Biocatalytic Screening of the Oxidative Potential of Fungi Cultivated on Plant-Based Resources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genome Mining
2.2. Fungal Strains
2.3. Shake Flask Cultivation of Fungi
2.4. ABTS Agar Plate Screening
2.5. Determination of Enzyme Activity in Fungal Cultivation Supernatants
2.5.1. ABTS Assay
2.5.2. 5-Nitro-1,3-benzodioxole (NBD) Assay
2.5.3. Veratryl Alcohol Assay
2.6. SDS-PAGE Analysis of Culture Supernatants
3. Results and Discussion
3.1. Genome Mining as a Tool for Pre-Selection of Promising Fungal Strains
3.2. Enzyme Activity Screening of Fungal Secretomes
3.3. Detailed Activity Profile of Four Veratryl Alcohol-Positive Strains
3.4. Enzyme Activity of the C. sublineola Secretome in Different Plant-Based Media
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hage, H.; Rosso, M.N. Evolution of fungal carbohydrate-active enzyme portfolios and adaptation to plant cell-wall polymers. J. Fungi 2021, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.G.; Westrick, N.M.; Baldwin, T.T. Fungal biotechnology: From yesterday to tomorrow. Front. Fungal Biol. 2023, 4, 1135263. [Google Scholar] [CrossRef] [PubMed]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef]
- Alfaro, M.; Oguiza, J.A.; Ramírez, L.; Pisabarro, A.G. Comparative analysis of secretomes in basidiomycete fungi. J. Proteom. 2014, 102, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 2009, 27, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Singhvi, M.S.; Gokhale, D.V. Lignocellulosic biomass: Hurdles and challenges in its valorization. Appl. Microbiol. Biotechnol. 2019, 103, 9305–9320. [Google Scholar] [CrossRef] [PubMed]
- Blanchette, R.A. Degradation of the lignocellulose complex in wood. Can. J. Bot. 1995, 73, 999–1010. [Google Scholar] [CrossRef]
- Manavalan, T.; Manavalan, A.; Heese, K. Characterization of Lignocellulolytic Enzymes from White-Rot Fungi. Curr. Microbiol. 2015, 70, 485–498. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, J.; Hiscox, J.; Eastwood, D.C.; Savoury, M.; Langley, A.; McDowell, S.W.; Rogers, H.J.; Boddy, L.; Müller, C.T. The whiff of decay: Linking volatile production and extracellular enzymes to outcomes of fungal interactions at different temperatures. Fungal Ecol. 2019, 39, 336–348. [Google Scholar] [CrossRef]
- Hatakka, A.; Hammel, K.E. Fungal Biodegradation of Lignocelluloses. In Industrial Applications; Hofrichter, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 319–340. [Google Scholar]
- Hofrichter, M.; Kellner, H.; Herzog, R.; Karich, A.; Kiebist, J.; Scheibner, K.; Ullrich, R. Peroxide-Mediated Oxygenation of Organic Compounds by Fungal Peroxygenases. Antioxidants 2022, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Kersten, P.; Cullen, D. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet. Biol. 2007, 44, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ortega, A.; Ferreira, P.; Martínez, A.T. Fungal aryl-alcohol oxidase: A peroxide-producing flavoenzyme involved in lignin degradation. Appl. Microbiol. Biotechnol. 2012, 93, 1395–1410. [Google Scholar] [CrossRef] [PubMed]
- Kubicek, C.P.; Starr, T.L.; Glass, N.L. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 2014, 52, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Gong, X.; Fan, M.; Liu, H.; Zhou, H.; Gu, S.; Liu, Y.; Dong, J. Identification and analysis of the secretome of plant pathogenic fungi reveals lifestyle adaptation. Front. Microbiol. 2023, 14, 1171618. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Giraldo, M.D.; Griffith, J.G.; Laird, E.W.; Mingora, C. The CAZyome of Phytophthora spp.: A comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora. BMC Genom. 2010, 11, 525. [Google Scholar] [CrossRef] [PubMed]
- Morais do Amaral, A.; Antoniw, J.; Rudd, J.J.; Hammond-Kosack, K.E. Defining the Predicted Protein Secretome of the Fungal Wheat Leaf Pathogen Mycosphaerella graminicola. PLoS ONE 2012, 7, e49904. [Google Scholar] [CrossRef] [PubMed]
- McCotter, S.W.; Horianopoulos, L.C.; Kronstad, J.W. Regulation of the fungal secretome. Curr. Genet. 2016, 62, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Liers, C.; Bobeth, C.; Pecyna, M.; Ullrich, R.; Hofrichter, M. DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl. Microbiol. Biotechnol. 2010, 85, 1869–1879. [Google Scholar] [CrossRef] [PubMed]
- Loi, M.; Glazunova, O.; Fedorova, T.; Logrieco, A.F.; Mulè, G. Fungal laccases: The forefront of enzymes for sustainability. J. Fungi 2021, 7, 1048. [Google Scholar] [CrossRef] [PubMed]
- Adekunle, A.E.; Zhang, C.; Guo, C.; Liu, C.Z. Laccase Production from Trametes versicolor in Solid-State Fermentation of Steam-Exploded Pretreated Cornstalk. Waste Biomass Valorization 2017, 8, 153–159. [Google Scholar] [CrossRef]
- Steffen, K.T.; Hofrichter, M.; Hatakka, A. Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl. Microbiol. Biotechnol. 2000, 54, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Molina-Espeja, P.; Garcia-Ruiz, E.; Gonzalez-Perez, D.; Ullrich, R.; Hofrichter, M.; Alcalde, M. Directed Evolution of Unspecific Peroxygenase from Agrocybe aegerita. Appl. Environ. Microbiol. 2014, 80, 3496–3507. [Google Scholar] [CrossRef] [PubMed]
- Poraj-Kobielska, M.; Kinne, M.; Ullrich, R.; Scheibner, K.; Hofrichter, M. A Spectrophotometric Assay for the Detection of Fungal Peroxygenases. Anal. Biochem. 2012, 421, 327–329. [Google Scholar] [CrossRef] [PubMed]
- Kinner, A.; Lütz, S.; Rosenthal, K. Agar Plate-Based Screening Approach for the Identification of Enzyme-Catalyzed Oxidations. Chem. Ing. Tech. 2022, 94, 1853–1859. [Google Scholar] [CrossRef]
- Ullrich, R.; Nueske, J.; Scheibner, K.; Spantzel, J.; Hofrichter, M. Novel Haloperoxidase from the Agaric Basidiomycete Agrocybe aegerita Oxidizes Aryl Alcohols and Aldehydes. Appl. Environ. Microbiol. 2004, 70, 4575–4581. [Google Scholar] [CrossRef] [PubMed]
- Leisola, M.S.A.; Schmidt, B.; Fiechter, A. Enzymatic determination of veratryl alcohol. Anal. Biochem. 1986, 155, 108–111. [Google Scholar] [CrossRef]
- Hofrichter, M.; Ullrich, R.; Pecyna, M.J.; Liers, C.; Lundell, T. New and classic families of secreted fungal heme peroxidases. Appl. Microbiol. Biotechnol. 2010, 87, 871–897. [Google Scholar] [CrossRef] [PubMed]
- Faiza, M.; Huang, S.; Lan, D.; Wang, Y. New insights on unspecific peroxygenases: Superfamily reclassification and evolution. BMC Evol. Biol. 2019, 19, 76. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, L.M.; Schäper, J.; Rosenthal, K.; Lütz, S. Accessing the Biocatalytic Potential for C−H-Activation by Targeted Genome Mining and Screening. ChemCatChem 2019, 11, 5766–5777. [Google Scholar] [CrossRef]
- Baetsen-Young, A.M.; Kaminski, J.E.; Tien, M. Lignocellulose Degrading Capabilities of Sphaerobolus stellatus in Creeping Bentgrass. Int. Turfgrass Soc. Res. J. 2017, 13, 145–152. [Google Scholar] [CrossRef]
- Kijpornyongpan, T.; Schwartz, A.; Yaguchi, A.; Salvachúa, D. Systems biology-guided understanding of white-rot fungi for biotechnological applications: A review. iScience 2022, 25, 104640. [Google Scholar] [CrossRef] [PubMed]
- Wenneker, M.; Pham, K.T.K.; Lemmers, M.E.C.; de Boer, F.A.; van Leeuwen, P.J.; Hollinger, T.C.; van de Geijn, F.G.; Thomma, B.P.H.J. Fibulorhizoctonia psychrophila is the causal agent of lenticel spot on apple and pear fruit in the Netherlands. Eur. J. Plant Pathol. 2017, 148, 213–217. [Google Scholar] [CrossRef]
- Riley, R.; Salamov, A.A.; Brown, D.W.; Nagy, L.G.; Floudas, D.; Held, B.W.; Levasseur, A.; Lombard, V.; Morin, E.; Otillar, R.; et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc. Natl. Acad. Sci. USA 2014, 111, 9923–9928. [Google Scholar] [CrossRef] [PubMed]
- Dashtban, M.; Schraft, H.; Syed, T.A.; Qin, W. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol. 2010, 1, 36–50. [Google Scholar] [PubMed]
- Horbach, R.; Navarro-Quesada, A.R.; Knogge, W.; Deising, H.B. When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. J. Plant Physiol. 2011, 168, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Xu, W.; Hong, N.; Wang, L.; Zhang, Y.; Wang, G. A Secreted Lignin Peroxidase Required for Fungal Growth and Virulence and Related to Plant Immune Response. Int. J. Mol. Sci. 2022, 23, 6066. [Google Scholar] [CrossRef] [PubMed]
- Stergiopoulos, I.; Collemare, J.; Mehrabi, R.; De Wit, P.J.G.M. Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol. Rev. 2013, 37, 67–93. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Shim, S.H. The fungus Colletotrichum as a source for bioactive secondary metabolites. Arch. Pharm. Res. 2019, 42, 735–753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Lv, F.; Qiu, F.; Han, D.; Xu, Y.; Liang, W. Pathogenic fungi neutralize plant-derived ROS via Srpk1 deacetylation. EMBO J. 2023, 42, e112634. [Google Scholar] [CrossRef]
- Gröbe, G.; Ullrich, R.; Pecyna, M.J.; Kapturska, D.; Friedrich, S.; Hofrichter, M.; Scheibner, K. High-yield Production of Aromatic Peroxygenase by the Agaric Fungus Marasmius rotula. AMB Express 2011, 1, 31. [Google Scholar] [CrossRef]
- Anh, D.H.; Ullrich, R.; Benndorf, D.; Svatoś, A.; Muck, A.; Hofrichter, M. The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl. Environ. Microbiol. 2007, 73, 5477–5485. [Google Scholar] [CrossRef] [PubMed]
- Lappe, A.; Jankowski, N.; Albrecht, A.; Koschorreck, K. Characterization of a thermotolerant aryl-alcohol oxidase from Moesziomyces antarcticus oxidizing 5-hydroxymethyl-2-furancarboxylic acid. Appl. Microbiol. Biotechnol. 2021, 105, 8313–8327. [Google Scholar] [CrossRef] [PubMed]
- Kimani, V.; Ullrich, R.; Büttner, E.; Herzog, R.; Kellner, H.; Jehmlich, N.; Hofrichter, M.; Liers, C. First dye-decolorizing peroxidase from an ascomycetous fungus secreted by Xylaria grammica. Biomolecules 2021, 11, 1391. [Google Scholar] [CrossRef] [PubMed]
- Romero, J.O.; Fernández-Fueyo, E.; Avila-Salas, F.; Recabarren, R.; Alzate-Morales, J.; Martínez, A.T. Binding and Catalytic Mechanisms of Veratryl Alcohol Oxidation by Lignin Peroxidase: A Theoretical and Experimental Study. Comput. Struct. Biotechnol. J. 2019, 17, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- König, R.; Kiebist, J.; Kalmbach, J.; Herzog, R.; Schmidtke, K.U.; Kellner, H.; Ullrich, R.; Jehmlich, N.; Hofrichter, M.; Scheibner, K. Novel Unspecific Peroxygenase from Truncatella angustata Catalyzes the Synthesis of Bioactive Lipid Mediators. Microorganisms 2022, 10, 1267. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, R.; Poraj-Kobielska, M.; Scholze, S.; Halbout, C.; Sandvoss, M.; Pecyna, M.J.; Scheibner, K.; Hofrichter, M. Side chain removal from corticosteroids by unspecific peroxygenase. J. Inorg. Biochem. 2018, 183, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Kiebist, J.; Schmidtke, K.U.; Zimmermann, J.; Kellner, H.; Jehmlich, N.; Ullrich, R.; Zänder, D.; Hofrichter, M.; Scheibner, K. A Peroxygenase from Chaetomium globosum Catalyzes the Selective Oxygenation of Testosterone. ChemBioChem 2017, 18, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Gupte, A.; Gupte, S.; Patel, H. Ligninolytic enzyme production under solid-state fermentation by white rot fungi. J. Sci. Ind. Res. 2007, 66, 611–614. [Google Scholar]
- Yang, S.O.; Sodaneath, H.; Lee, J.I.; Jung, H.; Choi, J.H.; Ryu, H.W.; Cho, K.S. Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43. J. Environ. Sci. Health Part A 2017, 52, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Nazar Pour, F.; Pedrosa, B.; Oliveira, M.; Fidalgo, C.; Devreese, B.; Van Driessche, G.; Félix, C.; Rosa, N.; Alves, A.; Duarte, A.S.; et al. Unveiling the Secretome of the Fungal Plant Pathogen Neofusicoccum parvum Induced by In Vitro Host Mimicry. J. Fungi 2022, 8, 971. [Google Scholar] [CrossRef] [PubMed]
- Hofrichter, M.; Kellner, H.; Herzog, R.; Karich, A.; Liers, C.; Scheibner, K.; Kimani, V.W.; Ullrich, R. Fungal Peroxygenases: A Phylogenetically Old Superfamily of Heme Enzymes with Promiscuity for Oxygen Transfer Reactions. In Grand Challenges in Fungal Biotechnology; Nevalainen, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 369–403. [Google Scholar]
- Sharma, S.; Kaur, M.; Goyal, R.; Gill, B.S. Physical characteristics and nutritional composition of some new soybean (Glycine max (L.) Merrill) genotypes. J. Food Sci. Technol. 2014, 51, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Paul, N.C.; Lee, K.H.; Kim, H.J.; Sang, H. Morphology, molecular phylogeny, and pathogenicity of Neofusicoccum parvum, associated with leaf spot disease of a new host, the Japanese bay tree (Machilus thunbergii). Forests 2021, 12, 440. [Google Scholar] [CrossRef]
- Ahn, E.; Fall, C.; Botkin, J.; Curtin, S.; Prom, L.K.; Magill, C. Inoculation and Screening Methods for Major Sorghum Diseases Caused by Fungal Pathogens: Claviceps africana, Colletotrichum sublineola, Sporisorium reilianum, Peronosclerospora sorghi and Macrophomina phaseolina. Plants 2023, 12, 1906. [Google Scholar] [CrossRef] [PubMed]
- Buiate, E.A.S.; Xavier, K.V.; Moore, N.; Torres, M.F.; Farman, M.L.; Schardl, C.L.; Vaillancourt, L.J. A comparative genomic analysis of putative pathogenicity genes in the host-specific sibling species Colletotrichum graminicola and Colletotrichum sublineola. BMC Genom. 2017, 18, 67. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, J.; Suzuki, H.; Master, E.R. Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete. Appl. Microbiol. Biotechnol. 2012, 94, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Prasanthi, P.S.; Naveena, N.; Vishnuvardhana Rao, M.; Bhaskarachary, K. Compositional variability of nutrients and phytochemicals in corn after processing. J. Food Sci. Technol. 2017, 54, 1080–1090. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Konno, N.; Suzuki, T.; Habu, N. Starch-degrading enzymes from the brown-rot fungus Fomitopsis palustris. Protein Expr. Purif. 2020, 170, 105609. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. J. Biotechnol. 2011, 156, 286–301. [Google Scholar] [CrossRef] [PubMed]
- Kodali, B.; Pogaku, R. Pretreatment studies of ricebran for the effective production of cellulose. Electr. J. Environ. Agric. Food Chem. 2006, 5, 1253–1264. [Google Scholar]
- Patel, H.; Gupte, A. Optimization of different culture conditions for enhanced laccase production and its purification from Tricholoma giganteum AGHP. Bioresour. Bioprocess. 2016, 3, 11. [Google Scholar] [CrossRef]
- Fernández-Fueyo, E.; Castanera, R.; Ruiz-Dueñas, F.J.; López-Lucendo, M.F.; Ramírez, L.; Pisabarro, A.G.; Martínez, A.T. Ligninolytic peroxidase gene expression by Pleurotus ostreatus: Differential regulation in lignocellulose medium and effect of temperature and pH. Fungal Genet. Biol. 2014, 72, 150–161. [Google Scholar] [CrossRef]
Putative Enzyme | PROSITE Entry | PROSITE Description |
---|---|---|
DyP | PS51404 | DyP-type peroxidase family |
Heme peroxidase | PS00435 PS00436 | Peroxidases proximal heme-ligand signature Peroxidases active site signature |
Laccase | PS00079 PS00080 | Multicopper oxidases signature 1 Multicopper oxidases signature 2 |
UPO | PS51405 | Heme haloperoxidase family profile |
Fungal Strain | Strain Number | Family | Characteristics | Database Hits | Medium | NBD | ABTS | pH | ||
---|---|---|---|---|---|---|---|---|---|---|
+ H2O2 a | − H2O2 a | Plate b | ||||||||
P. oxalicum | DSM 898 | Aspergillaceae | Saprotrophic mold | 7 | SG | 5.7 | ||||
GYP | - | 7.8 | ||||||||
P. roqueforti | CBS 221.30 | Saprotrophic mold | 6 | SG | 8.6 | |||||
GYP | - | 8.8 | ||||||||
F. psychrophila | CBS 109695 | Atheliaceae | White-rot fungi/ phytopathogenic | 6 | SG | 8.3 | ||||
GYP | - | 9.3 | ||||||||
N. parvum | CBS 133503 | Botryosphaeriaceae | Phytopathogenic | 13 | SG | 7 | 8.7 | |||
GYP | - | 8.4 | ||||||||
M. robertsii | MYA-3075 | Clavicipitaceae | Entomopathogenic | 8 | SG | 8.2 | ||||
GYP | - | 8.2 | ||||||||
C. europaea | CBS 101466 | Cyphellophoraceae | Opportunistic pathogen | 10 | SG | 7.1 | ||||
GYP | - | 9.1 | ||||||||
E. lata | CBS 208.87 | Diatrypaceae | Phytopathogenic | 7 | SG | 8.3 | ||||
GYP | - | 8.8 | ||||||||
C. fioriniae | CBS 126508 | Glomerellaceae | Phytopathogenic | 20 | SG | 14 | 9.1 | |||
GYP | - | 9.6 | ||||||||
C. gloeosporioides | DSM 62136 | Phytopathogenic | 24 | SG | 9.3 | |||||
GYP | - | 9.4 | ||||||||
C. graminicola | CBS 130836 | Phytopathogenic | 14 | SG | 8.8 | |||||
GYP | - | 8.9 | ||||||||
C. higginsianum | IMI 349063 | Phytopathogenic | 15 | SG | 8.6 | |||||
GYP | - | 9.1 | ||||||||
C. orbiculare | CBS 514.97 | Phytopathogenic | 4 | SG | 8.8 | |||||
GYP | - | 8.8 | ||||||||
C. sublineola | CBS 13130.1 | Phytopathogenic | 8 | SG | 8.2 | |||||
GYP | - | 8.7 | ||||||||
A. chrysogenum | DSM 880 | Hypocreaceae | Mold | 4 | SG | 9.2 | ||||
GYP | - | 9.6 | ||||||||
T. virens | MYA-4894 | Hypocreaceae | Saprotrophic | 9 | SG | 8.5 | ||||
GYP | - | 8.8 | ||||||||
M. roreri | CBS 199.77 | Marasmiaceae | Phytopathogenic | 28 | SG | 7 | 6.1 | |||
GYP | - | 6.7 | ||||||||
M. osmundae | CBS 9802 | Mixiaceae | Phytopathogenic | 1 | SG | 8.9 | ||||
GYP | - | 9.4 | ||||||||
B. victoriae | DSM 62621 | Pleosporaceae | Phytopathogenic | 15 | SG | 7 | 8.8 | |||
GYP | - | 9.5 | ||||||||
B. zeicola | CBS 237.77 | Phytopathogenic | 15 | SG | 7 | 9.3 | ||||
GYP | - | 9.3 | ||||||||
P. tritici-repentis | CBS 265.80 | Phytopathogenic | 20 | SG | 7 | 8.7 | ||||
GYP | - | 8.6 | ||||||||
V. alfalfae | CBS 127169 | Plectosphaerellaceae | Phytopathogenic | 3 | SG | 9.3 | ||||
GYP | - | 5.5 | ||||||||
P. anserina | DSM 980 | Podosporaceae | Coprophilic | 10 | SG | 9.2 | ||||
GYP | - | 9.4 | ||||||||
A. melanogenum | CBS 110374 | Saccotheciaceae | Saprotrophic mold | 8 | SG | 8.3 | ||||
GYP | - | 9.3 | ||||||||
A. pullulans | DSM 3042 | Saprotrophic mold | 6 | SG | 9.0 | |||||
GYP | - | 9.5 | ||||||||
A. subglaciale | CBS 123387 | Polyextremotolerant mold | 8 | SG | 8.2 | |||||
GYP | - | 9.3 | ||||||||
T. stipitatus | CBS 375.48 | Trichocomaceae | Saprotrophic | 6 | SG | 7 | 8.6 | |||
GYP | - | 8.7 | ||||||||
M. antarcticus | CBS 516.83 | Ustilaginaceae | Phylloplane yeast | 4 | SG | 9.1 | ||||
GYP | - | 9.2 | ||||||||
S. reilianum | CBS 131459 | Phytopathogenic | 5 | SG | 8.7 | |||||
GYP | - | 9.4 | ||||||||
U. maydis | DSM 14603 | Phytopathogenic | 5 | SG | 8.3 | |||||
GYP | - | 9.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinner, A.; Lütz, S.; Rosenthal, K. Biocatalytic Screening of the Oxidative Potential of Fungi Cultivated on Plant-Based Resources. AppliedChem 2024, 4, 282-301. https://doi.org/10.3390/appliedchem4030018
Kinner A, Lütz S, Rosenthal K. Biocatalytic Screening of the Oxidative Potential of Fungi Cultivated on Plant-Based Resources. AppliedChem. 2024; 4(3):282-301. https://doi.org/10.3390/appliedchem4030018
Chicago/Turabian StyleKinner, Alina, Stephan Lütz, and Katrin Rosenthal. 2024. "Biocatalytic Screening of the Oxidative Potential of Fungi Cultivated on Plant-Based Resources" AppliedChem 4, no. 3: 282-301. https://doi.org/10.3390/appliedchem4030018
APA StyleKinner, A., Lütz, S., & Rosenthal, K. (2024). Biocatalytic Screening of the Oxidative Potential of Fungi Cultivated on Plant-Based Resources. AppliedChem, 4(3), 282-301. https://doi.org/10.3390/appliedchem4030018