Beyond One-Size-Fits-All: Personalized Medicine and Future Directions in Sex-Based Psychopharmacological Treatment
Abstract
:1. Introduction
2. Biological Differences in Psychopharmacological Treatment Response
2.1. Pharmacokinetics
2.1.1. Adsorption and Distribution
2.1.2. Metabolism
CYP Enzyme | Activity in Women | Activity in Men | Implications for Psychopharmacological Treatments | References |
---|---|---|---|---|
CYP1A2 | Lower | Higher | Women may have higher plasma levels of drugs metabolized by CYP1A2, like clozapine and olanzapine, increasing the risk of side effects. | [58,59,60,61] |
CYP2C19 | Higher prevalence of poor metabolizers | Lower prevalence of poor metabolizers | Poor metabolizers may require lower doses of drugs like diazepam, citalopram, and escitalopram to avoid toxicity. | [55,57,62,63] |
CYP2D6 | More extensive or ultra-rapid metabolizers; estrogen upregulates activity | Fewer extensive or ultra-rapid metabolizers | Faster metabolism of drugs such as fluoxetine, paroxetine, and risperidone in women may necessitate higher doses to maintain efficacy. | [54,55,56,61,62,64,71] |
CYP3A4 | Higher | Lower | Women may clear drugs metabolized by CYP3A4 more quickly, potentially requiring higher or more frequent dosing for drugs like benzodiazepines and some antipsychotics. | [65,66,69] |
2.1.3. Excretion
2.2. Pharmacodynamics
3. Sex Differences in Specific Psychopharmacological Treatments
3.1. Antidepressants
3.2. Antipsychotics
3.3. Mood Stabilizers
4. Conclusions
5. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
ADHD | Attention-deficit and hyperactivity disorders |
ADs | Antidepressants |
ADME | Drug absorption, distribution, metabolism, and excretion |
APs | Antipsychotics |
BDZs | Benzodiazepines |
CYP | Cytochromes |
GABA | γ-aminobutyric acid |
GFR | Glomerular filtration rate |
DALYs | Disability-adjusted life-years |
NRIs | Norepinephrine reuptake inhibitors |
PTSD | Post-traumatic stress disorder |
SSRIs | Selective serotonin reuptake inhibitor |
SNRIs | Serotonin–norepinephrine reuptake inhibitor |
SUDs | Substance use disorder |
YLDs | Years lived with disability |
TCAs | Tricyclic antidepressants |
Vd | Volume of distribution |
References
- Balta, G.; Dalla, C.; Kokras, N. Women’s psychiatry. In Frontiers in Psychiatry; Springer: Berlin/Heidelberg, Germany, 2019; pp. 225–249. [Google Scholar] [CrossRef]
- Bao, A.-M.; Swaab, D.F. Sex Differences in the Brain, Behavior, and Neuropsychiatric Disorders. Neuroscientist 2010, 16, 550–565. [Google Scholar] [CrossRef]
- Vosberg, D.E. Sex and Gender in Population Neuroscience. Curr. Top. Behav. Neurosci. 2024. [Google Scholar] [CrossRef]
- Mazza, M.; Marano, G.; del Castillo, A.G.; Chieffo, D.; Albano, G.; Biondi-Zoccai, G.; Galiuto, L.; Sani, G.; Romagnoli, E. Interpersonal violence: Serious sequelae for heart disease in women. World J. Cardiol. 2021, 13, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Mazza, M.; De Berardis, D.; Marano, G. Keep in mind sex differences when prescribing psychotropic drugs. World J. Psychiatry 2024, 14, 194–198. [Google Scholar] [CrossRef]
- Mazza, M.; Avallone, C.; Kotzalidis, G.D.; Marano, G.; Moccia, L.; Serio, A.M.; Balocchi, M.; Sessa, I.; Janiri, D.; De Luca, I.; et al. Depressive Symptoms during Pregnancy: Prevalence and Correlates with Affective Temperaments and Psychosocial Factors. J. Pers. Med. 2023, 13, 211. [Google Scholar] [CrossRef]
- Sramek, J.J.; Murphy, M.F.; Cutler, N.R. Sex differences in the psychopharmacological treatment of depression. Dialogues Clin. Neurosci. 2016, 18, 447–457. [Google Scholar] [CrossRef]
- Mazza, M.; Caroppo, E.; De Berardis, D.; Marano, G.; Avallone, C.; Kotzalidis, G.D.; Janiri, D.; Moccia, L.; Simonetti, A.; Conte, E.; et al. Psychosis in Women: Time for Personalized Treatment. J. Pers. Med. 2021, 11, 1279. [Google Scholar] [CrossRef]
- Clayton, A.H. Gender differences in clinical psychopharmacology. J. Clin. Psychiatry 2005, 66, 1191. [Google Scholar] [CrossRef] [PubMed]
- Solmi, M.; Seitidis, G.; Mavridis, D.; Correll, C.U.; Dragioti, E.; Guimond, S.; Tuominen, L.; Dargél, A.; Carvalho, A.F.; Fornaro, M.; et al. Incidence, prevalence, and global burden of schizophrenia-data, with critical appraisal, from the Global Burden of Disease (GBD) 2019. Mol. Psychiatry 2023, 28, 5319–5327. [Google Scholar] [CrossRef]
- Ferrari, A.J.; Santomauro, D.F.; Aali, A.; Abate, Y.H.; Abbafati, C.; Abbastabar, H.; ElHafeez, S.A.; Abdelmasseh, M.; Abd-Elsalam, S.; Abdollahi, A.; et al. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2133–2161. [Google Scholar] [CrossRef]
- Santos-Toscano, R.; Arevalo, M.A.; Garcia-Segura, L.M.; Grassi, D.; Lagunas, N. Interaction of gonadal hormones, dopaminergic system, and epigenetic regulation in the generation of sex differences in substance use disorders: A systematic review. Front. Neuroendocr. 2023, 71, 101085. [Google Scholar] [CrossRef]
- Tesic, A.; Rodgers, S.; Müller, M.; Wagner, E.-Y.N.; von Känel, R.; Castelao, E.; Strippoli, M.-P.F.; Vandeleur, C.L.; Seifritz, E.; Preisig, M.; et al. Sex differences in neurodevelopmental and common mental disorders examined from three epidemiological perspectives. Psychiatry Res. 2019, 278, 213–217. [Google Scholar] [CrossRef]
- Ferrari, A.J.; Santomauro, D.F.; Herrera, A.M.M.; Shadid, J.; Ashbaugh, C.; Erskine, H.E.; Charlson, F.J.; Degenhardt, L.; Scott, J.G.; McGrath, J.J.; et al. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [Google Scholar] [CrossRef]
- Lin, Y.; Ter Horst, G.J.; Wichmann, R.; Bakker, P.; Liu, A.; Li, X.; Westenbroek, C. Sex Differences in the Effects of Acute and Chronic Stress and Recovery after Long-Term Stress on Stress-Related Brain Regions of Rats. Cereb. Cortex 2008, 19, 1978–1989. [Google Scholar] [CrossRef]
- Bangasser, D.A.; Valentino, R.J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Front. Neuroendocr. 2014, 35, 303–319. [Google Scholar] [CrossRef]
- Young, L.J.; Pfaff, D.W. Sex differences in neurological and psychiatric disorders. Front. Neuroendocr. 2014, 35, 253–254. [Google Scholar] [CrossRef]
- May, T.; Adesina, I.; McGillivray, J.; Rinehart, N.J. Sex differences in neurodevelopmental disorders. Curr. Opin. Neurol. 2019, 32, 622–626. [Google Scholar] [CrossRef]
- Mowlem, F.D.; Rosenqvist, M.A.; Martin, J.; Lichtenstein, P.; Asherson, P.; Larsson, H. Sex differences in predicting ADHD clinical diagnosis and pharmacological treatment. Eur. Child Adolesc. Psychiatry 2018, 28, 481–489. [Google Scholar] [CrossRef]
- Babinski, D.E. Sex Differences in ADHD: Review and Priorities for Future Research. Curr. Psychiatry Rep. 2024, 26, 151–156. [Google Scholar] [CrossRef]
- McHugh, R.K.; Votaw, V.R.; Sugarman, D.E.; Greenfield, S.F. Sex and gender differences in substance use disorders. Clin. Psychol. Rev. 2018, 66, 12–23. [Google Scholar] [CrossRef]
- Dacosta-Sánchez, D.; Michelini, Y.; Pilatti, A.; Fernández-Calderón, F.; Lozano, Ó.M.; González-Ponce, B.M. The moderating role of sex in the relationship between cannabis use treatment admission profile and treatment processes and outcomes: A gender perspective. Addict Behav. 2024, 157, 108103. [Google Scholar] [CrossRef]
- Braciszewski, J.M.; Idu, A.E.; Yarborough, B.J.H.; Stumbo, S.P.; Bobb, J.F.; Bradley, K.A.; Rossom, R.C.; Murphy, M.T.; Binswanger, I.A.; Campbell, C.I.; et al. Sex Differences in Comorbid Mental and Substance Use Disorders among Primary Care Patients with Opioid Use Disorder. Psychiatr. Serv. 2022, 73, 1330–1337. [Google Scholar] [CrossRef]
- Di Nicola, M.; Mazza, M.; Panaccione, I.; Moccia, L.; Giuseppin, G.; Marano, G.; Grandinetti, P.; Camardese, G.; De Berardis, D.; Pompili, M.; et al. Sensitivity to Climate and Weather Changes in Euthymic Bipolar Subjects: Association with Suicide Attempts. Front. Psychiatry 2020, 11, 95. [Google Scholar] [CrossRef]
- Ercis, M.; Sanchez-Ruiz, J.A.; Webb, L.M.; Solares-Bravo, M.; Betcher, H.K.; Moore, K.M.; Frye, M.A.; Veldic, M.; Ozerdem, A. Sex differences in effectiveness and adverse effects of mood stabilizers and antipsychotics: A systematic review. J. Affect. Disord. 2024, 352, 171–192. [Google Scholar] [CrossRef]
- Janca, E.; Keen, C.; Willoughby, M.; Borschmann, R.; Sutherland, G.; Kwon, S.; Kinner, S.A. Sex differences in suicide, suicidal ideation, and self-harm after release from incarceration: A systematic review and meta-analysis. Soc. Psychiatry Psychiatr. Epidemiol. 2023, 58, 355–371. [Google Scholar] [CrossRef]
- Carter, B.; Wootten, J.; Archie, S.; Terry, A.L.; Anderson, K.K. Sex and gender differences in symptoms of early psychosis: A systematic review and meta-analysis. Arch. Women’s Ment. Health 2022, 25, 679–691. [Google Scholar] [CrossRef]
- Damoiseaux, V.A.; Proost, J.H.; Jiawan, V.C.R.; Melgert, B.N. Sex Differences in the Pharmacokinetics of Antidepressants: Influence of Female Sex Hormones and Oral Contraceptives. Clin. Pharmacokinet. 2014, 53, 509–519. [Google Scholar] [CrossRef]
- Wang, R.; Kogler, L.; Derntl, B. Sex differences in cortisol levels in depression: A systematic review and meta-analysis. Front. Neuroendocr. 2024, 72, 101118. [Google Scholar] [CrossRef]
- Czoty, P.W.; Riddick, N.V.; Gage, H.D.; Sandridge, M.; Nader, S.H.; Garg, S.; Bounds, M.; Garg, P.K.; Nader, M.A. Effect of Menstrual Cycle Phase on Dopamine D2 Receptor Availability in Female Cynomolgus Monkeys. Neuropsychopharmacology 2008, 34, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Carmassi, C.; Del Grande, C.; Masci, I.; Caruso, D.; Musetti, L.; Fagiolini, A.; Dell’osso, L. Lithium and valproate serum level fluctuations within the menstrual cycle: A systematic review. Int. Clin. Psychopharmacol. 2019, 34, 143–150. [Google Scholar] [CrossRef]
- Mazza, M.; Brisi, C.; Veneziani, G.; Lisci, F.M.; Sessa, I.; Balocchi, M.; Rossi, S.; Di Stasio, E.; Marano, G.; Abate, F.; et al. A Network Analysis of Perinatal Depression, Anxiety, and Temperaments in Women in the First, Second, and Third Trimesters of Pregnancy. J. Clin. Med. 2024, 13, 3957. [Google Scholar] [CrossRef]
- Brand, B.A.; Haveman, Y.R.A.; de Beer, F.; de Boer, J.N.; Dazzan, P.; Sommer, I.E.C. Antipsychotic medication for women with schizophrenia spectrum disorders. Psychol. Med. 2021, 52, 649–663. [Google Scholar] [CrossRef]
- Marano, G.; Mazza, M. Eros and Thanatos between individual wounds and social lacerations: Caring the Traumatized Self. J. Loss Trauma 2024, 29, 474–477. [Google Scholar] [CrossRef]
- Kasher, N.; Wittbrodt, M.T.; Alam, Z.S.; Lima, B.B.; Nye, J.A.; Campanella, C.; Ladd, S.; Hammadah, M.; Shah, A.J.; Raggi, P.; et al. Sex differences in brain activation patterns with mental stress in patients with coronary artery disease. Biol. Sex Differ. 2019, 10, 35. [Google Scholar] [CrossRef]
- Lagraauw, H.M.; Kuiper, J.; Bot, I. Acute and chronic psychological stress as risk factors for cardiovascular disease: Insights gained from epidemiological, clinical and experimental studies. Brain Behav. Immun. 2015, 50, 18–30. [Google Scholar] [CrossRef]
- Tully, S.; Bucci, S.; Alkotob, Y.; Penn, G.; Berry, K. Sex differences in functional outcome after hospitalisation: A systematic review and meta-analysis. Psychiatry Res. 2023, 323, 115095. [Google Scholar] [CrossRef]
- Martini, M.I.; Kuja-Halkola, R.; Butwicka, A.; Du Rietz, E.; D’onofrio, B.M.; Happé, F.; Kanina, A.; Larsson, H.; Lundström, S.; Martin, J.; et al. Sex Differences in Mental Health Problems and Psychiatric Hospitalization in Autistic Young Adults. JAMA Psychiatry 2022, 79, 1188. [Google Scholar] [CrossRef]
- Mazza, M.; Marano, G.; Antonazzo, B.; Cavarretta, E.; Di Nicola, M.; Janiri, L.; Sani, G.; Frati, G.; Romagnoli, E. What about heart and mind in the COVID-19 era? Minerva Cardiol. Angiol. 2021, 69, 222–226. [Google Scholar] [CrossRef]
- Milani, S.A.; Raji, M.A.; Chen, L.; Kuo, Y.-F. Trends in the Use of Benzodiazepines, Z-Hypnotics, and Serotonergic Drugs among US Women and Men before and during the COVID-19 Pandemic. JAMA Netw. Open 2021, 4, e2131012. [Google Scholar] [CrossRef] [PubMed]
- Bergiannaki, J.; Kostaras, P. Pharmacokinetic and pharmacodynamic effects of psychotropic medications: Differences between sexes. Psychiatriki 2016, 27, 118–126. [Google Scholar] [CrossRef]
- Rubinow, D.R.; Schmidt, P.J. Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 2019, 44, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Green, T.; Flash, S.; Reiss, A.L. Sex differences in psychiatric disorders: What we can learn from sex chromosome aneuploidies. Neuropsychopharmacology 2019, 44, 9–21. [Google Scholar] [CrossRef]
- Oliva, M.; Muñoz-Aguirre, M.; Kim-Hellmuth, S.; Wucher, V.; Gewirtz, A.D.H.; Cotter, D.J.; Parsana, P.; Kasela, S.; Balliu, B.; Viñuela, A.; et al. The impact of sex on gene expression across human tissues. Science 2020, 369, eaba3066. [Google Scholar] [CrossRef]
- Gurvich, C.; Thomas, N.; Kulkarni, J. Sex differences in cognition and aging and the influence of sex hormones. Handb. Clin. Neurol. 2020, 175, 103–115. [Google Scholar] [CrossRef]
- Gogos, A.; Ney, L.J.; Seymour, N.; Van Rheenen, T.E.; Felmingham, K.L. Sex differences in schizophrenia, bipolar disorder, and post-traumatic stress disorder: Are gonadal hormones the link? Br. J. Pharmacol. 2019, 176, 4119–4135. [Google Scholar] [CrossRef]
- Zucker, I.; Prendergast, B.J. Sex differences in pharmacokinetics. In Sex and Gender Effects in Pharmacology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 25–39. [Google Scholar] [CrossRef]
- Gandhi, M.; Aweeka, F.; Greenblatt, R.M.; Blaschke, T.F. Sex Differences in Pharmacokinetics and Pharmacodynamics. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 499–523. [Google Scholar] [CrossRef]
- Marazziti, D.; Baroni, S.; Picchetti, M.; Piccinni, A.; Carlini, M.; Vatteroni, E.; Falaschi, V.; Lombardi, A.; Dell’Osso, L. Pharmacokinetics and pharmacodinamics of psychotropic drugs: Effect of sex. CNS Spectr. 2013, 18, 118–127. [Google Scholar] [CrossRef]
- Yonkers, K.A.; Kando, J.C.; Cole, J.O.; Blumenthal, S. Gender differences in pharmacokinetics and pharmacodynamics of psychotropic medication. Am. J. Psychiatry 1992, 149, 587–595. [Google Scholar] [CrossRef]
- Zucker, I.; Prendergast, B.J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex Differ. 2020, 11, 32. [Google Scholar] [CrossRef]
- Correll, C.U.; Howes, O.D. Treatment-Resistant Schizophrenia: Definition, Predictors, and Therapy Options. J. Clin. Psychiatry 2021, 82, 36608. [Google Scholar] [CrossRef]
- Younes, S. The relationship between gender and pharmacology. Curr Res Pharmacol Drug Discov. 2024, 7, 100192. [Google Scholar] [CrossRef]
- Anderson, G.D. Sex differences in drug metabolism: Cytochrome P-450 and uridine diphosphate glucuronosyltransferase. J. Gend. Specif. Med. 2002, 5, 25–33. [Google Scholar] [PubMed]
- Fudio, S.; Borobia, A.M.; Piñana, E.; Ramírez, E.; Tabarés, B.; Guerra, P.; Carcas, A.; Frías, J. Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram. Eur. J. Pharmacol. 2010, 626, 200–204. [Google Scholar] [CrossRef]
- Schoretsanitis, G.; de Leon, J.; Diaz, F.J. Prolactin Levels: Sex Differences in the Effects of Risperidone, 9-Hydroxyrisperidone Levels, CYP2D6 and ABCB1 Variants. Pharmacogenomics 2018, 19, 815–823. [Google Scholar] [CrossRef]
- Meibohm, B.; Beierle, I.; Derendorf, H. How Important Are Gender Differences in Pharmacokinetics? Clin. Pharmacokinet. 2002, 41, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Na Takuathung, M.; Hanprasertpong, N.; Teekachunhatean, S.; Koonrungsesomboon, N. Impact of CYP1A2 genetic polymorphisms on pharmacokinetics of antipsychotic drugs: A systematic review and meta-analysis. Acta Psychiatr. Scand. 2019, 139, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Ruan, C.-J.; de Leon, J. Is there a Future for CYP1A2 Pharmacogenetics in the Optimal Dosing of Clozapine? Pharmacogenomics 2020, 21, 369–373. [Google Scholar] [CrossRef]
- Fekete, F.; Menus, Á.; Tóth, K.; Kiss, Á.F.; Minus, A.; Sirok, D.; Belič, A.; Póti, Á.; Csukly, G.; Monostory, K. CYP1A2 expression rather than genotype is associated with olanzapine concentration in psychiatric patients. Sci. Rep. 2023, 13, 18507. [Google Scholar] [CrossRef]
- Maciaszek, J.; Pawłowski, T.; Hadryś, T.; Machowska, M.; Wiela-Hojeńska, A.; Misiak, B. The Impact of the CYP2D6 and CYP1A2 Gene Polymorphisms on Response to Duloxetine in Patients with Major Depression. Int. J. Mol. Sci. 2023, 24, 13459. [Google Scholar] [CrossRef]
- Chua, E.W.; Foulds, J.; Miller, A.L.; Kennedy, M.A. Novel CYP2D6 and CYP2C19 variants identified in a patient with adverse reactions towards venlafaxine monotherapy and dual therapy with nortriptyline and fluoxetine. Pharmacogenetics Genom. 2013, 23, 494–497. [Google Scholar] [CrossRef]
- Scherf-Clavel, M.; Weber, H.; Unterecker, S.; Frantz, A.; Eckert, A.; Reif, A.; Deckert, J.; Hahn, M. The Relevance of Integrating CYP2C19 Phenoconversion Effects into Clinical Pharmacogenetics. Pharmacopsychiatry 2024, 57, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Hole, K.; Haslemo, T.; Molden, E. Impact of CYP2D6 Genotype on Paroxetine Serum Concentration. Ther. Drug Monit. 2023, 45, 683–688. [Google Scholar] [CrossRef]
- Bigos, K.L.; Bies, R.R.; Pollock, B.G.; Lowy, J.J.; Zhang, F.; Weinberger, D.R. Genetic variation in CYP3A43 explains racial difference in olanzapine clearance. Mol. Psychiatry 2011, 16, 620–625. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Wang, Z.-L.; Shen, Y.; Zhou, Q.; Liu, Y.-N.; Hu, G.-X.; Cai, J.-P.; Xu, R.-A. The impacts of CYP3A4 genetic polymorphism and drug interactions on the metabolism of lurasidone. Biomed. Pharmacother. 2023, 168, 115833. [Google Scholar] [CrossRef]
- Poolsup, N.; Po, L.W.; Knight, T.L. Pharmacogenetics and psychopharmacotherapy. J. Clin. Pharm. Ther. 2000, 25, 197–220. [Google Scholar] [CrossRef]
- Rademaker, M. Do Women Have More Adverse Drug Reactions? Am. J. Clin. Dermatol. 2001, 2, 349–351. [Google Scholar] [CrossRef]
- Bharthi, K.; Zuberi, R.; Al Maruf, A.; Shaheen, S.M.; McCloud, R.; Heintz, M.; McAusland, L.; Arnold, P.D.; Bousman, C.A. Impact of Cytochrome P450 Genetic Variation on Patient-Reported Symptom Improvement and Side Effects among Children and Adolescents Treated with Fluoxetine. J. Child Adolesc. Psychopharmacol. 2024, 34, 21–27. [Google Scholar] [CrossRef]
- Aichhorn, W.; Gasser, M.; Weiss, E.M.; Adlassnig, C.; Marksteiner, J. Gender Differences in Pharmacokinetics and Side Effects of Second Generation Antipsychotic Drugs. Curr. Neuropharmacol. 2005, 3, 73–85. [Google Scholar] [CrossRef]
- Choong, E.; Polari, A.; Kamdem, R.H.; Gervasoni, N.; Spisla, C.; Sirot, E.J.; Bickel, G.G.; Bondolfi, G.; Conus, P.; Eap, C.B. Pharmacogenetic study on risperidone long-acting injection: Influence of cytochrome P450 2D6 and pregnane X receptor on risperidone exposure and drug-induced side-effects. J. Clin. Psychopharmacol. 2013, 33, 289–298. [Google Scholar] [CrossRef]
- Thürmann, P.A.; Hompesch, B.C. Influence of gender on the pharmacokinetics and pharmacodynamics of drugs. Int. J. Clin. Pharmacol. Ther. 1998, 36, 586–590. [Google Scholar]
- Seeman, M.V. The Pharmacodynamics of Antipsychotic Drugs in Women and Men. Front. Psychiatry 2021, 12, 650904. [Google Scholar] [CrossRef]
- Eugene, A.R.; Masiak, J. A pharmacodynamic modelling and simulation study identifying gender differences of daily olanzapine dose and dopamine D2-receptor occupancy. Nord. J. Psychiatry 2017, 71, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, M.; Fehsel, K.; Schmitt, A.; Meisenzahl-Lechner, E.; Gaebel, W.; von Wilmsdorff, M. Sex-dependent alterations of dopamine receptor and glucose transporter density in rat hypothalamus under long-term clozapine and haloperidol medication. Brain Behav. 2020, 10, e01694. [Google Scholar] [CrossRef] [PubMed]
- Kaasinen, V.; Någren, K.; Hietala, J.; Farde, L.; Rinne, J.O. Sex Differences in Extrastriatal Dopamine D2-Like Receptors in the Human Brain. Am. J. Psychiatry 2001, 158, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Valstad, M.; Roelfs, D.; Slapø, N.B.; Timpe, C.M.F.; Rai, A.; Matziorinis, A.M.; Beck, D.; Richard, G.; Sæther, L.S.; Haatveit, B.; et al. Evidence for Reduced Long-Term Potentiation-Like Visual Cortical Plasticity in Schizophrenia and Bipolar Disorder. Schizophr. Bull. 2021, 47, 1751–1760. [Google Scholar] [CrossRef]
- Salavati, B.; Rajji, T.K.; Price, R.; Sun, Y.; Graff-Guerrero, A.; Daskalakis, Z.J. Imaging-Based Neurochemistry in Schizophrenia: A Systematic Review and Implications for Dysfunctional Long-Term Potentiation. Schizophr. Bull. 2015, 41, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Speranza, L.; di Porzio, U.; Viggiano, D.; de Donato, A.; Volpicelli, F. Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells 2021, 10, 735. [Google Scholar] [CrossRef]
- Lüscher, C.; Malenka, R.C. NMDA Receptor-Dependent Long-Term Potentiation and Long-Term Depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 2012, 4, a005710. [Google Scholar] [CrossRef]
- Price, R.; Salavati, B.; Graff-Guerrero, A.; Blumberger, D.M.; Mulsant, B.H.; Daskalakis, Z.J.; Rajji, T.K. Effects of antipsychotic D2 antagonists on long-term potentiation in animals and implications for human studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 54, 83–91. [Google Scholar] [CrossRef]
- Palacios-Filardo, J.; Mellor, J.R. Neuromodulation of hippocampal long-term synaptic plasticity. Curr. Opin. Neurobiol. 2019, 54, 37–43. [Google Scholar] [CrossRef]
- Godar, S.C.; Bortolato, M. Gene-sex interactions in schizophrenia: Focus on dopamine neurotransmission. Front. Behav. Neurosci. 2014, 8, 71. [Google Scholar] [CrossRef]
- Kornstein, S.G.; Sloan, D.M.; Thase, M.E. Gender-specific differences in depression and treatment response. Psychopharmacol. Bull. 2002, 36, 99–112. [Google Scholar]
- Sloan, D.M.; Kornstein, S.G. Gender differences in depression and response to antidepressant treatment. Psychiatr. Clin. N. Am. 2003, 26, 581–594. [Google Scholar] [CrossRef]
- Roca, M.; Baca, E.; Prieto, R.; García-Calvo, C. Gender differences in clinical profile, response and remission of depressive patients treated with venlafaxine extended release. Actas Esp. De Psiquiatr. 2008, 36, 82–89. [Google Scholar]
- Kokras, N.; Dalla, C.; Papadopoulou-Daifoti, Z. Sex differences in pharmacokinetics of antidepressants. Expert Opin. Drug Metab. Toxicol. 2011, 7, 213–226. [Google Scholar] [CrossRef]
- Härtter, S.; Wetzel, H.; Hammes, E.; Torkzadeh, M.; Hiemke, C. Nonlinear Pharmacokinetics of Fluvoxamine and Gender Differences. Ther. Drug Monit. 1998, 20, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Joyce, P.R.; Mulder, R.T.; Luty, S.E.; McKenzie, J.M.; Rae, A.M. A differential response to nortriptyline and fluoxetine in melancholic depression: The importance of age and gender. Acta Psychiatr. Scand. 2003, 108, 20–23. [Google Scholar] [CrossRef]
- Baca, E.; Garcia-Garcia, M.; Porras-Chavarino, A. Gender differences in treatment response to sertraline versus imipramine in patients with nonmelancholic depressive disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2004, 28, 57–65. [Google Scholar] [CrossRef]
- Berlanga, C.; Flores-Ramos, M. Different gender response to serotonergic and noradrenergic antidepressants. A comparative study of the efficacy of citalopram and reboxetine. J. Affect. Disord. 2006, 95, 119–123. [Google Scholar] [CrossRef]
- Kornstein, S.G.; Clayton, A.H.; Soares, C.N.; Padmanabhan, S.K.; Guico-Pabia, C.J. Analysis by Age and Sex of Efficacy Data From Placebo-Controlled Trials of Desvenlafaxine in Outpatients With Major Depressive Disorder. J. Clin. Psychopharmacol. 2010, 30, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Kornstein, S.G.; Wohlreich, M.M.; Mallinckrodt, C.H.; Watkin, J.G.; Stewart, D.E. Duloxetine Efficacy for Major Depressive Disorder in Male vs. Female Patients. J. Clin. Psychiatry 2006, 67, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Tveit, K.; Hermann, M.; Nilsen, R.M.; Wallerstedt, S.M.; Rongve, A.; Molden, E.; Hole, K. Age of onset for increased dose-adjusted serum concentrations of antidepressants and association with sex and genotype: An observational study of 34,777 individuals. Eur. J. Clin. Pharmacol. 2024, 80, 435–444. [Google Scholar] [CrossRef]
- Thase, M.E.; Entsuah, R.; Cantillon, M.; Kornstein, S.G. Relative Antidepressant Efficacy of Venlafaxine and SSRIs: Sex-Age Interactions. J. Women’s Health 2005, 14, 609–616. [Google Scholar] [CrossRef]
- Kornstein, S.G.; Schatzberg, A.F.; Thase, M.E.; Yonkers, K.A.; McCullough, J.P.; Keitner, G.I.; Gelenberg, A.J.; Davis, S.M.; Harrison, W.M.; Keller, M.B. Gender Differences in Treatment Response to Sertraline versus Imipramine in Chronic Depression. Am. J. Psychiatry 2000, 157, 1445–1452. [Google Scholar] [CrossRef]
- Quitkin, F.M.; Stewart, J.W.; McGrath, P.J.; Taylor, B.P.; Tisminetzky, M.S.; Petkova, E.; Chen, Y.; Ma, G.; Klein, D.F. Are There Differences between Women’s and Men’s Antidepressant Responses? Am. J. Psychiatry 2002, 159, 1848–1854. [Google Scholar] [CrossRef] [PubMed]
- Seifert, J.; Führmann, F.; Reinhard, M.A.; Engel, R.R.; Bernegger, X.; Bleich, S.; Stübner, S.; Rüther, E.; Toto, S.; Grohmann, R.; et al. Sex differences in pharmacological treatment of major depressive disorder: Results from the AMSP pharmacovigilance program from 2001 to 2017. J. Neural Transm. 2021, 128, 827–843. [Google Scholar] [CrossRef]
- Schwalsberger, K.; Reininghaus, B.; Reiter, A.; Dalkner, N.; Fleischmann, E.; Fellendorf, F.; Platzer, M.; Reininghaus, E.Z. Sex-Related Differences in the Pharmacological Treatment of Major Depression—Are Women and Men Treated Differently? Psychiatr. Danub. 2022, 34, 219–228. [Google Scholar] [CrossRef]
- Chen, G.; Nomikos, G.G.; Affinito, J.; Jacobson, W.; Zhao, Z.; Wang, S.; Xie, J. Effects of Intrinsic Factors on the Clinical Pharmacokinetics of Vortioxetine. Clin. Pharmacol. Drug Dev. 2018, 7, 880–888. [Google Scholar] [CrossRef]
- Kornstein, S.; Chang, C.-T.; Gommoll, C.P.; Edwards, J. Vilazodone efficacy in subgroups of patients with major depressive disorder: A post-hoc analysis of four randomized, double-blind, placebo-controlled trials. Int. Clin. Psychopharmacol. 2018, 33, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Young, E.A.; Kornstein, S.G.; Marcus, S.M.; Harvey, A.T.; Warden, D.; Wisniewski, S.R.; Balasubramani, G.; Fava, M.; Trivedi, M.H.; Rush, A.J. Sex differences in response to citalopram: A STAR∗D report. J. Psychiatr. Res. 2009, 43, 503–511. [Google Scholar] [CrossRef]
- Gougoulaki, M.; Lewis, G.; Nutt, D.J.; Peters, T.J.; Wiles, N.J.; Lewis, G. Sex differences in depressive symptoms and tolerability after treatment with selective serotonin reuptake inhibitor antidepressants: Secondary analyses of the GENPOD trial. J. Psychopharmacol. 2021, 35, 919–927. [Google Scholar] [CrossRef]
- Seeman, M.V. Sex differences in schizophrenia relevant to clinical care. Expert Rev. Neurother. 2021, 21, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Freeman, H.B.; Lee, J. Sex differences in cognition in schizophrenia: What we know and what we do not know. In Cognitive Functioning in Schizophrenia: Leveraging the RDoC Framework; Springer: Berlin/Heidelberg, Germany, 2022; pp. 463–474. [Google Scholar] [CrossRef]
- Ceskova, E.; Prikryl, R. Importance of Gender in the Treatment of Schizophrenia. Prim. Care Companion CNS Disord. 2012, 14, 27361. [Google Scholar] [CrossRef]
- Ventriglio, A.; Ricci, F.; Magnifico, G.; Chumakov, E.; Torales, J.; Watson, C.; Castaldelli-Maia, J.M.; Petito, A.; Bellomo, A. Psychosocial interventions in schizophrenia: Focus on guidelines. Int. J. Soc. Psychiatry 2020, 66, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Zorkina, Y.; Morozova, A.; Abramova, O.; Reznik, A.; Kostyuk, G. Sex differences in social functioning of patients with schizophrenia depending on the age of onset and severity of the disease. Early Interv. Psychiatry 2021, 15, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Ran, M.-S.; Mao, W.-J.; Chan, C.L.-W.; Chen, E.Y.-H.; Conwell, Y. Gender differences in outcomes in people with schizophrenia in rural China: 14-year follow-up study. Br. J. Psychiatry 2015, 206, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Usall, J.; Suarez, D.; Haro, J.M. Gender differences in response to antipsychotic treatment in outpatients with schizophrenia. Psychiatry Res. 2007, 153, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Mezquida, G.; Amoretti, S.; Bioque, M.; García-Rizo, C.; Sánchez-Torres, A.M.; Pina-Camacho, L.; Lopez-Pena, P.; Mané, A.; Rodriguez-Jimenez, R.; Corripio, I.; et al. Identifying risk factors for predominant negative symptoms from early stages in schizophrenia: A longitudinal and sex-specific study in first-episode schizophrenia patients. Span. J. Psychiatry Ment. Health 2023, 16, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Leijala, J.; Kampman, O.; Suvisaari, J.; Eskelinen, S. Daily functioning and symptom factors contributing to attitudes toward antipsychotic treatment and treatment adherence in outpatients with schizophrenia spectrum disorders. BMC Psychiatry 2021, 21, 37. [Google Scholar] [CrossRef]
- Ochoa, S.; Usall, J.; Cobo, J.; Labad, X.; Kulkarni, J. Gender Differences in Schizophrenia and First-Episode Psychosis: A Comprehensive Literature Review. Schizophr. Res. Treat. 2012, 2012, 916198. [Google Scholar] [CrossRef]
- Riecher-Rössler, A.; Butler, S.; Kulkarni, J. Sex and gender differences in schizophrenic psychoses—A critical review. Arch. Women’s Ment. Health 2018, 21, 627–648. [Google Scholar] [CrossRef]
- Achtyes, E.; Simmons, A.; Skabeev, A.; Levy, N.; Jiang, Y.; Marcy, P.; Weiden, P.J. Patient preferences concerning the efficacy and side-effect profile of schizophrenia medications: A survey of patients living with schizophrenia. BMC Psychiatry 2018, 18, 292. [Google Scholar] [CrossRef]
- Sommer, I.E.; Tiihonen, J.; van Mourik, A.; Tanskanen, A.; Taipale, H. The clinical course of schizophrenia in women and men—A nation-wide cohort study. NPJ Schizophr. 2020, 6, 12. [Google Scholar] [CrossRef]
- Keepers, G.A.; Fochtmann, L.J.; Anzia, J.M.; Benjamin, S.; Lyness, J.M.; Mojtabai, R.; Servis, M.; Walaszek, A.; Buckley, P.; Lenzenweger, M.F.; et al. The American Psychiatric Association Practice Guideline for the Treatment of Patients with Schizophrenia. Am. J. Psychiatry 2020, 177, 868–872. [Google Scholar] [CrossRef]
- Huhn, M.; Nikolakopoulou, A.; Schneider-Thoma, J.; Krause, M.; Samara, M.; Peter, N.; Arndt, T.; Bäckers, L.; Rothe, P.; Cipriani, A.; et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: A systematic review and network meta-analysis. Lancet 2019, 394, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Brand, B.A.; Willemse, E.J.M.; Hamers, I.M.H.; Sommer, I.E. Evidence-Based Recommendations for the Pharmacological Treatment of Women with Schizophrenia Spectrum Disorders. Curr. Psychiatry Rep. 2023, 25, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.M.; Strakowski, S.M.; Schwiers, M.L.; Amicone, J.; Fleck, D.E.; Corey, K.B.; Farrow, J.E. Sex, ethnicity, and antipsychotic medication use in patients with psychosis. Schizophr. Res. 2004, 66, 169–175. [Google Scholar] [CrossRef]
- Usall, J.; Huerta-Ramos, E.; Iniesta, R.; Cobo, J.; Araya, S.; Roca, M.; Serrano-Blanco, A.; Teba, F.; Ochoa, S. Raloxifene as an Adjunctive Treatment for Postmenopausal Women with Schizophrenia: A double-blind, randomized, placebo-controlled trial. J. Clin. Psychiatry 2011, 72, 1552–1557. [Google Scholar] [CrossRef] [PubMed]
- Usall, J.; Huerta-Ramos, E.; Labad, J.; Cobo, J.; Núñez, C.; Creus, M.; Parés, G.G.; Cuadras, D.; Franco, J.; Miquel, E.; et al. Raloxifene as an Adjunctive Treatment for Postmenopausal Women with Schizophrenia: A 24-Week Double-Blind, Randomized, Parallel, Placebo-Controlled Trial. Schizophr. Bull. 2016, 42, 309–317. [Google Scholar] [CrossRef]
- Huerta-Ramos, E.; Labad, J.; Cobo, J.; Núñez, C.; Creus, M.; García-Parés, G.; Cuadras, D.; Franco, J.; Miquel, E.; Reyes, J.-C.; et al. Effects of raloxifene on cognition in postmenopausal women with schizophrenia: A 24-week double-blind, randomized, parallel, placebo-controlled trial. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 729–737. [Google Scholar] [CrossRef]
- Aichhorn, W.; Whitworth, A.B.; Weiss, E.M.; Marksteiner, J. Second-Generation Antipsychotics: Is There Evidence for Sex Differences in Pharmacokinetic and Adverse Effect Profiles? Drug Saf. 2006, 29, 587–598. [Google Scholar] [CrossRef]
- Suzuki, Y.; Sugai, T.; Fukui, N.; Watanabe, J.; Ono, S.; Tsuneyama, N.; Saito, M.; Someya, T. Sex differences in the effect of four second-generation antipsychotics on QTc interval in patients with schizophrenia. Hum Psychopharmacol. 2013, 28, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Seeman, M.V. Women who suffer from schizophrenia: Critical issues. World J. Psychiatry 2018, 8, 125–136. [Google Scholar] [CrossRef]
- Alberich, S.; Fernández-Sevillano, J.; González-Ortega, I.; Usall, J.; Sáenz, M.; González-Fraile, E.; González-Pinto, A. A systematic review of sex-based differences in effectiveness and adverse effects of clozapine. Psychiatry Res. 2019, 280, 112506. [Google Scholar] [CrossRef]
- Adanty, C.; Qian, J.; Al-Chalabi, N.; Fatemi, A.B.; Gerretsen, P.; Graff, A.; De Luca, V. Sex differences in schizophrenia: A longitudinal methylome analysis. J. Neural Transm. 2022, 129, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Kishi, T.; Ikuta, T.; Matsunaga, S.; Matsuda, Y.; Oya, K.; Iwata, N. Comparative efficacy and safety of antipsychotics in the treatment of schizophrenia: A network meta-analysis in a Japanese population. Neuropsychiatr. Dis. Treat. 2017, 13, 1281–1302. [Google Scholar] [CrossRef]
- Kim, H.O.; Seo, G.H.; Lee, B.C. Real-world effectiveness of long-acting injections for reducing recurrent hospitalizations in patients with schizophrenia. Ann. Gen. Psychiatry 2020, 19, 1. [Google Scholar] [CrossRef]
- Leucht, S.; Crippa, A.; Siafis, S.; Patel, M.X.; Orsini, N.; Davis, J.M. Dose-Response Meta-Analysis of Antipsychotic Drugs for Acute Schizophrenia. Am. J. Psychiatry 2020, 177, 342–353. [Google Scholar] [CrossRef]
- Galbally, M.; Wynter, K.; Siskind, D.; Correll, C.U.; Northwood, K.; Every-Palmer, S. Sex Differences Between Female and Male Individuals in Antipsychotic Efficacy and Adverse Effects in the Treatment of Schizophrenia. CNS Drugs 2024, 38, 559–570. [Google Scholar] [CrossRef]
- Kim, J.; Ozzoude, M.; Nakajima, S.; Shah, P.; Caravaggio, F.; Iwata, Y.; De Luca, V.; Graff-Guerrero, A.; Gerretsen, P. Insight and medication adherence in schizophrenia: An analysis of the CATIE trial. Neuropharmacology 2020, 168, 107634. [Google Scholar] [CrossRef] [PubMed]
- Pillinger, T.; McCutcheon, R.A.; Vano, L.; Mizuno, Y.; Arumuham, A.; Hindley, G.; Beck, K.; Natesan, S.; Efthimiou, O.; Cipriani, A.; et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. Lancet Psychiatry 2020, 7, 64–77. [Google Scholar] [CrossRef]
- Brissos, S.; Balanzá-Martínez, V. Long-acting antipsychotic treatments: Focus on women with schizophrenia. Ther Adv Psychopharmacol. 2024, 14, 20451253241263715. [Google Scholar] [CrossRef]
- Vega, P.; Barbeito, S.; de Azúa, S.R.; Martínez-Cengotitabengoa, M.; González–Ortega, I.; Saenz, M.; González-Pinto, A. Bipolar Disorder Differences between Genders: Special Considerations for Women. Women’s Health 2011, 7, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Parial, S. Bipolar disorder in women. Indian J. Psychiatry 2015, 57, S252–S263. [Google Scholar] [CrossRef]
- Freeman, M.P.; Gelenberg, A.J. Bipolar disorder in women: Reproductive events and treatment considerations. Acta Psychiatr. Scand. 2005, 112, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Sit, D. Women and bipolar disorder across the life span. J. Am. Med. Women’s Assoc. 2004, 59, 91–100. [Google Scholar]
- Khan, S.J.; Fersh, M.E.; Ernst, C.; Klipstein, K.; Albertini, E.S.; Lusskin, S.I. Bipolar Disorder in Pregnancy and Postpartum: Principles of Management. Curr. Psychiatry Rep. 2016, 18, 13. [Google Scholar] [CrossRef]
- Öhlund, L.; Ott, M.; Oja, S.; Bergqvist, M.; Lundqvist, R.; Sandlund, M.; Renberg, E.S.; Werneke, U. Reasons for lithium discontinuation in men and women with bipolar disorder: A retrospective cohort study. BMC Psychiatry 2018, 18, 37. [Google Scholar] [CrossRef]
- Mazza, M.; Caroppo, E.; Marano, G.; Chieffo, D.; Moccia, L.; Janiri, D.; Rinaldi, L.; Janiri, L.; Sani, G. Caring for Mothers: A Narrative Review on Interpersonal Violence and Peripartum Mental Health. Int. J. Environ. Res. Public Health 2021, 18, 5281. [Google Scholar] [CrossRef]
- Arnold, I.; Dehning, J.; Grunze, A.; Hausmann, A. Old Age Bipolar Disorder—Epidemiology, Aetiology and Treatment. Medicina 2021, 57, 587. [Google Scholar] [CrossRef]
- Gordon-Smith, K.; Lewis, K.J.S.; Auñón, F.M.V.; Di Florio, A.; Perry, A.; Craddock, N.; Jones, I.; Jones, L. Patterns and clinical correlates of lifetime alcohol consumption in women and men with bipolar disorder: Findings from the UK Bipolar Disorder Research Network. Bipolar Disord. 2020, 22, 731–738. [Google Scholar] [CrossRef]
- Pahwa, M.; Kucuker, M.U.; Ho, M.C.; Puspitasari, A.; Moore, K.M.; Betcher, H.K.; Frye, M.A.; Singh, B.; Ozerdem, A.; Veldic, M. Cardiometabolic and endocrine comorbidities in women with bipolar disorder: A systematic review. J. Affect. Disord. 2023, 323, 841–859. [Google Scholar] [CrossRef] [PubMed]
- Almeida, O.P.; Dols, A.; Blanken, M.A.; Rej, S.; Blumberg, H.P.; Villa, L.; Forester, B.P.; Forlenza, O.V.; Gildengers, A.; Vieta, E.; et al. Physical Health Burden Among Older Men and Women with Bipolar Disorder: Results from the Gage-Bd Collaboration. Am. J. Geriatr. Psychiatry 2022, 30, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Viguera, A.C.; Baldessarini, R.J.; Tondo, L. Response to lithium maintenance treatment in bipolar disorders: Comparison of women and men. Bipolar Disord. 2001, 3, 245–252. [Google Scholar] [CrossRef]
- Hui, T.P.; Kandola, A.; Shen, L.; Lewis, G.; Osborn, D.P.J.; Geddes, J.R.; Hayes, J.F. A systematic review and meta-analysis of clinical predictors of lithium response in bipolar disorder. Acta Psychiatr. Scand. 2019, 140, 94–115. [Google Scholar] [CrossRef]
- Schoretsanitis, G.; Paulzen, M. Mood stabilizers: Course and duration of therapy, withdrawal syndromes, and resistance to therapy. In NeuroPsychopharmacotherapy; Springer International Publishing: Cham, Switzerland, 2022; pp. 1469–1491. [Google Scholar] [CrossRef]
- Arfman, I.J.; der Heijden, E.A.W.-V.; ter Horst, P.G.J.; Lambrechts, D.A.; Wegner, I.; Touw, D.J. Therapeutic Drug Monitoring of Antiepileptic Drugs in Women with Epilepsy before, during, and after Pregnancy. Clin. Pharmacokinet. 2020, 59, 427–445. [Google Scholar] [CrossRef]
- Grootens, K.P.; Meijer, A.; Hartong, E.G.; Doornbos, B.; Bakker, P.R.; Al Hadithy, A.; Hoogerheide, K.N.; Overmeire, F.; Marijnissen, R.M.; Ruhe, H.G. Weight changes associated with antiepileptic mood stabilizers in the treatment of bipolar disorder. Eur. J. Clin. Pharmacol. 2018, 74, 1485–1489. [Google Scholar] [CrossRef]
- Schneider, M.; Pauwels, P.; Toto, S.; Bleich, S.; Grohmann, R.; Heinze, M.; Greiner, T. Severe weight gain as an adverse drug reaction of psychotropics: Data from the AMSP project between 2001 and 2016. Eur. Neuropsychopharmacol. 2020, 36, 60–71. [Google Scholar] [CrossRef]
- Vieta, E.; Ghorpade, S.; Biswas, A.; Sarkar, A.; Phansalkar, A.; Cooper, J. Lamotrigine efficacy, safety, and tolerability for women of childbearing age with bipolar I disorder: Meta-analysis from four randomized, placebo-controlled maintenance studies. Eur. Neuropsychopharmacol. 2024, 78, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Nivoli, A.M.; Pacchiarotti, I.; Rosa, A.R.; Popovic, D.; Murru, A.; Valenti, M.; Bonnin, C.M.; Grande, I.; Sanchez-Moreno, J.; Vieta, E.; et al. Gender differences in a cohort study of 604 bipolar patients: The role of predominant polarity. J. Affect. Disord. 2011, 133, 443–449. [Google Scholar] [CrossRef]
- Tomson, T.; Battino, D.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Perucca, E.; Sabers, A.; Thomas, S.V.; Vajda, F.; Faravelli, F.; et al. Comparative risk of major congenital malformations with eight different antiepileptic drugs: A prospective cohort study of the EURAP registry. Lancet Neurol. 2018, 17, 530–538. [Google Scholar] [CrossRef]
- Sidhu, H.S.; Srinivasa, R.; Sadhotra, A. Evaluate the effects of antiepileptic drugs on reproductive endocrine system in newly diagnosed female epileptic patients receiving either Valproate or Lamotrigine monotherapy: A prospective study. Epilepsy Res. 2018, 139, 20–27. [Google Scholar] [CrossRef]
- Post, R.M.; Leverich, G.S.; Kupka, R.; Keck, P.E.; McElroy, S.L.; Altshuler, L.L.; Frye, M.A.; Rowe, M.; Grunze, H.; Suppes, T.; et al. Clinical correlates of sustained response to individual drugs used in naturalistic treatment of patients with bipolar disorder. Compr. Psychiatry 2016, 66, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Altshuler, L.L.; Kupka, R.W.; Hellemann, G.; Frye, M.A.; Sugar, C.A.; McElroy, S.L.; Nolen, W.A.; Grunze, H.; Leverich, G.S.; Keck, P.E.; et al. Gender and Depressive Symptoms in 711 Patients with Bipolar Disorder Evaluated Prospectively in the Stanley Foundation Bipolar Treatment Outcome Network. Am. J. Psychiatry 2010, 167, 708–715. [Google Scholar] [CrossRef]
- Diflorio, A.; Jones, I. Is sex important? Gender differences in bipolar disorder. Int. Rev. Psychiatry 2010, 22, 437–452. [Google Scholar] [CrossRef]
- Joas, E.; Karanti, A.; Song, J.; Goodwin, G.M.; Lichtenstein, P.; Landén, M. Pharmacological treatment and risk of psychiatric hospital admission in bipolar disorder. Br. J. Psychiatry 2017, 210, 197–202. [Google Scholar] [CrossRef]
- Ragazan, D.C.; Eberhard, J.; Berge, J. Sex-Specific Associations Between Bipolar Disorder Pharmacological Maintenance Therapies and Inpatient Rehospitalizations: A 9-Year Swedish National Registry Study. Front. Psychiatry 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Chen, C.-H.; Lin, S.-K. Carbamazepine treatment of bipolar disorder: A retrospective evaluation of naturalistic long-term outcomes. BMC Psychiatry 2012, 12, 47. [Google Scholar] [CrossRef]
- Allegra, S.; Chiara, F.; Di Grazia, D.; Gaspari, M.; De Francia, S. Evaluation of Sex Differences in Preclinical Pharmacology Research: How Far Is Left to Go? Pharmaceuticals 2023, 16, 786–805. [Google Scholar] [CrossRef] [PubMed]
- Madla, C.M.; Gavins, F.K.; Merchant, H.A.; Orlu, M.; Murdan, S.; Basit, A.W. Let’s talk about sex: Differences in drug therapy in males and females. Adv. Drug Deliv. Rev. 2021, 175, 113804. [Google Scholar] [CrossRef]
Antidepressant Class | Specific Antidepressants | Sex Differences in Efficacy | Notes | References |
---|---|---|---|---|
SSRIs | Fluoxetine, Sertraline, Paroxetine, Citalopram, Escitalopram | Women tend to respond better to SSRIs than men. | Estrogen may enhance the efficacy of SSRIs by boosting serotonergic activity but with an increased risk of sexual side effects in women. | [84,89,90,91] |
SNRIs | Venlafaxine, Duloxetine, Desvenlafaxine | Results for SNRIs are mixed, with some studies suggesting that women may have a stronger response to these medications compared to men. | Due to their dual action on serotonin and norepinephrine, SNRIs may be particularly beneficial for women, especially during hormonal fluctuations. | [86,92,93,94,95] |
TCAs | Amitriptyline, Nortriptyline, Imipramine, Clomipramine | Results are mixed; some studies find no significant sex differences, while others indicate that women may experience more side effects. | Side effects like weight gain and sedation may more adversely affect women, potentially leading to decreased adherence to medication. | [90,96] |
MAOIs | Phenelzine, Tranylcypromine, Isocarboxazid | Evidence is limited, but hormonal factors may play a role. Women have a statistically superior response to MAOIs. | Women may need to consider additional dietary factors and may experience a wider range of side effects. | [97,98] |
Atypical Antidepressants | Bupropion, Mirtazapine, Trazodone | Bupropion generally shows similar effectiveness in both men and women. Mirtazapine might be more effective in men and is also more commonly prescribed for them. | Bupropion is often preferred by women due to its lower risk of sexual side effects; the side effect profile of Mirtazapine may limit its use in women. | [98,99] |
Serotonin Modulators | Vortioxetine, Vilazodone | Initial studies suggest similar efficacy for both sexes, although more data are needed to confirm this. | Additional studies are needed to provide a clearer picture of sex-specific responses. | [100,101] |
Antipsychotic | Efficacy | Side Effects | Sex Differences | References |
---|---|---|---|---|
Aripiprazole | - Effective for both men and women. - Slightly higher serum concentrations in women. | - Generally well tolerated. - Lower risk of weight gain and metabolic side effects. - Common side effects include akathisia and insomnia. | - No significant differences in overall efficacy between the sexes. Women may have slightly higher serum concentrations, possibly leading to more pronounced therapeutic effects at lower doses. | [25,73,124,134] |
Paliperidone | - Effective for symptom control in both men and women. Higher dose-adjusted serum concentrations in women, especially older women. | - Weight gain, hyperprolactinemia, and metabolic side effects are common. - Potential for extrapyramidal symptoms (movement disorders). | - Higher serum concentrations in women can lead to more pronounced therapeutic effects but also a higher risk of side effects. - Women are more susceptible to hyperprolactinemia. | [25,110,124] |
Quetiapine | - Effective for treating schizophrenia and bipolar disorder in both sexes. - Women may show better response in reducing positive and depressive symptoms. | - Common side effects include sedation, weight gain, and metabolic disturbances. - Less risk of extrapyramidal symptoms compared to other antipsychotics. | - Higher dose-adjusted serum concentrations in older women. Men are more likely to experience weight gain and metabolic side effects. - Women may have more prolactin-related issues and hormonal imbalances. | [25,33,135] |
Olanzapine | - Effective for both men and women in treating schizophrenia and bipolar disorder. - Women might achieve therapeutic effects at lower doses. | - Significant risk of weight gain and metabolic side effects. - Sedation and anticholinergic effects. | - Women often achieve therapeutic effects at lower doses due to higher serum concentrations. - Higher risk of weight gain and metabolic issues in women. | [60,74] |
Risperidone | - Effective for both men and women. - Women might require lower doses for efficacy. | - Common side effects include weight gain, hyperprolactinemia, and metabolic disturbances. - Risk of extrapyramidal symptoms at higher doses. | - Women may experience more significant side effects such as hyperprolactinemia and weight gain. - Higher serum concentrations in women. | [25,56,71] |
Clozapine | - Highly effective for treatment-resistant schizophrenia in both sexes. | - Risk of agranulocytosis, weight gain, metabolic issues, and sedation. - Seizure risk and myocarditis. | - Women tend to have higher serum concentrations and may require lower doses. - Higher risk of agranulocytosis and other side effects in women. | [25,119,127] |
Mood Stabilizer | Efficacy in Men | Efficacy in Women | Side Effects in Men | Side Effects in Women | References |
---|---|---|---|---|---|
Lithium | Effective in treating manic episodes. | Effective in preventing depressive episodes. | More likely to experience tremor. | Higher risk of thyroid dysfunction, weight gain, and edema. | [25,31,141] |
Valproate | Effective for manic episodes and rapid cycling. | Effective for rapid cycling and mood stabilization. | Lower incidence of weight gain and metabolic effects. | Higher risk of weight gain, metabolic syndrome, and PCOS. Contraindicated in women of childbearing age due to teratogenic risk. | [25,31,156] |
Lamotrigine | Effective in preventing depressive episodes. | Effective, potentially more robust antidepressant effects. | Lower risk of severe skin reactions. | Higher risk of severe skin reactions (e.g., Stevens–Johnson syndrome). | [153,156] |
Carbamazepine | Effective in reducing mood episodes and hospitalizations. | Effective, particularly in rapid cycling and mixed episodes. | Lower incidence of side effects impacting adherence. | Higher incidence of dizziness, gastrointestinal disturbances, and skin rashes. Higher risk during pregnancy. | [25,162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazza, M.; Lisci, F.M.; Brisi, C.; Traversi, G.; Gaetani, E.; Pola, R.; Marano, G. Beyond One-Size-Fits-All: Personalized Medicine and Future Directions in Sex-Based Psychopharmacological Treatment. Future Pharmacol. 2024, 4, 541-563. https://doi.org/10.3390/futurepharmacol4030030
Mazza M, Lisci FM, Brisi C, Traversi G, Gaetani E, Pola R, Marano G. Beyond One-Size-Fits-All: Personalized Medicine and Future Directions in Sex-Based Psychopharmacological Treatment. Future Pharmacology. 2024; 4(3):541-563. https://doi.org/10.3390/futurepharmacol4030030
Chicago/Turabian StyleMazza, Marianna, Francesco Maria Lisci, Caterina Brisi, Gianandrea Traversi, Eleonora Gaetani, Roberto Pola, and Giuseppe Marano. 2024. "Beyond One-Size-Fits-All: Personalized Medicine and Future Directions in Sex-Based Psychopharmacological Treatment" Future Pharmacology 4, no. 3: 541-563. https://doi.org/10.3390/futurepharmacol4030030
APA StyleMazza, M., Lisci, F. M., Brisi, C., Traversi, G., Gaetani, E., Pola, R., & Marano, G. (2024). Beyond One-Size-Fits-All: Personalized Medicine and Future Directions in Sex-Based Psychopharmacological Treatment. Future Pharmacology, 4(3), 541-563. https://doi.org/10.3390/futurepharmacol4030030