziejarski, B.; Serafin, J.; Andersson, K.; Krzyżyńska, R. CO2 capture materials: A review of current trends and future challenges. Mater. Today Sustain. 2023, 24, 100483. [Google Scholar] [CrossRef]
- Usman, M.; Iqbal, N.; Noor, T.; Zaman, N.; Asghar, A.; Abdelnaby, M.M.; Galadima, A.; Helal, A. Advanced Strategies in Metal-Organic Frameworks for CO2 Capture and Separation. Chem. Rec. 2022, 22, e202100230. [Google Scholar] [CrossRef] [PubMed]
- Trickett, C.A.; Helal, A.; Al-Maythalony, B.A.; Yamani, Z.H.; Cordova, K.E.; Yaghi, O.M. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 1–16. [Google Scholar] [CrossRef]
- Firooz, S.K.; Armstrong, D.W. Metal-organic frameworks in separations: A review. Anal. Chim. Acta 2022, 1234, 340208. [Google Scholar] [CrossRef] [PubMed]
- Nouar, F.; Mouchaham, G.; Serre, C. Metal-Organic Frameworks (MOFs)-Fabrication, Propriétés et Applications; Éditions T.I.: Saint-Denis, France, 2021. [Google Scholar]
- Samanidou, V.F.; Deliyanni, E.A. Metal organic frameworks: Synthesis and application. Molecules 2020, 25, 960. [Google Scholar] [CrossRef] [PubMed]
- Gangu, K.K.; Maddila, S.; Jonnalagadda, S.B. The pioneering role of metal–organic framework-5 in ever-growing contemporary applications—A review. RSC Adv. 2022, 12, 14282–14298. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, K.; Guo, L.; Hu, X.; Zhou, M. Unveiling the potential of HKUST-1: Synthesis, activation, advantages and biomedical applications. J. Mater. Chem. B 2024, 12, 2670–2690. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Dong, M.; Zhao, T. Advances in metal-organic frameworks MIL-101 (Cr). Int. J. Mol. Sci. 2022, 23, 9396. [Google Scholar] [CrossRef] [PubMed]
- Rastin, F.; Oryani, M.A.; Iranpour, S.; Javid, H.; Hashemzadeh, A.; Karimi-Shahri, M. A new era in cancer treatment: Harnessing ZIF-8 nanoparticles for PD-1 inhibitor delivery. J. Mater. Chem. B 2024, 12, 872–894. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Chen, Q.; Gong, T.; Liu, J.; Li, C. Recent advancement of imidazolate framework (ZIF-8) based nanoformulations for synergistic tumor therapy. Nanoscale 2019, 11, 21030–21045. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hong, C.S. MOF-74-type frameworks: Tunable pore environment and functionality through metal and ligand modification. CrystEngComm 2021, 23, 1377–1387. [Google Scholar] [CrossRef]
- Xiao, T.; Liu, D. The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives. Microporous Mesoporous Mater. 2019, 283, 88–103. [Google Scholar] [CrossRef]
- Winarta, J.; Shan, B.; Mcintyre, S.M.; Ye, L.; Wang, C.; Liu, J.; Mu, B. A decade of UiO-66 research: A historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal–organic framework. Cryst. Growth Des. 2019, 20, 1347–1362. [Google Scholar] [CrossRef]
- Saha, D.; Deng, S. Structural stability of metal organic framework MOF-177. J. Phys. Chem. Lett. 2010, 1, 73–78. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, Z.Z.; Xiang, S.; Chen, B. Perspective of microporous metal–organic frameworks for CO2 capture and separation. Energy Environ. Sci. 2014, 7, 2868–2899. [Google Scholar] [CrossRef]
- Obeso, J.L.; Huxley, M.T.; de Los Reyes, J.A.; Humphrey, S.M.; Ibarra, I.A.; Peralta, R.A. Low-Valent Metals in Metal-Organic Frameworks Via Post-Synthetic Modification. Angew. Chem. 2023, 135, e202309025. [Google Scholar] [CrossRef]
- Lollar, C.T.; Pang, J.; Qin, J.s.; Yuan, S.; Powell, J.A.; Zhou, H.C. Thermodynamically controlled linker installation in flexible zirconium metal–organic frameworks. Cryst. Growth Des. 2019, 19, 2069–2073. [Google Scholar] [CrossRef]
- Mukherjee, S.; Dutta, S.; More, Y.D.; Fajal, S.; Ghosh, S.K. Post-synthetically modified metal–organic frameworks for sensing and capture of water pollutants. Dalton Trans. 2021, 50, 17832–17850. [Google Scholar] [CrossRef] [PubMed]
- Bindra, A.K.; Wang, D.; Zhao, Y. Metal–organic frameworks meet polymers: From synthesis strategies to healthcare applications. Adv. Mater. 2023, 35, 2300700. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, A.Ö.; Snurr, R.Q.; O’Keeffe, M.; Kim, J.; et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Abdolalian P, M.A. Flexible and breathing metal–organic framework with high and selective carbon dioxide storage versus nitrogen. Polyhedron 2019, 161, 56–62. [Google Scholar] [CrossRef]
- MOF4AIR. Available online: https://www.mof4air.eu/ (accessed on 22 April 2024).
- Silva, P.; Vilela, S.M.; Tome, J.P.; Paz, F.A.A. Multifunctional metal–organic frameworks: From academia to industrial applications. Chem. Soc. Rev. 2015, 44, 6774–6803. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Davis, M.E. Carbon dioxide capture with zeotype materials. Chem. Soc. Rev. 2022, 51, 9340–9370. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.E.; Liu, L.; Luo, X.; Xiao, G.; Shiko, E.; Zhang, R.; Fan, X.; Zhou, Y.; Liu, Y.; Zeng, Z.; et al. A review of N-functionalized solid adsorbents for post-combustion CO2 capture. Appl. Energy 2020, 260, 114244. [Google Scholar] [CrossRef]
- Yang, X.Y.; Chen, L.H.; Li, Y.; Rooke, J.C.; Sanchez, C.; Su, B.L. Hierarchically porous materials: Synthesis strategies and structure design. Chem. Soc. Rev. 2017, 46, 481–558. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, J. Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nat. Rev. Mater. 2021, 6, 1156–1174. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. J. Mater. Chem. A 2014, 2, 16811–16831. [Google Scholar] [CrossRef]
- Kouser, S.; Hezam, A.; Khadri, M.N.; Khanum, S.A. A review on zeolite imidazole frameworks: Synthesis, properties, and applications. J. Porous Mater. 2022, 29, 663–681. [Google Scholar] [CrossRef]
- Rani, P.; Srivastava, R. Comprehensive Understanding of the Eco-Friendly Synthesis of Zeolites: Needs of 21st Century Sustainable Chemical Industries. Chem. Rec. 2020, 20, 968–988. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Garcia, H.; Llabrés i Xamena, F. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110, 4606–4655. [Google Scholar] [CrossRef] [PubMed]
- Gilson, J.P.; Guisnet, M. Zeolites for Cleaner Technologies; World Scientific: Singapore, 2002; Volume 3. [Google Scholar]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Álvarez, P.; Hamad, S.; Haranczyk, M.; Ruiz-Salvador, A.R.; Calero, S. Comparing gas separation performance between all known zeolites and their zeolitic imidazolate framework counterparts. Dalton Trans. 2016, 45, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O.M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K.T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933. [Google Scholar] [CrossRef]
- Diercks, C.S.; Yaghi, O.M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585. [Google Scholar] [CrossRef] [PubMed]
- Cote, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.R.; Doonan, C.J.; LeVangie, J.D.; Côté, A.P.; Yaghi, O.M. Reticular synthesis of covalent organic borosilicate frameworks. J. Am. Chem. Soc. 2008, 130, 11872–11873. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Yang, H.; Whiteley, J.M.; Wan, S.; Jin, Y.; Lee, S.H.; Zhang, W. Ionic covalent organic frameworks with spiroborate linkage. Angew. Chem. Int. Ed. 2016, 55, 1737–1741. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Romo, F.J.; Doonan, C.J.; Furukawa, H.; Oisaki, K.; Yaghi, O.M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 2011, 133, 11478–11481. [Google Scholar] [CrossRef] [PubMed]
- DeBlase, C.R.; Silberstein, K.E.; Truong, T.T.; Abruña, H.D.; Dichtel, W.R. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 2013, 135, 16821–16824. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Yaghi, O.M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 2009, 131, 8875–8883. [Google Scholar] [CrossRef] [PubMed]
- Gironi, F.; Piemonte, V. Bioplastics and petroleum-based plastics: Strengths and weaknesses. Energy Sources Part A Recover. Util. Environ. Eff. 2011, 33, 1949–1959. [Google Scholar] [CrossRef]
- Kuruppalil, Z. Green plastics: An emerging alternative for petroleum-based plastics. Int. J. Eng. Res. Innov. 2011, 3, 59–64. [Google Scholar]
- Nagalakshmaiah, M.; Afrin, S.; Malladi, R.P.; Elkoun, S.; Robert, M.; Ansari, M.A.; Svedberg, A.; Karim, Z. Biocomposites: Present trends and challenges for the future. In Green Composites for Automotive Applications; Woodhead Publishing: Cambridge, UK, 2019; pp. 197–215. [Google Scholar]
- Didas, S.A.; Choi, S.; Chaikittisilp, W.; Jones, C.W. Amine–oxide hybrid materials for CO2 capture from ambient air. Accounts Chem. Res. 2015, 48, 2680–2687. [Google Scholar] [CrossRef] [PubMed]
- Varghese, A.M.; Karanikolos, G.N. CO2 capture adsorbents functionalized by amine–bearing polymers: A review. Int. J. Greenh. Gas Control 2020, 96, 103005. [Google Scholar] [CrossRef]
- Emerson, A.J.; Chahine, A.; Batten, S.R.; Turner, D.R. Synthetic approaches for the incorporation of free amine functionalities in porous coordination polymers for enhanced CO2 sorption. Coord. Chem. Rev. 2018, 365, 1–22. [Google Scholar] [CrossRef]
- Martell, J.D.; Milner, P.J.; Siegelman, R.L.; Long, J.R. Kinetics of cooperative CO2 adsorption in diamine-appended variants of the metal–organic framework Mg2 (dobpdc). Chem. Sci. 2020, 11, 6457–6471. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.G.; Shin, S.S.; Choi, U.S. Primary, secondary, and tertiary amines for CO2 capture: Designing for mesoporous CO2 adsorbents. J. Colloid Interface Sci. 2011, 361, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Chaikittisilp, W.; Kim, H.J.; Jones, C.W. Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air. Energy Fuels 2011, 25, 5528–5537. [Google Scholar] [CrossRef]
- Chen, Y.; Ho, W.W. High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas. J. Membr. Sci. 2016, 514, 376–384. [Google Scholar] [CrossRef]
- Chen, K.K.; Han, Y.; Zhang, Z.; Ho, W.W. Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine. J. Membr. Sci. 2021, 628, 119215. [Google Scholar] [CrossRef]
- Mirković, M.; Yilmaz, M.S.; Kljajević, L.; Pavlović, V.; Ivanović, M.; Djukić, D.; Eren, T. Design of PEI and Amine Modified Metakaolin-Brushite Hybrid Polymeric Composite Materials for CO2 Capturing. Polymers 2023, 15, 1669. [Google Scholar] [CrossRef] [PubMed]
- Qezelsefloo, E.; Khalili, S.; Jahanshahi, M.; Peyravi, M. Adsorptive removal of CO2 on Nitrogen-doped porous carbon derived from polyaniline: Effect of chemical activation. Mater. Chem. Phys. 2020, 239, 122304. [Google Scholar] [CrossRef]
- Liu, F.; Huang, K.; Yoo, C.J.; Okonkwo, C.; Tao, D.J.; Jones, C.W.; Dai, S. Facilely synthesized meso-macroporous polymer as support of poly (ethyleneimine) for highly efficient and selective capture of CO2. Chem. Eng. J. 2017, 314, 466–476. [Google Scholar] [CrossRef]
- Sujan, A.R.; Pang, S.H.; Zhu, G.; Jones, C.W.; Lively, R.P. Direct CO2 capture from air using poly (ethylenimine)-loaded polymer/silica fiber sorbents. ACS Sustain. Chem. Eng. 2019, 7, 5264–5273. [Google Scholar] [CrossRef]
- Mecerreyes, D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci. 2011, 36, 1629–1648. [Google Scholar] [CrossRef]
- Zulfiqar, S.; Sarwar, M.I.; Mecerreyes, D. Polymeric ionic liquids for CO2 capture and separation: Potential, progress and challenges. Polym. Chem. 2015, 6, 6435–6451. [Google Scholar] [CrossRef]
- Sang, Y.; Huang, J. Benzimidazole-based hyper-cross-linked poly (ionic liquid) s for efficient CO2 capture and conversion. Chem. Eng. J. 2020, 385, 123973. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Yang, Y.W. Tetraphenylethylene-interweaving conjugated macrocycle polymer materials as two-photon fluorescence sensors for metal ions and organic molecules. Adv. Mater. 2018, 30, 1800177. [Google Scholar] [CrossRef] [PubMed]
- Karatayeva, U.; Al Siyabi, S.A.; Brahma Narzary, B.; Baker, B.C.; Faul, C.F. Conjugated Microporous Polymers for Catalytic CO2 Conversion. Adv. Sci. 2024, 11, 2308228. [Google Scholar] [CrossRef]
- Dai, D.; Yang, J.; Zou, Y.C.; Wu, J.R.; Tan, L.L.; Wang, Y.; Li, B.; Lu, T.; Wang, B.; Yang, Y.W. Macrocyclic arenes-based conjugated macrocycle polymers for highly selective CO2 capture and iodine adsorption. Angew. Chem. 2021, 133, 9049–9057. [Google Scholar] [CrossRef]
- Ren, S.B.; Li, P.X.; Stephenson, A.; Chen, L.; Briggs, M.E.; Clowes, R.; Alahmed, A.; Li, K.K.; Jia, W.P.; Han, D.M. 1, 3-Diyne-linked conjugated microporous polymer for selective CO2 capture. Ind. Eng. Chem. Res. 2018, 57, 9254–9260. [Google Scholar] [CrossRef]
- Smith, C.L.; Clowes, R.; Sprick, R.S.; Cooper, A.I.; Cowan, A.J. Metal–organic conjugated microporous polymer containing a carbon dioxide reduction electrocatalyst. Sustain. Energy Fuels 2019, 3, 2990–2994. [Google Scholar] [CrossRef]
- Yuan, Y.; Huang, H.; Chen, L.; Chen, Y. N, N′-Bicarbazole: A versatile building block toward the construction of conjugated porous polymers for CO2 capture and dyes adsorption. Macromolecules 2017, 50, 4993–5003. [Google Scholar] [CrossRef]
- Zou, L.; Sun, Y.; Che, S.; Yang, X.; Wang, X.; Bosch, M.; Wang, Q.; Li, H.; Smith, M.; Yuan, S.; et al. Porous organic polymers for post-combustion carbon capture. Adv. Mater. 2017, 29, 1700229. [Google Scholar] [CrossRef]
- El-Kaderi, H.M.; Hunt, J.R.; Mendoza-Cortés, J.L.; Côté, A.P.; Taylor, R.E.; O’Keeffe, M.; Yaghi, O.M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Stöckel, E.; Wu, X.; Trewin, A.; Wood, C.D.; Clowes, R.; Campbell, N.L.; Jones, J.T.; Khimyak, Y.Z.; Adams, D.J.; Cooper, A.I. High surface area amorphous microporous poly (aryleneethynylene) networks using tetrahedral carbon-and silicon-centred monomers. Chem. Commun. 2009, 212–214. [Google Scholar] [CrossRef] [PubMed]
- Schwab, M.G.; Fassbender, B.; Spiess, H.W.; Thomas, A.; Feng, X.; Mullen, K. Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry. J. Am. Chem. Soc. 2009, 131, 7216–7217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yan, J.; Li, G.; Wang, Z. Cost-effective preparation of microporous polymers from formamide derivatives and adsorption of CO2 under dry and humid conditions. Polym. Chem. 2019, 10, 3371–3379. [Google Scholar] [CrossRef]
- Dawson, R.; Stevens, L.A.; Drage, T.C.; Snape, C.E.; Smith, M.W.; Adams, D.J.; Cooper, A.I. Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. J. Am. Chem. Soc. 2012, 134, 10741–10744. [Google Scholar] [CrossRef] [PubMed]
- Puthiaraj, P.; Kim, S.S.; Ahn, W.S. Covalent triazine polymers using a cyanuric chloride precursor via Friedel–Crafts reaction for CO2 adsorption/separation. Chem. Eng. J. 2016, 283, 184–192. [Google Scholar] [CrossRef]
- Bhunia, S.; Molla, R.A.; Kumari, V.; Islam, S.M.; Bhaumik, A. Zn (II) assisted synthesis of porous salen as an efficient heterogeneous scaffold for capture and conversion of CO2. Chem. Commun. 2015, 51, 15732–15735. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhi, Y.; Shao, P.; Xia, H.; Li, G.; Feng, X.; Chen, X.; Shi, Z.; Liu, X. Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light. Appl. Catal. B Environ. 2019, 245, 334–342. [Google Scholar] [CrossRef]
- Sakaushi, K.; Antonietti, M. Carbon-and nitrogen-based porous solids: A recently emerging class of materials. Bull. Chem. Soc. Jpn. 2015, 88, 386–398. [Google Scholar] [CrossRef]
- Ren, S.; Bojdys, M.J.; Dawson, R.; Laybourn, A.; Khimyak, Y.Z.; Adams, D.J.; Cooper, A.I. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater. 2012, 24, 2357–2361. [Google Scholar] [CrossRef] [PubMed]
- Talapaneni, S.N.; Hwang, T.H.; Je, S.H.; Buyukcakir, O.; Choi, J.W.; Coskun, A. Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 2016, 55, 3106–3111. [Google Scholar] [CrossRef] [PubMed]
- Bavykina, A.V.; Rozhko, E.; Goesten, M.G.; Wezendonk, T.; Seoane, B.; Kapteijn, F.; Makkee, M.; Gascon, J. Shaping covalent triazine frameworks for the hydrogenation of carbon dioxide to formic acid. ChemCatChem 2016, 8, 2217–2221. [Google Scholar] [CrossRef]
- Buyukcakir, O.; Je, S.H.; Talapaneni, S.N.; Kim, D.; Coskun, A. Charged covalent triazine frameworks for CO2 capture and conversion. ACS Appl. Mater. Interfaces 2017, 9, 7209–7216. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Sang, Y.; Huang, J.; Liu, Y.N. Triazine-based hyper-cross-linked polymers with inorganic-organic hybrid framework derived porous carbons for CO2 capture. Chem. Eng. J. 2018, 353, 1–14. [Google Scholar] [CrossRef]
- Wang, K.; Huang, H.; Liu, D.; Wang, C.; Li, J.; Zhong, C. Covalent triazine-based frameworks with ultramicropores and high nitrogen contents for highly selective CO2 capture. Environ. Sci. Technol. 2016, 50, 4869–4876. [Google Scholar] [CrossRef]
- Das, N.; Paul, R.; Dao, D.Q.; Chatterjee, R.; Borah, K.; Chandra Shit, S.; Bhaumik, A.; Mondal, J. Nanospace Engineering of Triazine- Thiophene-Intertwined Porous-Organic-Polymers via Molecular Expansion in Tweaking CO2 Capture. ACS Appl. Nano Mater. 2022, 5, 5302–5315. [Google Scholar] [CrossRef]
- Sun, L.B.; Li, A.G.; Liu, X.D.; Liu, X.Q.; Feng, D.; Lu, W.; Yuan, D.; Zhou, H.C. Facile fabrication of cost-effective porous polymer networks for highly selective CO2 capture. J. Mater. Chem. A 2015, 3, 3252–3256. [Google Scholar] [CrossRef]
- Altarawneh, S.; İslamoğlu, T.; Sekizkardes, A.K.; El-Kaderi, H.M. Effect of acid-catalyzed formation rates of benzimidazole-linked polymers on porosity and selective CO2 capture from gas mixtures. Environ. Sci. Technol. 2015, 49, 4715–4723. [Google Scholar] [CrossRef] [PubMed]
- Hug, S.; Mesch, M.B.; Oh, H.; Popp, N.; Hirscher, M.; Senker, J.; Lotsch, B.V. A fluorene based covalent triazine framework with high CO2 and H2 capture and storage capacities. J. Mater. Chem. A 2014, 2, 5928–5936. [Google Scholar] [CrossRef]
- Dang, Q.Q.; Wang, X.M.; Zhan, Y.F.; Zhang, X.M. An azo-linked porous triptycene network as an absorbent for CO2 and iodine uptake. Polym. Chem. 2016, 7, 643–647. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Zhang, H.; Yu, B.; Zhao, Y.; Ji, G.; Liu, Z. A Tröger’s base-derived microporous organic polymer: Design and applications in CO2/H2 capture and hydrogenation of CO2 to formic acid. Chem. Commun. 2015, 51, 1271–1274. [Google Scholar] [CrossRef] [PubMed]
- Sang, Y.; Cao, Y.; Wang, L.; Yan, W.; Chen, T.; Huang, J.; Liu, Y.N. N-rich porous organic polymers based on Schiff base reaction for CO2 capture and mercury (II) adsorption. J. Colloid Interface Sci. 2021, 587, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.B.; Kang, Y.H.; Shi, Y.Q.; Jiang, Y.; Liu, X.Q. Highly selective capture of the greenhouse gas CO2 in polymers. ACS Sustain. Chem. Eng. 2015, 3, 3077–3085. [Google Scholar] [CrossRef]
- Sekizkardes, A.K.; Culp, J.T.; Islamoglu, T.; Marti, A.; Hopkinson, D.; Myers, C.; El-Kaderi, H.M.; Nulwala, H.B. An ultra-microporous organic polymer for high performance carbon dioxide capture and separation. Chem. Commun. 2015, 51, 13393–13396. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.; Yang, Z.; Zhang, H.; Zhao, Y.; Yu, B.; Ma, Z.; Liu, Z. Hierarchically mesoporous o-hydroxyazobenzene polymers: Synthesis and their applications in CO2 capture and conversion. Angew. Chem. 2016, 128, 9837–9841. [Google Scholar] [CrossRef]
- Bera, R.; Ansari, M.; Alam, A.; Das, N. Nanoporous azo polymers (NAPs) for selective CO2 uptake. J. CO2 Util. 2018, 28, 385–392. [Google Scholar] [CrossRef]
- Chen, D.; Fu, Y.; Yu, W.; Yu, G.; Pan, C. Versatile Adamantane-based porous polymers with enhanced microporosity for efficient CO2 capture and iodine removal. Chem. Eng. J. 2018, 334, 900–906. [Google Scholar] [CrossRef]
- Chen, D.; Gu, S.; Fu, Y.; Zhu, Y.; Liu, C.; Li, G.; Yu, G.; Pan, C. Tunable porosity of nanoporous organic polymers with hierarchical pores for enhanced CO2 capture. Polym. Chem. 2016, 7, 3416–3422. [Google Scholar] [CrossRef]
- Ejaz, M.; Mohamed, M.G.; Kuo, S.W. Solid state chemical transformation provides a fully benzoxazine-linked porous organic polymer displaying enhanced CO2 capture and supercapacitor performance. Polym. Chem. 2023, 14, 2494–2509. [Google Scholar] [CrossRef]
- Mohamed, M.G.; Chang, W.C.; Kuo, S.W. Crown ether-and benzoxazine-linked porous organic polymers displaying enhanced metal ion and CO2 capture through solid-state chemical transformation. Macromolecules 2022, 55, 7879–7892. [Google Scholar] [CrossRef]
- Talapaneni, S.N.; Buyukcakir, O.; Je, S.H.; Srinivasan, S.; Seo, Y.; Polychronopoulou, K.; Coskun, A. Nanoporous polymers incorporating sterically confined N-heterocyclic carbenes for simultaneous CO2 capture and conversion at ambient pressure. Chem. Mater. 2015, 27, 6818–6826. [Google Scholar] [CrossRef]
- Peng, A.Z.; Qi, S.C.; Liu, X.; Xue, D.M.; Peng, S.S.; Yu, G.X.; Liu, X.Q.; Sun, L.B. N-doped porous carbons derived from a polymer precursor with a record-high N content: Efficient adsorbents for CO2 capture. Chem. Eng. J. 2019, 372, 656–664. [Google Scholar] [CrossRef]
- Wang, J.; Sng, W.; Yi, G.; Zhang, Y. Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO2 capture and conversion. Chem. Commun. 2015, 51, 12076–12079. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, J.G.W.; Yi, G.; Zhang, Y. Phosphonium salt incorporated hypercrosslinked porous polymers for CO2 capture and conversion. Chem. Commun. 2015, 51, 15708–15711. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jia, D.; Guo, Z.; Liu, Y.; Lyu, Y.; Zhou, Y.; Wang, J. Imidazolinium based porous hypercrosslinked ionic polymers for efficient CO2 capture and fixation with epoxides. Green Chem. 2017, 19, 2675–2686. [Google Scholar] [CrossRef]
- Buyukcakir, O.; Je, S.H.; Choi, D.S.; Talapaneni, S.N.; Seo, Y.; Jung, Y.; Polychronopoulou, K.; Coskun, A. Porous cationic polymers: The impact of counteranions and charges on CO2 capture and conversion. Chem. Commun. 2016, 52, 934–937. [Google Scholar] [CrossRef]
- Dani, A.; Crocellà, V.; Magistris, C.; Santoro, V.; Yuan, J.; Bordiga, S. Click-based porous cationic polymers for enhanced carbon dioxide capture. J. Mater. Chem. A 2017, 5, 372–383. [Google Scholar] [CrossRef]
- Russo, F.; Galiano, F.; Iulianelli, A.; Basile, A.; Figoli, A. Biopolymers for sustainable membranes in CO2 separation: A review. Fuel Process. Technol. 2021, 213, 106643. [Google Scholar] [CrossRef]
- Vinayak, A.; Sharma, S.; Singh, G.B. Bioinspired materials for CO2 capture and conversion. In CO2-Philic Polymers, Nanocomposites and Chemical Solvents; Elsevier: Amsterdam, The Netherlands, 2023; pp. 57–76. [Google Scholar]
- Ghosh, S.K.; Ghosh, M. Post-Combustion Capture of Carbon Dioxide by Natural and Synthetic Organic Polymers. Polysaccharides 2023, 4, 156–175. [Google Scholar] [CrossRef]
- Joseph, T.M.; Unni, A.B.; Joshy, K.; Kar Mahapatra, D.; Haponiuk, J.; Thomas, S. Emerging Bio-Based Polymers from Lab to Market: Current Strategies, Market Dynamics and Research Trends. C 2023, 9, 30. [Google Scholar] [CrossRef]
- Banerjee, P.; Chowdhury, M.; Das, P.; Nadda, A.K.; Mukhopadhayay, A. Biopolymers for CO2 capture. In CO2-Philic Polymers, Nanocomposites and Chemical Solvents; Elsevier: Amsterdam, The Netherlands, 2023; pp. 289–320. [Google Scholar]
- Ummartyotin, S.; Pechyen, C. Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology. Renew. Sustain. Energy Rev. 2016, 62, 654–664. [Google Scholar] [CrossRef]
- Quan, C.; Zhou, Y.; Wang, J.; Wu, C.; Gao, N. Biomass-based carbon materials for CO2 capture: A review. J. CO2 Util. 2023, 68, 102373. [Google Scholar] [CrossRef]
- Aghel, B.; Behaein, S.; Alobaid, F. CO2 capture from biogas by biomass-based adsorbents: A review. Fuel 2022, 328, 125276. [Google Scholar] [CrossRef]
- Guo, Z.; Lu, X.; Xin, Z. N, S, O co-doped porous carbons derived from bio-based polybenzoxazine for efficient CO2 capture. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 646, 128845. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Synthesis of a bio-based and intrinsically anti-flammable epoxy thermoset and the application of its carbonized foam as an efficient CO2 capture adsorbent. Mater. Today Sustain. 2023, 21, 100265. [Google Scholar] [CrossRef]
- Fu, Z.; Jia, J.; Li, J.; Liu, C. Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation. Chem. Eng. J. 2017, 323, 557–564. [Google Scholar] [CrossRef]
- Heer, P.K.K.; Khot, K.M.; Gaikar, V.G. Development of polystyrene adsorbents functionalized with heterocyclic ligands for selective adsorption of CO2 from CH4 and N2. Sep. Purif. Technol. 2016, 158, 212–222. [Google Scholar] [CrossRef]
- Mohamed, M.G.; Hung, W.S.; El-Mahdy, A.F.; Ahmed, M.M.; Dai, L.; Chen, T.; Kuo, S.W. High-molecular-weight PLA-b-PEO-b-PLA triblock copolymer templated large mesoporous carbons for supercapacitors and CO2 capture. Polymers 2020, 12, 1193. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Zhang, X.; Ji, Y.; Zhao, Z.; Li, W.; Jia, X. Sustainable preparation of bio-based polybenzoxazine resins from amino acid and their application in CO2 adsorption. ACS Sustain. Chem. Eng. 2019, 7, 17313–17324. [Google Scholar] [CrossRef]
- Verma, A.; Thakur, S.; Goel, G.; Raj, J.; Gupta, V.K.; Roberts, D.; Thakur, V.K. Bio-based sustainable aerogels: New sensation in CO2 capture. Curr. Res. Green Sustain. Chem. 2020, 3, 100027. [Google Scholar] [CrossRef]
- Wang, C.; Okubayashi, S. Polyethyleneimine-crosslinked cellulose aerogel for combustion CO2 capture. Carbohydr. Polym. 2019, 225, 115248. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, H.; Hu, Y.; Tong, X.; Zhong, L.; Peng, X.; Sun, R. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Ind. Crop. Prod. 2016, 87, 229–235. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Chen, N.; Dai, S.; Jiang, H.; Wang, S. Effects of amine loading on the properties of cellulose nanofibrils aerogel and its CO2 capturing performance. Carbohydr. Polym. 2018, 194, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Luo, H.; Pudukudy, M.; Zhi, Y.; Zhao, W.; Shan, S.; Jia, Q.; Ni, Y. CO2 capture performance and characterization of cellulose aerogels synthesized from old corrugated containers. Carbohydr. Polym. 2020, 227, 115380. [Google Scholar] [CrossRef] [PubMed]
- Ketabchi, M.R.; Babamohammadi, S.; Davies, W.G.; Gorbounov, M.; Soltani, S.M. Latest advances and challenges in carbon capture using bio-based sorbents: A state-of-the-art review. Carbon Capture Sci. Technol. 2023, 6, 100087. [Google Scholar] [CrossRef]
- Lucaci, A.R.; Bulgariu, D.; Ahmad, I.; Lisă, G.; Mocanu, A.M.; Bulgariu, L. Potential use of biochar from various waste biomass as biosorbent in Co (II) removal processes. Water 2019, 11, 1565. [Google Scholar] [CrossRef]
- Panwar, N.; Pawar, A. Influence of activation conditions on the physicochemical properties of activated biochar: A review. Biomass Convers. Biorefinery 2022, 12, 925–947. [Google Scholar] [CrossRef]
- Khosrowshahi, M.S.; Mashhadimoslem, H.; Emrooz, H.B.M.; Ghaemi, A.; Hosseini, M.S. Green self-activating synthesis system for porous carbons: Celery biomass wastes as a typical case for CO2 uptake with kinetic, equilibrium and thermodynamic studies. Diam. Relat. Mater. 2022, 127, 109204. [Google Scholar] [CrossRef]
- Tangsathitkulchai, C.; Junpirom, S.; Katesa, J. Carbon dioxide adsorption in nanopores of coconut shell chars for pore characterization and the analysis of adsorption kinetics. J. Nanomater. 2016, 2016. [Google Scholar] [CrossRef]
- Álvarez-Gutiérrez, N.; Gil, M.; Rubiera, F.; Pevida, C. Adsorption performance indicators for the CO2/CH4 separation: Application to biomass-based activated carbons. Fuel Process. Technol. 2016, 142, 361–369. [Google Scholar] [CrossRef]
- Vargas, D.P.; Giraldo, L.; Moreno-Piraján, J. Carbon dioxide and methane adsorption at high pressure on activated carbon materials. Adsorption 2013, 19, 1075–1082. [Google Scholar] [CrossRef]
- Teo, J.Y.; Ong, A.; Tan, T.T.; Li, X.; Loh, X.J.; Lim, J.Y. Materials from waste plastics for CO2 capture and utilisation. Green Chem. 2022, 24, 6086–6099. [Google Scholar] [CrossRef]
- Wu, Y.; Li, L.; Yang, W.; Feng, S.; Liu, H. Hybrid nanoporous polystyrene derived from cubic octavinylsilsesquioxane and commercial polystyrene via the Friedel–Crafts reaction. RSC Adv. 2015, 5, 12987–12993. [Google Scholar] [CrossRef]
- Merchán-Arenas, D.; Murcia-Patiño, A. Synthesis of polyamino styrene from post-consumption expanded polystyrene and analysis of its CO2 scavenger capacity. Int. J. Environ. Sci. Technol. 2021, 18, 2519–2532. [Google Scholar] [CrossRef]
- Sneddon, G.; McGlynn, J.C.; Neumann, M.S.; Aydin, H.M.; Yiu, H.H.; Ganin, A.Y. Aminated poly (vinyl chloride) solid state adsorbents with hydrophobic function for post-combustion CO2 capture. J. Mater. Chem. A 2017, 5, 11864–11872. [Google Scholar] [CrossRef]
- Lu, L.; Zhong, H.; Wang, T.; Wu, J.; Jin, F.; Yoshioka, T. A new strategy for CO2 utilization with waste plastics: Conversion of hydrogen carbonate into formate using polyvinyl chloride in water. Green Chem. 2020, 22, 352–358. [Google Scholar] [CrossRef]
- Adibfar, M.; Kaghazchi, T.; Asasian, N.; Soleimani, M. Conversion of poly (ethylene terephthalate) waste into activated carbon: Chemical activation and characterization. Chem. Eng. Technol. 2014, 37, 979–986. [Google Scholar] [CrossRef]
- Kaur, B.; Gupta, R.K.; Bhunia, H. Chemically activated nanoporous carbon adsorbents from waste plastic for CO2 capture: Breakthrough adsorption study. Microporous Mesoporous Mater. 2019, 282, 146–158. [Google Scholar] [CrossRef]
- Stelitano, S.; Lazzaroli, V.; Conte, G.; Pingitore, V.; Policicchio, A.; Agostino, R.G. Assessment of poly (L-lactide) as an environmentally benign CO2 capture and storage adsorbent. J. Appl. Polym. Sci. 2020, 137, 49587. [Google Scholar] [CrossRef]
- Khan, U.; Ogbaga, C.C.; Abiodun, O.A.O.; Adeleke, A.A.; Ikubanni, P.P.; Okoye, P.U.; Okolie, J.A. Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview. Carbon Capture Sci. Technol. 2023, 8, 100125. [Google Scholar] [CrossRef]
- Rochelle, G.T. Amine scrubbing for CO2 capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Croiset, E.; Douglas, P.L.; Douglas, M.A. Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Convers. Manag. 2003, 44, 3073–3091. [Google Scholar] [CrossRef]
- Im, D.; Roh, K.; Kim, J.; Eom, Y.; Lee, J.H. Economic assessment and optimization of the Selexol process with novel additives. Int. J. Greenh. Gas Control 2015, 42, 109–116. [Google Scholar] [CrossRef]
- Chen, C.; Rubin, S.E. A Technical and Economic Assessment of Selexol-based CO2 Capture Technology for IGCC Power Pants. 2003. Available online: https://www.semanticscholar.org/paper/A-Technical-and-Economic-Assessment-of-CO-2-Capture-Chen-Rubin/663fe460eb9d1b303a61a2f27b7cf09c9ab1bb96 (accessed on 22 April 2024).
- Esfahani, A.S.; de la Cuesta, B.S.; Gascon, J.; Kapteijn, F. Energy efficient MOF based mixed matrix membrane for CO2 capture. In Proceedings of the DPTI Annual Event, Rotterdam, The Netherlands, 6–7th November 2014. [Google Scholar]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Tran, T.; Singh, S.; Cheng, S.; Lin, H. Scalable and Highly Porous Membrane Adsorbents for Direct Air Capture of CO2. ACS Appl. Mater. Interfaces 2024, 16, 22715–22723. [Google Scholar] [CrossRef] [PubMed]
- Küng, L.; Aeschlimann, S.; Charalambous, C.; McIlwaine, F.; Young, J.; Shannon, N.; Strassel, K.; Maesano, C.N.; Kahsar, R.; Pike, D.; et al. A roadmap for achieving scalable, safe, and low-cost direct air carbon capture and storage. Energy Environ. Sci. 2023, 16, 4280–4304. [Google Scholar] [CrossRef]
- Zhang, N.; Chai, Y.E.; Santos, R.M.; Šiller, L. Advances in process development of aqueous CO2 mineralisation towards scalability. J. Environ. Chem. Eng. 2020, 8, 104453. [Google Scholar] [CrossRef]
- Hasan, M.F.; First, E.L.; Boukouvala, F.; Floudas, C.A. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. Comput. Chem. Eng. 2015, 81, 2–21. [Google Scholar] [CrossRef]
- Kim, C.; Talapaneni, S.N.; Dai, L. Porous carbon materials for CO2 capture, storage and electrochemical conversion. Mater. Rep. Energy 2023, 3, 100199. [Google Scholar] [CrossRef]
- Lin, J.B.; Nguyen, T.T.; Vaidhyanathan, R.; Burner, J.; Taylor, J.M.; Durekova, H.; Akhtar, F.; Mah, R.K.; Ghaffari-Nik, O.; Marx, S.; et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 2021, 374, 1464–1469. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Eden, M.R.; Gani, R. Toward the development and deployment of large-scale carbon dioxide capture and conversion processes. Ind. Eng. Chem. Res. 2016, 55, 3383–3419. [Google Scholar] [CrossRef]
- Sneddon, G.; Ganin, A.Y.; Yiu, H.H. Sustainable CO2 adsorbents prepared by coating chitosan onto mesoporous silicas for large-scale carbon capture technology. Energy Technol. 2015, 3, 249–258. [Google Scholar] [CrossRef]
- Abanades, J.; Arias, B.; Lyngfelt, A.; Mattisson, T.; Wiley, D.; Li, H.; Ho, M.; Mangano, E.; Brandani, S. Emerging CO2 capture systems. Int. J. Greenh. Gas Control 2015, 40, 126–166. [Google Scholar] [CrossRef]
- Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Kalauni, K.; Vedrtnam, A.; Wdowin, M.; Chaturvedi, S. ZIF for CO2 Capture: Structure, Mechanism, Optimization, and Modeling. Processes 2022, 10, 2689. [Google Scholar] [CrossRef]
- Severino, M.I.; Gkaniatsou, E.; Nouar, F.; Pinto, M.L.; Serre, C. MOFs industrialization: A complete assessment of production costs. Faraday Discuss. 2021, 231, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, D.; Ao, D.; Ma, C.; Li, N.; Sun, Y.; Qiao, Z.; Zhong, C.; Guiver, M.D. Self-supported membranes fabricated by a polymer–hydrogen bonded network with a rigidified MOF framework. J. Membr. Sci. 2022, 650, 120427. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, H.; Guo, Z.; Ma, H.; Wang, S.; Wang, H.; Song, S.; Zhang, J.; Yin, Y.; Wu, H.; et al. Advances in organic microporous membranes for CO2 separation. Energy Environ. Sci. 2023, 16, 53–75. [Google Scholar] [CrossRef]
- Liu, H.; Lu, H.; Hu, H. CO2 capture and mineral storage: State of the art and future challenges. Renew. Sustain. Energy Rev. 2024, 189, 113908. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, eaab0530. [Google Scholar] [CrossRef] [PubMed]
- Rezakazemi, M.; Sadrzadeh, M.; Matsuura, T. Thermally stable polymers for advanced high-performance gas separation membranes. Prog. Energy Combust. Sci. 2018, 66, 1–41. [Google Scholar] [CrossRef]
- Valappil, R.S.K.; Ghasem, N.; Al-Marzouqi, M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. J. Ind. Eng. Chem. 2021, 98, 103–129. [Google Scholar] [CrossRef]
- Dai, Y.; Niu, Z.; Luo, W.; Wang, Y.; Mu, P.; Li, J. A review on the recent advances in composite membranes for CO2 capture processes. Sep. Purif. Technol. 2023, 307, 122752. [Google Scholar] [CrossRef]
- Lai, J.Y.; Ngu, L.H.; Hashim, S.S. A review of CO2 adsorbents performance for different carbon capture technology processes conditions. Greenh. Gases Sci. Technol. 2021, 11, 1076–1117. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, X.; Yuan, S.; Zhou, J.; Wang, B. Challenges and recent advances in MOF–polymer composite membranes for gas separation. Inorg. Chem. Front. 2016, 3, 896–909. [Google Scholar] [CrossRef]
- Yang, S.; Karve, V.V.; Justin, A.; Kochetygov, I.; Espin, J.; Asgari, M.; Trukhina, O.; Sun, D.T.; Peng, L.; Queen, W.L. Enhancing MOF performance through the introduction of polymer guests. Coord. Chem. Rev. 2021, 427, 213525. [Google Scholar] [CrossRef]
- Issac, M.N.; Kandasubramanian, B. Review of manufacturing three-dimensional-printed membranes for water treatment. Environ. Sci. Pollut. Res. 2020, 27, 36091–36108. [Google Scholar] [CrossRef] [PubMed]
- Bara, J.E.; Hawkins, C.I.; Neuberger, D.T.; Poppell, S.W. 3D printing for CO2 capture and chemical engineering design. Nanomater. Energy 2015, 2, 235–243. [Google Scholar] [CrossRef]
- Xiao, Y.; Chung, T.S. Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO2 capture. Energy Environ. Sci. 2011, 4, 201–208. [Google Scholar] [CrossRef]
- Li, S.; Chang, S.M.; Yin, M.J.; Zhang, W.H.; Sun, W.S.; Shiue, A.; An, Q.F. Build up ‘highway’ in membrane via solvothermal annealing for high-efficient CO2 capture. J. Membr. Sci. 2022, 652, 120444. [Google Scholar] [CrossRef]
- Sohail, A.; Sarfraz, M.; Nawaz, S.; Tahir, Z. Enhancing carbon capture efficiency of zeolite-embedded polyether sulfone mixed-matrix membranes via annealing process. J. Clean. Prod. 2023, 399, 136617. [Google Scholar] [CrossRef]
- Agency, I.E. Global Energy Review 2019: The Latest Trends in Energy and Emissions in 2019; OECD Publishing: Paris, France, 2020. [Google Scholar]
Name | Type | T (K) | P (bar) | CO2 Uptake (mmol/g) | Reference |
---|---|---|---|---|---|
TMU-42 | MOF | — | — | 7.29 | [90] |
COF-103 | COF | — | 35 bars | 26.8 mmol CO2 | [112] |
ZIF-69 | ZIF | 273 | 1 atm | 83 L of CO2/L | [104] |
PEI-PDVB | PEI | 298 | — | 3.70 | [127] |
TMPTA | PEI | 348 | — | 0.685 | [124] |
ZN-1500 | PANI | 298 | 1.0 | 3.54 | [125] |
PIL | PILs | 298 | 1.0 | 0.3 | [129] |
HPILs | PILs | 298 | 1.0 | 1.47 | [130] |
BpP6-OTf-CMP-2 | CMP | 273 | 1.0 | 1.83 | [133] |
LKK-CMP-1 | CMP | 273 | 1.0 | 2.27 | [134] |
CMP-(bpy)20-Mn | CMP | 298 | 1.0 | 1.06 | [135] |
CMP-YA | CMP | 298 | 1.0 | 1.27 | [136] |
CTFs | CTF | 273 | 1.0 | 3.00 | [150] |
cCTFs | CTF | 273 | 1.0 | 0.93 | [151] |
CTF-FUM | CTF | 298 | — | 2.55 | [152] |
Tt-POP-2 | POP | 273 | 1.0 | 1.79 | [153] |
TPOP-3 | POP | 273 | 1.0 | 4.09 | [159] |
PPN-81 | POP | 295 | 1.0 | 1.92 | [154] |
NUT-1 | POP | 273 | 1.0 | 1.87 | [160] |
NOP-53 | NOP | 273 | 1.0 | 2.27 | [164] |
NAP-1 | NOP | 298 | 1.0 | 2.25 | [163] |
NOP-51A | NOP | 273 | 1.0 | 4.22 | [165] |
HAzo-POP | POP | 273 | 1.0 | 1.68 | [162] |
BILB-101 | POP | 298 | 0.15 | 1.00 | [161] |
DHTP-Ea BZ | POP | 298 | 1.0 | 3.29 | [166] |
CE-BZ-TPE-POP | POP | 298 | 1.0 | 4.39 | [167] |
NP-NHC | NHC | 298 | 1.0 | 0.78 | [168] |
NUT-21 | NHC | 273 | 1.0 | 8.3 | [169] |
POM-IM | IP | 273 | 1.0 | 3.68 | [170] |
HIP | IP | 298 | 1.0 | 2.1 | [172] |
PCP-Cl | IP | 298 | 1.0 | 1.4 | [173] |
CB-PCP-1 | IP | 273 | 1.0 | 2.05 | [174] |
NSOPC-1 | Biobased | 298 | 1.0 | 3.88 | [183] |
HMF-GU-Ep/DFA | Biobased | 298 | — | 2.15 | [184] |
Coconut shell | Biobased | 272.85 | 2.5 | 3.60 | [198] |
Cherry stones | Biobased | 322.85 | 2.5 | 2.50 | [199] |
HCP-PS | Biobased | 273 | 1.13 | 1.987 | [185] |
PSNH2 | Biobased | 273 | 1.13 | 1.987 | [203] |
EDA-PVC/SBA-15 | Biobased | 298 | — | 0.5 | [204] |
PET | Biobased | 303 | 1.0 | 1.31 | [207] |
fPLA | Biobased | 333 | 15 | 3.59 | [208] |
PLA-b-PEO-b-PLA | Biobased | 298 | 1.0 | 5.22 | [187] |
poly(E-lyme) | Biobased | 273 | 1.06 | 5.8 | [188] |
Technology Name | TRL * | Energy Demand [kWh/T CO2] | Price per ton of Captured CO2 [US $/T] | Reference |
---|---|---|---|---|
Amine scrubbing (monoethanol amine), post-combustion | 9 | 400–500 | 29–55 | [210] |
O2/CO2 recycle combustion (oxyfuel combustion) | 9 | 100–200 | 35 | [211] |
Selexol **, pre-combustion | 8–9 | 200–300 | 5–28.8 | [212,213] |
MOF-based mixed matrix membranes, pre-combustion capture | 4 | 150 | 16.9 | [214] |
MOF-based mixed matrix membranes, post-combustion capture | 4 | 240 | 30 | [214] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gendron, D.; Zakharova, M. Polymeric and Crystalline Materials for Effective and Sustainable CO2 Capture. AppliedChem 2024, 4, 236-269. https://doi.org/10.3390/appliedchem4030016
Gendron D, Zakharova M. Polymeric and Crystalline Materials for Effective and Sustainable CO2 Capture. AppliedChem. 2024; 4(3):236-269. https://doi.org/10.3390/appliedchem4030016
Chicago/Turabian StyleGendron, David, and Maria Zakharova. 2024. "Polymeric and Crystalline Materials for Effective and Sustainable CO2 Capture" AppliedChem 4, no. 3: 236-269. https://doi.org/10.3390/appliedchem4030016
APA StyleGendron, D., & Zakharova, M. (2024). Polymeric and Crystalline Materials for Effective and Sustainable CO2 Capture. AppliedChem, 4(3), 236-269. https://doi.org/10.3390/appliedchem4030016