Evaluation of Biochemical and Oxidative Stress Markers in the Early Stages of Rheumatoid Arthritis in a Comparative Study of Two Different Therapeutic Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Determination of Significant Markers for Rheumatoid Arthritis
2.3. Determination of Hematological Markers (ESR and PLT) and Serum Lipoproteins, Vitamins, Liver Enzymes, Amylase, and Electrolytes
2.4. Determination of Reactive Oxygen Species
2.5. Determination of Antioxidants (GPx, CAT, and SOD)
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACPAs | anti-citrullinated protein antibodies |
ALP | alkaline phosphatase |
AMY | Amylase |
ANA | anti-nuclear antibodies |
Anti-CCP | anti-cyclic citrullinated peptide |
ARA | active rheumatoid arthritis |
Ca | Calcium |
CAT | Catalase |
CRP | c-reactive protein |
CVD | cardiovascular disease |
DHA | docosahexaenoic acid |
DMARD | disease-modifying antirheumatic drugs |
EPA | eicosapentaenoic acid |
ESR | erythrocyte sedimentation rate |
γ-GT | gamma-glutamyl transferase |
GPx | glutathione peroxidase |
GR | glutathione reductase |
HDL | high-density lipoprotein |
H2DCFDA | 2′, 7′-dichlorodihydrofluorescein diacetate |
H2O2 | hydrogen peroxide |
IIF | indirect immunofluorescence |
IL-1 | interleukin-1 |
IL-6 | interleukin-6 |
IL-8 | interleukin-8 |
IRA | inactive rheumatoid arthritis |
LDL | low-density lipoprotein |
LEF | Leflunomide |
MDA | Malondialdehyde |
Mg | Magnesium |
MTX | Methotrexate |
NADPH | nicotinamide adenine dinucleotide phosphate |
P | Phosphorus |
PLT | Platelets |
RA | rheumatoid arthritis |
RF | rheumatoid factor |
RNS | reactive nitrogen species |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
TC | total cholesterol |
TG | Triglycerides |
TNF | tumor necrosis factor |
TOS | total oxidative status |
Vit C | vitamin C |
Vit D | vitamin D |
References
- Lin, Y.-J.; Anzaghe, M.; Schülke, S. Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells 2020, 9, 880. [Google Scholar] [CrossRef]
- Yap, H.-Y.; Tee, S.Z.-Y.; Wong, M.M.-T.; Chow, S.-K.; Peh, S.-C.; Teow, S.-Y. Pathogenic Role of Immune Cells in Rheumatoid Arthritis: Implications in Clinical Treatment and Biomarker Development. Cells 2018, 7, 161. [Google Scholar] [CrossRef]
- Nanke, Y. The Pathogenesis of Rheumatoid Arthritis Breakthroughs in Molecular Mechanisms 1 and 2. Int. J. Mol. Sci. 2023, 24, 11060. [Google Scholar] [CrossRef]
- Jang, S.; Kwon, E.-J.; Lee, J.J. Rheumatoid Arthritis: Pathogenic Roles of Diverse Immune Cells. Int. J. Mol. Sci. 2022, 23, 905. [Google Scholar] [CrossRef] [PubMed]
- Cajas, L.J.; Casallas, A.; Medina, Y.F.; Quintana, G.; Rondón, F. Pannus and rheumatoid arthritis: Historic and pathophysiological evolution. Rev. Colomb. Reumatol. 2019, 26, 118–128. [Google Scholar] [CrossRef]
- Van Boekel, M.A.M.; Vossenaar, E.R.; Van Den Hoogen, F.H.J.; Van Venrooij, W.J. Autoantibody systems in rheumatoid arthritis: Specificity, sensitivity and diagnostic value. Arthritis Res. 2002, 4, 87. [Google Scholar] [CrossRef] [PubMed]
- Conti, V.; Corbi, G.; Costantino, M.; De Bellis, E.; Manzo, V.; Sellitto, C.; Stefanelli, B.; Colucci, F.; Filippelli, A. Biomarkers to Personalize the Treatment of Rheumatoid Arthritis: Focus on Autoantibodies and Pharmacogenetics. Biomolecules 2020, 10, 1672. [Google Scholar] [CrossRef] [PubMed]
- Paknikar, S.S.; Crowson, C.S.; Davis, J.M.; Thanarajasingam, U. Exploring the Role of Antinuclear Antibody Positivity in the Diagnosis, Treatment, and Health Outcomes of Patients with Rheumatoid Arthritis. ACR Open Rheumatol. 2021, 3, 422. [Google Scholar] [CrossRef] [PubMed]
- Venables, P.; Maini, R.N. Diagnosis and differential diagnosis of rheumatoid arthritis. UpToDate 2012.
- Braschi, E.; Shojania, K.; Michael Allan, G. Anti-CCP: A truly helpful rheumatoid arthritis test? Can. Fam. Physician 2016, 62, 234. [Google Scholar]
- García-González, A.; Gaxiola-Robles, R.; Zenteno-Savín, T. Oxidative stress in patients with rheumatoid arthritis. Rev. Invest. Clin. 2015, 67, 46–53. [Google Scholar] [CrossRef]
- Atzeni, F.; Talotta, R.; Masala, I.F.; Bongiovanni, S.; Boccassini, L.; Sarzi-Puttini, P. Biomarkers in Rheumatoid Arthritis. Cureus 2021, 13, 512–516. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Fang, Z.; Lv, J.; Wang, J.; Qin, Q.; He, J.; Wang, M.; Zhou, G.; Liu, G.; Zhong, F.; Zheng, Y.; et al. C-Reactive Protein Promotes the Activation of Fibroblast-Like Synoviocytes from Patients with Rheumatoid Arthritis. Front. Immunol. 2020, 11, 958. [Google Scholar] [CrossRef]
- Pope, J.E.; Choy, E.H. C-reactive protein and implications in rheumatoid arthritis and associated comorbidities. Semin. Arthritis Rheum. 2021, 51, 219–229. [Google Scholar] [CrossRef]
- Ramos-González, E.; Bitzer-Quintero, O.; Ortiz, G.; Hernández-Cruz, J.; Ramírez-Jirano, L. Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurologia 2024, 39, 292–301. [Google Scholar] [CrossRef] [PubMed]
- da Fonseca, L.J.S.; Nunes-Souza, V.; Goulart, M.O.F.; Rabelo, L.A. Oxidative Stress in Rheumatoid Arthritis: What the Future Might Hold regarding Novel Biomarkers and Add-On Therapies. Oxid. Med. Cell Longev. 2019, 2019, 7536805. [Google Scholar] [CrossRef]
- Smallwood, M.J.; Nissim, A.; Knight, A.R.; Whiteman, M.; Haigh, R.; Winyard, P.G. Oxidative stress in autoimmune rheumatic diseases. Free Radic. Biol. Med. 2018, 125, 3–14. [Google Scholar] [CrossRef]
- Mateen, S.; Moin, S.; Khan, A.Q.; Zafar, A.; Fatima, N. Increased Reactive Oxygen Species Formation and Oxidative Stress in Rheumatoid Arthritis. PLoS ONE 2016, 11, e0152925. [Google Scholar] [CrossRef] [PubMed]
- Ponist, S.; Zloh, M.; Bauerova, K. Impact of Oxidative Stress on Inflammation in Rheumatoid and Adjuvant Arthritis: Damage to Lipids, Proteins, and Enzymatic Antioxidant Defense in Plasma and Different Tissues. In Animal Models in Medicine and Biology; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Quiñonez-Flores, C.M.; González-Chávez, S.A.; Del Río Nájera, D.; Pacheco-Tena, C. Oxidative Stress Relevance in the Pathogenesis of the Rheumatoid Arthritis: A Systematic Review. Biomed. Res. Int. 2016, 2016, 6097417. [Google Scholar] [CrossRef]
- Jewad, A.M.; Mahdi, J.K.; Kassim, M.N. Oxidative Stress Status in Patients with Rheumatoid Arthritis. Univ. Thi-Qar J. Med. 2019, 17, 135–144. [Google Scholar] [CrossRef]
- Navarro-Millán, I.; Charles-Schoeman, C.; Yang, S.; Bathon, J.M.; Bridges, S.L.; Chen, L.; Cofield, S.S.; Dell’Italia, L.J.; Moreland, L.W.; O’Dell, J.R.; et al. Changes in lipoproteins associated with methotrexate or combination therapy in early rheumatoid arthritis: Results from the treatment of early rheumatoid arthritis trial. Arthritis Rheum. 2013, 65, 1430–1438. [Google Scholar] [CrossRef] [PubMed]
- Charles-Schoeman, C.; Lee, Y.Y.; Shahbazian, A.; Wang, X.; Elashoff, D.; Curtis, J.R.; Navarro-Millán, I.; Yang, S.; Chen, L.; Cofield, S.S.; et al. Improvement of High-Density Lipoprotein Function in Patients with Early Rheumatoid Arthritis Treated with Methotrexate Monotherapy or Combination Therapies in a Randomized Controlled Trial. Arthritis Rheumatol. 2017, 69, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Charles-Schoeman, C.; Wang, X.; Lee, Y.Y.; Shahbazian, A.; Navarro-Millán, I.; Yang, S.; Chen, L.; Cofield, S.S.; Moreland, L.W.; O’Dell, J.; et al. Association of Triple Therapy with Improvement in Cholesterol Profiles Over Two-Year Followup in the Treatment of Early Aggressive Rheumatoid Arthritis Trial. Arthritis Rheumatol. 2016, 68, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Yang, J.; Li, L.; Zhao, N.; Lu, C.; Lu, A.; He, X. Lipid metabolism and rheumatoid arthritis. Front. Immunol. 2023, 14, 1190607. [Google Scholar] [CrossRef]
- Liao, K.P.; Playford, M.P.; Frits, M.; Coblyn, J.S.; Iannaccone, C.; Weinblatt, M.E.; Shadick, N.S.; Mehta, N.N. The association between reduction in inflammation and changes in lipoprotein levels and HDL cholesterol efflux capacity in rheumatoid arthritis. J. Am. Heart Assoc. 2015, 4, e001588. [Google Scholar] [CrossRef] [PubMed]
- Svenson, K.L.G.; Lithell, H.; Hällgren, R.; Selinus, I.; Vessby, B. Serum Lipoprotein in Active Rheumatoid Arthritis and Other Chronic Inflammatory Arthritides: I. Relativity to Inflammatory Activity. Arch. Intern. Med. 1987, 147, 1912–1916. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Lee, E.-Y.; Park, J.K.; Song, Y.W.; Kim, J.R.; Cho, K.-H. Patients with Rheumatoid Arthritis Show Altered Lipoprotein Profiles with Dysfunctional High-Density Lipoproteins that Can Exacerbate Inflammatory and Atherogenic Process. PLoS ONE 2016, 11, e0164564. [Google Scholar] [CrossRef]
- Fernández-Ortiz, A.M.; Ortiz, A.M.; Pérez, S.; Toledano, E.; Abásolo, L.; González-Gay, M.A.; Castañeda, S.; González-Álvaro, I. Effects of disease activity on lipoprotein levels in patients with early arthritis: Can oxidized LDL cholesterol explain the lipid paradox theory? Arthritis Res. Ther. 2020, 22, 213. [Google Scholar] [CrossRef]
- Dursunoğlu, D.; Evrengül, H.; Polat, B.; Tanrıverdi, H.; Çobankara, V.; Kaftan, A.; Kılıç, M. Lp(a) lipoprotein and lipids in patients with rheumatoid arthritis: Serum levels and relationship to inflammation. Rheumatol. Int. 2005, 25, 241–245. [Google Scholar] [CrossRef]
- Benjamin, O.; Bansal, P.; Goyal, A.; Lappin, S.L. Disease-Modifying Antirheumatic Drugs (DMARD); StatPearls: Boston, MA, USA, 2023. [Google Scholar]
- Hu, Q.; Wang, H.; Xu, T. Predicting Hepatotoxicity Associated with Low-Dose Methotrexate Using Machine Learning. J. Clin. Med. 2023, 12, 1599. [Google Scholar] [CrossRef]
- Karlsson Sundbaum, J.; Eriksson, N.; Hallberg, P.; Lehto, N.; Wadelius, M.; Baecklund, E. Methotrexate treatment in rheumatoid arthritis and elevated liver enzymes: A long-term follow-up of predictors, surveillance, and outcome in clinical practice. Int. J. Rheum. Dis. 2019, 22, 1226–1232. [Google Scholar] [CrossRef]
- Xin, D.; Li, H.; Zhou, S.; Zhong, H.; Pu, W. Effects of Anthraquinones on Immune Responses and Inflammatory Diseases. Molecules 2022, 27, 3831. [Google Scholar] [CrossRef]
- Klein, G.L. The Role of Calcium in Inflammation-Associated Bone Resorption. Biomolecules 2018, 8, 69. [Google Scholar] [CrossRef]
- Ciosek, Ż.; Kot, K.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Rotter, I. The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules 2021, 11, 506. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Yang, H.-Y.; Luo, S.-F.; Huang, J.-L.; Lai, J.-H. Vitamin D Supplementation in Patients with Juvenile Idiopathic Arthritis. Nutrients 2022, 14, 1538. [Google Scholar] [CrossRef]
- Tarleton, E.K.; Kennedy, A.G.; Rose, G.L.; Littenberg, B. Relationship between Magnesium Intake and Chronic Pain in U.S. Adults. Nutrients 2020, 12, 2104. [Google Scholar] [CrossRef]
- Nakamura, Y.; Suzuki, T.; Yoshida, T.; Yamazaki, H.; Kato, H. Vitamin D and Calcium Are Required during Denosumab Treatment in Osteoporosis with Rheumatoid Arthritis. Nutrients 2017, 9, 428. [Google Scholar] [CrossRef]
- Desai, P.B.; Manjunath, S.; Kadi, S.; Chetana, K.; Vanishree, J. Oxidative stress and enzymatic antioxidant status in rheumatoid arthritis: A case control study. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 959–967. [Google Scholar]
- Chandrasekharan, J.A.; Sharma-Wali, N. Lipoxins: Nature’s way to resolve inflammation. J. Inflamm. Res. 2015, 8, 181. [Google Scholar] [CrossRef]
- Pakravan, F.; Isfahani, M.; Ghorbani, M.; Salesi, N.; Salesi, M. The salivary alpha-amylase concentration in patients with rheumatoid arthritis: A case–control study. Dent. Res. J. 2023, 20, 43. [Google Scholar]
- Mohamed, S.B.; Elkenawy, M.F.; Elsaid, T.O.; Mashaly, G.E.-S. Serum substance P level as a marker for subclinical rheumatoid arthritis activity. Egypt. J. Basic. Appl. Sci. 2023, 10, 1–10. [Google Scholar] [CrossRef]
- Jambale, T.A.; Halyal, S. Study of serum calcium/ phosphorus in rheumatoid arthritis patients. Int. J. Clin. Biochem. Res. 2017, 4, 103–105. [Google Scholar]
- Chen, T.; Zhou, Z.; Peng, M.; Hu, H.; Sun, R.; Xu, J.; Zhu, C.; Li, Y.; Zhang, Q.; Luo, Y.; et al. Glutathione peroxidase 3 is a novel clinical diagnostic biomarker and potential therapeutic target for neutrophils in rheumatoid arthritis. Arthritis Res. Ther. 2023, 25, 66. [Google Scholar] [CrossRef]
- Phillips, D.C.; Woollard, K.J.; Griffiths, H.R. The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species. Br. J. Pharmacol. 2003, 138, 501–511. [Google Scholar] [CrossRef]
- Jacobson, G.A.; Ives, S.J.; Narkowicz, C.; Jones, G. Plasma glutathione peroxidase (GSH-Px) concentration is elevated in rheumatoid arthritis: A case-control study. Clin. Rheumatol. 2012, 31, 1543–1547. [Google Scholar] [CrossRef]
- Dessie, G.; Tadesse, Y.; Genet, S.; Demelash, B. Assessment of serum lipid profiles and high-sensitivity c-reactive protein among patients suffering from rheumatoid arthritis at tikur anbessa specialized hospital, addis ababa, ethiopia: A cross-sectional study. Open Access Rheumatol. 2020, 12, 223–232. [Google Scholar] [CrossRef]
- Mullick, O.S.; Bhattacharya, R.; Bhattacharyya, K.; Sarkar, R.N.; Das, A.; Chakraborty, D.; Sarkar, A.; Das, A. Lipid profile and its relationship with endothelial dysfunction and disease activity in patients of early Rheumatoid Arthritis. Indian. J. Rheumatol. 2014, 9, 9–13. [Google Scholar] [CrossRef]
- Dessie, G. Association of atherogenic indices with C-reactive protein and risk factors to assess cardiovascular risk in rheumatoid arthritis patient at Tikur Anbessa Specialized Hospital, Addis Ababa. PLoS ONE 2022, 17, e0269431. [Google Scholar] [CrossRef]
- Chavan, V.U.; Ramavataram, D.; Patel, P.A.; Rupani, M.P. Evaluation of Serum Magnesium, Lipid Profile and Various Biochemical Parameters as Risk Factors of Cardiovascular Diseases in Patients with Rheumatoid Arthritis. J. Clin. Diagn. Res. 2015, 9, BC01. [Google Scholar] [CrossRef]
- Meena, N.; Singh Chawla, S.P.; Garg, R.; Batta, A.; Kaur, S. Assessment of Vitamin D in Rheumatoid Arthritis and Its Correlation with Disease Activity. J. Nat. Sci. Biol. Med. 2018, 9, 54. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Watad, A.; Neumann, S.G.; Simon, M.; Brown, S.B.; Abu Much, A.; Harari, A.; Tiosano, S.; Amital, H.; Shoenfeld, Y. Vitamin D and rheumatoid arthritis: An ongoing mystery. Curr. Opin. Rheumatol. 2017, 29, 378–388. [Google Scholar] [CrossRef]
- Merlino, L.A.; Curtis, J.; Mikuls, T.R.; Cerhan, J.R.; Criswell, L.A.; Saag, K.G. Vitamin D intake is inversely associated with rheumatoid arthritis: Results from the Iowa Women’s Health Study. Arthritis Rheum. 2004, 50, 72–77. [Google Scholar] [CrossRef]
- Attar, S.M. Vitamin D deficiency in rheumatoid arthritis. Prevalence and association with disease activity in Western Saudi Arabia. Saudi Med. J. 2012, 33, 520-5. [Google Scholar] [PubMed]
- Gęgotek, A.; Skrzydlewska, E. Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants 2022, 11, 1993. [Google Scholar] [CrossRef]
- Gomathi, A.; Chenthamarai, G.; Manvizhi, S.; Gowrithilagam, T.G. Effects of Vitamin C and Vitamin E in rheumatoid arthritis-A randomized, open label, and comparative study in a tertiary care hospital. Natl. J. Physiol. Pharm. Pharmacol. 2022, 12, 9. [Google Scholar] [CrossRef]
- Pattison, D.J.; Silman, A.J.; Goodson, N.J.; Lunt, M.; Bunn, D.; Luben, R.; Welch, A.; Bingham, S.; Khaw, K.-T.; Day, N.; et al. Vitamin C and the risk of developing inflammatory polyarthritis: Prospective nested case-control study. Ann. Rheum. Dis. 2004, 63, 843. [Google Scholar] [CrossRef]
- Katturajan, R.; Vijayalakshmi, S.; Rasool, M.; Prince, S.E. Molecular toxicity of methotrexate in rheumatoid arthritis treatment: A novel perspective and therapeutic implications. Toxicology 2021, 461, 152909. [Google Scholar] [CrossRef]
- Schmidt, S.; Messner, C.J.; Gaiser, C.; Hämmerli, C.; Suter-Dick, L. Methotrexate-Induced Liver Injury Is Associated with Oxidative Stress, Impaired Mitochondrial Respiration, and Endoplasmic Reticulum Stress In Vitro. Int. J. Mol. Sci. 2022, 23, 15116. [Google Scholar] [CrossRef]
- Paul, M.; Hemshekhar, M.; Thushara, R.M.; Sundaram, M.S.; NaveenKumar, S.K.; Naveen, S.; Devaraja, S.; Somyajit, K.; West, R.; Basappa; et al. Methotrexate Promotes Platelet Apoptosis via JNK-Mediated Mitochondrial Damage: Alleviation by N-Acetylcysteine and N-Acetylcysteine Amide. PLoS ONE 2015, 10, e0127558. [Google Scholar] [CrossRef]
- Franck, H.; Rau, R.; Herborn, G. Thrombocytopenia in patients with rheumatoid arthritis on long-term treatment with low dose methotrexate. Clin. Rheumatol. 1996, 15, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cai, F.; Chen, X.; Luo, M.; Hu, L.; Lu, Y. The role of mitochondria-derived reactive oxygen species in hyperthermia-induced platelet apoptosis. PLoS ONE 2013, 8, e75044. [Google Scholar] [CrossRef] [PubMed]
- Girish, K.S.; Paul, M.; Thushara, R.M.; Hemshekhar, M.; Shanmuga Sundaram, M.; Rangappa, K.S.; Kemparaju, K. Melatonin elevates apoptosis in human platelets via ROS mediated mitochondrial damage. Biochem. Biophys. Res. Commun. 2013, 438, 198–204. [Google Scholar] [CrossRef] [PubMed]
Mean Values | ||||
---|---|---|---|---|
Biomarkers | Reference Range | IRA Patients CRP < 1.3 | ARA Patients CRP ≥ 1.3 | p-Value |
ESR | 0–18 mm/h | 25.12 | 25.66 | 0.34521 |
PLT | 130–400 103/mL | 301.39 | 316.88 | 0.20711 |
CRP | 0.08–0.8 mg/dL | 0.95 | 8.03 | <0.0001 |
RF | 0–35 U/mL | 43.97 | 49.07 | 0.14816 |
Anti-CCP | <12 U/mL | 13.10 | 17.69 | <0.0001 |
ANA | <1/100 U/mL | 1/336 | 1/360 | <0.0001 |
ROS | 125 μM | 68.71 | 61.49 | 0.20711 |
GPx | 4.5–7.5 U/mg Hb | 7.71 | 5.19 | 0.4916 |
CAT | 10.5–13 U/mg Hb | 11.50 | 11.67 | 0.10993 |
SOD | 1.1–1.6 U/mg Hb | 1.33 | 1.38 | <0.05 |
γ-GT | 5–50 U/L | 137.53 | 180.14 | <0.01 |
Vit C | 0.6–2 mg/dL | 0.34 | 0.34 | 0.43442 |
Vit D | 30–100 ng/Ml | 15.47 | 14.83 | 0.19955 |
TC | 120–200 mg/dL | 195.82 | 189.50 | <0.0001 |
TG | <150 mg/dL | 180.50 | 188.25 | 0.21788 |
HDL | >40 mg/dL | 39.37 | 38.94 | 0.41449 |
LDL | <150 mg/dL | 197.82 | 193.28 | 0.29411 |
ALP | 20–120 U/L | 229.37 | 238.97 | 0.23571 |
AMY | 40–140 U/L | 202.39 | 215.11 | 0.13083 |
P | 2.7–4.5 mg/dL | 5.38 | 5.17 | 0.14323 |
Mg | 1.9–3.1 mg/dL | 1.35 | 1.36 | 0.42267 |
Ca | 8.3–10.5 mg/dL | 6.76 | 6.83 | 0.30546 |
Group A * | Group B * | ||||
---|---|---|---|---|---|
Biomarkers | Reference Range | Before | After | Before | After |
ESR | 0–18 mm/h | 25.62 | 13.39 | 25.14 | 14.30 |
PLT | 130–400 103/μL | 310.92 | 224.87 | 306.84 | 219.68 |
CRP | 0.08–0.8 mg/dL | 1.24 | 0.47 | 7.55 | 4.86 |
RF | 0–35 U/mL | 41.61 | 17.55 | 51.25 | 30.16 |
Anti-CCP | <12 U/mL | 16.23 | 11.81 | 14.07 | 9.18 |
ANA | <1/100 U/mL | 1/353 | 1/209 | 1/340 | 1/244 |
ROS | 125 μM | 62.48 | 119.97 | 68.93 | 128.41 |
GPx | 4.5–7.5 U/mg Hb | 5.08 | 3.08 | 5.29 | 2.95 |
CAT | 10.5–13 U/mg Hb | 11.56 | 8.65 | 11.58 | 8.71 |
SOD | 1.1–1.6 U/mg Hb | 1.38 | 0.83 | 1.33 | 0.85 |
γ-GT | 5–50 U/L | 143.18 | 47.47 | 171.14 | 101.03 |
Vit C | 0.6–2 mg/dL | 0.30 | 0.77 | 0.38 | 0.78 |
Vit D | 30–100 ng/mL | 15.58 | 33.95 | 14.73 | 37.46 |
TC | 120–200 mg/dL | 198.08 | 162.84 | 188.27 | 150.27 |
TG | <150 mg/dL | 180.42 | 139.47 | 185.54 | 122.84 |
HDL | >40 mg/dL | 40.68 | 56.11 | 38.11 | 60.54 |
LDL | <150 mg/dL | 194.84 | 114.29 | 198.86 | 119.57 |
ALP | 20–120 U/L | 232.92 | 100.00 | 235.86 | 139.11 |
AMY | 40–140 U/L | 212.03 | 112.32 | 204.46 | 121.38 |
P | 2.7–4.5 mg/dL | 5.33 | 3.71 | 5.25 | 3.51 |
Mg | 1.9–3.1 mg/dL | 1.32 | 1.98 | 1.38 | 2.15 |
Ca | 8.3–10.5 mg/dL | 6.85 | 8.99 | 6.73 | 8.77 |
Before Therapy | After Therapy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Biomarkers | PLT | CRP | RF | Anti−CCP | ANA | PLT | CRP | RF | Anti−CCP | ANA |
ROS | −0.123 | −0.081 | −0.020 | 0.154 | 0.105 | 0.079 | −0.026 | 0.080 | −0.033 | −0.027 |
GPx | 0.029 | 0.261 | 0.137 | 0.162 | −0.034 | −0.146 | −0.030 | −0.078 | −0.071 | −0.091 |
CAT | 0.157 | 0.202 | −0.055 | 0.107 | −0.210 | −0.140 | 0.111 | 0.018 | −0.163 | −0.083 |
SOD | 0.107 | −0.050 | −0.051 | 0.156 | −0.277 | 0.037 | −0.049 | 0.030 | 0.170 | −0.261 |
γ−GT | 0.032 | 0.083 | 0.061 | 0.267 | −0.006 | 0.128 | 0.159 | 0.150 | 0.101 | −0.193 |
Vit C | 0.025 | 0.291 | 0.024 | −0.008 | −0.070 | 0.112 | 0.354 | 0.051 | 0.271 | −0.069 |
Vit D | 0.010 | −0.163 | −0.154 | 0.072 | −0.046 | −0.090 | −0.022 | −0.041 | 0.091 | 0.106 |
TC | 0.069 | −0.052 | −0.265 | 0.079 | 0.064 | −0.053 | −0.157 | −0.333 | 0.050 | 0.139 |
TG | 0.017 | 0.106 | −0.070 | 0.106 | −0.080 | −0.099 | −0.264 | −0.174 | 0.061 | 0.134 |
HDL | −0.162 | 0.100 | 0.079 | −0.069 | 0.125 | −0.203 | 0.297 | 0.142 | −0.122 | 0.028 |
LDL | 0.008 | −0.04 | −0.086 | −0.162 | 0.076 | 0.119 | −0.003 | 0.050 | −0.183 | 0.265 |
ALP | 0.055 | 0.072 | 0.064 | 0.195 | −0.185 | −0.045 | 0.210 | 0.182 | 0.076 | −0.268 |
AMY | −0.028 | 0.174 | −0.168 | 0.176 | 0.096 | −0.093 | 0.123 | −0.079 | 0.009 | 0.097 |
P | 0.111 | −0.066 | 0.026 | 0.175 | 0.317 | 0.094 | 0.112 | 0.023 | 0.332 | 0.200 |
Mg | −0.072 | −0.048 | −0.045 | 0.172 | −0.026 | −0.017 | −0.012 | 0.161 | 0.143 | −0.082 |
Ca | −0.174 | −0.102 | 0.118 | 0.024 | −0.034 | −0.205 | −0.193 | −0.031 | 0.160 | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannidou, S.; Tsiakalidou, A.; Kazeli, K.; Ginoudis, A.; Fouza, A.; Daoudaki, M.; Lymperaki, E. Evaluation of Biochemical and Oxidative Stress Markers in the Early Stages of Rheumatoid Arthritis in a Comparative Study of Two Different Therapeutic Approaches. Oxygen 2024, 4, 253-265. https://doi.org/10.3390/oxygen4030014
Ioannidou S, Tsiakalidou A, Kazeli K, Ginoudis A, Fouza A, Daoudaki M, Lymperaki E. Evaluation of Biochemical and Oxidative Stress Markers in the Early Stages of Rheumatoid Arthritis in a Comparative Study of Two Different Therapeutic Approaches. Oxygen. 2024; 4(3):253-265. https://doi.org/10.3390/oxygen4030014
Chicago/Turabian StyleIoannidou, Stavroula, Athanasia Tsiakalidou, Konstantina Kazeli, Argyrios Ginoudis, Ariadne Fouza, Maria Daoudaki, and Evgenia Lymperaki. 2024. "Evaluation of Biochemical and Oxidative Stress Markers in the Early Stages of Rheumatoid Arthritis in a Comparative Study of Two Different Therapeutic Approaches" Oxygen 4, no. 3: 253-265. https://doi.org/10.3390/oxygen4030014
APA StyleIoannidou, S., Tsiakalidou, A., Kazeli, K., Ginoudis, A., Fouza, A., Daoudaki, M., & Lymperaki, E. (2024). Evaluation of Biochemical and Oxidative Stress Markers in the Early Stages of Rheumatoid Arthritis in a Comparative Study of Two Different Therapeutic Approaches. Oxygen, 4(3), 253-265. https://doi.org/10.3390/oxygen4030014