Pharmacogenetics and the Blood–Brain Barrier: A Whirlwind Tour of Potential Clinical Utility
Abstract
:1. Introduction
1.1. Active Transporters
1.2. Personalised and Precision Medicine
1.3. Implicated Single Nucleotide Polymorphisms (SNPs)
2. Results
2.1. Alzheimer’s
2.2. Cancer and Non-Cancerous Tumours
2.3. Depression
2.4. Diabetes Mellitus
2.5. Epilepsy and Other Convulsant Disorders
2.6. HIV
2.7. Influenza
2.8. Ischaemic Events and Stroke
2.9. Nephrotic Syndrome
2.10. Opioid Response and Dependence
2.11. Psychotic Disorders
2.12. Post-Surgical Recovery
2.13. Rheumatoid Arthritis
2.14. Traumatic Brain Injury
3. Discussion
Implications and Next Steps
Author Contributions
Funding
Conflicts of Interest
References
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood-brain barrier: Structure, regulation, and drug delivery. Signal Transduct. Target. Ther. 2023, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.A.; Mykyta, L. QuickStats: Percentage of Adults Aged ≥18 Years Who Took Prescription Medication During the Past 12 Months, by Sex and Age Group—National Health Interview Survey, United States, 2021. Morb. Mortal. Wkly. Rep. 2023, 72, 450. [Google Scholar]
- Eurostat Medication Use Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Medicine_use_statistics (accessed on 12 August 2024).
- Gyawali, B.; Hey, S.P.; Kesselheim, A.S. Assessment of the clinical benefit of cancer drugs receiving accelerated approval. JAMA Intern. Med. 2019, 179, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; Thase, M.E.; Pillinger, T. Treatment resistance in psychiatry: State of the art and new directions. Mol. Psychiatry 2022, 27, 58–72. [Google Scholar] [CrossRef]
- Kalliokoski, A.; Niemi, M. Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol. 2009, 158, 693–705. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, J.; Li, Z.; Wang, Z.; Cheng, D.; Du, Y.; Li, W.; Kan, Q.; Zhang, W. Genetic Polymorphisms and Function of the Organic Anion-Transporting Polypeptide 1A2 and Its Clinical Relevance in Drug Disposition. Pharmacology 2015, 95, 201–208. [Google Scholar] [CrossRef]
- Wang, J.; Yin, J.; Li, W.; Xiao, C.; Han, J.; Zhou, F. Association between SLCO1A2 genetic variation and methotrexate toxicity in human rheumatoid arthritis treatment. J. Biochem. Mol. Toxicol. 2020, 34, e22513. [Google Scholar] [CrossRef]
- Erdman, A.R.; Mangravite, L.M.; Urban, T.J.; Lagpacan, L.L.; Castro, R.A.; de la Cruz, M.; Chan, W.; Huang, C.C.; Johns, S.J.; Kawamoto, M.; et al. The human organic anion transporter 3 (OAT3;SLC22A8): Genetic variation and functional genomics. Am. J. Physiol.-Ren. Physiol. 2006, 290, F905–F912. [Google Scholar] [CrossRef]
- Liu, W.-Y.; Wang, Z.-B.; Zhang, L.-C.; Wei, X.; Li, L. Tight junction in blood-brain barrier: An overview of structure, regulation, and regulator substances. CNS Neurosci. Ther. 2012, 18, 609–615. [Google Scholar] [CrossRef]
- Greene, C.; Hanley, N.; Campbell, M. Claudin-5: Gatekeeper of neurological function. Fluids Barriers CNS 2019, 16, 3. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. ClinVar. [VCV000828556.2]. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000828556.2 (accessed on 12 August 2024).
- Demeule, M.; Régina, A.; Jodoin, J.; Laplante, A.; Dagenais, C.; Berthelet, F.; Moghrabi, A.; Béliveau, R. Drug transport to the brain: Key roles for the efflux pump P-glycoprotein in the blood–brain barrier. Vasc. Pharmacol. 2002, 38, 339–348. [Google Scholar] [CrossRef]
- Iversen, D.B.; Andersen, N.E.; Dalgård Dunvald, A.C.; Pottegård, A.; Stage, T.B. Drug metabolism and drug transport of the 100 most prescribed oral drugs. Basic Clin. Pharmacol. Toxicol. 2022, 131, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front. Aging Neurosci. 2020, 11, 373. [Google Scholar] [CrossRef]
- Zarzuelo Romero, M.J.; Pérez Ramírez, C.; Carrasco Campos, M.I.; Sánchez Martín, A.; Calleja Hernández, M.Á.; Ramírez Tortosa, M.C.; Jiménez Morales, A. Therapeutic value of single nucleotide polymorphisms on the efficacy of new therapies in patients with multiple sclerosis. J. Pers. Med. 2021, 11, 335. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.T.; Ali, S.H.; Al Gawwam, G.A. Integrin alpha-4 gene polymorphism in relation to natalizumab response in multiple sclerosis patients. Neurol. Asia 2023, 28, 349. [Google Scholar] [CrossRef]
- Quintanilha, J.C.; Wang, J.; Sibley, A.B.; Xu, W.; Espin-Garcia, O.; Jiang, C.; Etheridge, A.S.; Ratain, M.J.; Lenz, H.J.; Bertagnolli, M. Genome-wide association studies of survival in 1520 cancer patients treated with bevacizumab-containing regimens. Int. J. Cancer 2022, 150, 279–289. [Google Scholar] [CrossRef]
- Meurer, S.; Pioch, S.; Wagner, K.; Muller-Esterl, W.; Gross, S. AGAP1, a novel binding partner of nitric oxide-sensitive guanylyl cyclase. J. Biol. Chem. 2004, 279, 49346–49354. [Google Scholar] [CrossRef] [PubMed]
- Catalogue of Somatic Mutations in Cancer. AGAP1 Gene View. Available online: https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=AGAP1 (accessed on 12 August 2024).
- Hodges, L.M.; Markova, S.M.; Chinn, L.W.; Gow, J.M.; Kroetz, D.L.; Klein, T.E.; Altman, R.B. Very important pharmacogene summary. Pharmacogenetics Genom. 2011, 21, 152–161. [Google Scholar] [CrossRef]
- Sissung, T.M.; Baum, C.E.; Kirkland, C.T.; Gao, R.; Gardner, E.R.; Figg, W.D. Pharmacogenetics of membrane transporters: An update on current approaches. Mol. Biotechnol. 2010, 44, 152–167. [Google Scholar] [CrossRef]
- Ashley, E.A. Towards precision medicine. Nat. Rev. Genet. 2016, 17, 507–522. [Google Scholar] [CrossRef]
- Vicente, A.M.; Ballensiefen, W.; Jönsson, J.-I. How personalised medicine will transform healthcare by 2030: The ICPerMed vision. J. Transl. Med. 2020, 18, 180. [Google Scholar] [CrossRef] [PubMed]
- Siskind, D.; Siskind, V.; Kisely, S. Clozapine Response Rates among People with Treatment-Resistant Schizophrenia: Data from a Systematic Review and Meta-Analysis. Can. J. Psychiatry 2017, 62, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Herbst, R.S.; Boshoff, C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med. 2021, 27, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Angst, J. A clinical analysis of the effects of tofranil in depression. Psychopharmacologia 1961, 2, 381–407. [Google Scholar] [CrossRef]
- Grof, P.; Duffy, A.; Cavazzoni, P.; Grof, E.; Garnham, J.; MacDougall, M.; O’Donovan, C.; Alda, M. Is Response to Prophylactic Lithium a Familial Trait? J. Clin. Psychiatry 2002, 63, 942–947. [Google Scholar] [CrossRef]
- Arranz, M.J.; de Leon, J. Pharmacogenetics and pharmacogenomics of schizophrenia: A review of last decade of research. Mol. Psychiatry 2007, 12, 707–747. [Google Scholar] [CrossRef] [PubMed]
- Arranz, M.J.; Rivera, M.; Munro, J.C. Pharmacogenetics of Response to Antipsychotics in Patients with Schizophrenia. CNS Drugs 2011, 25, 933–969. [Google Scholar] [CrossRef] [PubMed]
- Ikediobi, O.; Aouizerat, B.; Xiao, Y.; Gandhi, M.; Gebhardt, S.; Warnich, L. Analysis of pharmacogenetic traits in two distinct South African populations. Hum. Genom. 2011, 5, 265–282. [Google Scholar] [CrossRef]
- Ma, J.; Divers, J.; Palmer, N.D.; Julian, B.A.; Israni, A.K.; Schladt, D.; Pastan, S.O.; Chattrabhuti, K.; Gautreaux, M.D.; Hauptfeld, V.; et al. Deceased donor multidrug resistance protein 1 and caveolin 1 gene variants may influence allograft survival in kidney transplantation. Kidney Int. 2015, 88, 584–592. [Google Scholar] [CrossRef] [PubMed]
- McMahon, F.J.; Akula, N.; Schulze, T.G.; Muglia, P.; Tozzi, F.; Detera-Wadleigh, S.D.; Steele, C.J.M.; Breuer, R.; Strohmaier, J.; Wendland, J.R.; et al. Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. Nat. Genet. 2010, 42, 128–131. [Google Scholar]
- Consortium, G.P.; Auton, A.; Brooks, L.; Durbin, R.; Garrison, E.; Kang, H. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed]
- David, V.; Fylan, B.; Bryant, E.; Smith, H.; Sagoo, G.S.; Rattray, M. An Analysis of Pharmacogenomic-Guided Pathways and Their Effect on Medication Changes and Hospital Admissions: A Systematic Review and Meta-Analysis. Front. Genet. 2021, 12, 698148. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, J.; Ledwidge, M.; Gallagher, J.; Keenan, C.; Ryan, C. Pharmacogenetic interventions to improve outcomes in patients with multimorbidity or prescribed polypharmacy: A systematic review. Pharmacogenomics J. 2022, 22, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, Y.; Moriwaki, T.; Ogata, S.; Ito, S.; Ohtsuki, S.; Minegishi, G.; Abe, S.; Ohta, Y.; Kazuki, K.; Kobayashi, K.; et al. Influence of MDR1 gene polymorphism (2677G>T) on expression and function of P-glycoprotein at the blood-brain barrier: Utilizing novel P-glycoprotein humanized mice with mutation. Pharmacogenetics Genom. 2022, 32, 288–292. [Google Scholar] [CrossRef]
- Hitzl, M.; Schaeffeler, E.; Hocher, B.; Slowinski, T.; Halle, H.; Eichelbaum, M.; Kaufmann, P.; Fritz, P.; Fromm, M.F.; Schwab, M. Variable expression of P-glycoprotein in the human placenta and its association with mutations of the multidrug resistance 1 gene (MDR1, ABCB1). Pharmacogenetics 2004, 14, 309–318. [Google Scholar] [CrossRef]
- van Assema, D.M.; Lubberink, M.; Rizzu, P.; van Swieten, J.C.; Schuit, R.C.; Eriksson, J.; Scheltens, P.; Koepp, M.; Lammertsma, A.A.; van Berckel, B.N. Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer’s disease patients: Effect of polymorphisms in the ABCB1 gene. EJNMMI Res. 2012, 2, 57. [Google Scholar] [CrossRef]
- Margier, M.; Collet, X.; May, C.; Desmarchelier, C.; André, F.; Lebrun, C.; Defoort, C.; Bluteau, A.; Borel, P.; Lespine, A.; et al. ABCB1 (P-glycoprotein) regulates vitamin D absorption and contributes to its transintestinal efflux. FASEB J. 2018, 33, 2084–2094. [Google Scholar] [CrossRef] [PubMed]
- Magliulo, L.; Dahl, M.-L.; Lombardi, G.; Fallarini, S.; Villa, L.M.; Biolcati, A.; Scordo, M.G. Do CYP3A and ABCB1 genotypes influence the plasma concentration and clinical outcome of donepezil treatment? Eur. J. Clin. Pharmacol. 2010, 67, 47–54. [Google Scholar] [CrossRef]
- Noetzli, M.; Guidi, M.; Ebbing, K.; Eyer, S.; Wilhelm, L.; Michon, A.; Thomazic, V.; Stancu, I.; Alnawaqil, A.-M.; Bula, C.; et al. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance. Br. J. Clin. Pharmacol. 2014, 78, 135–144. [Google Scholar] [CrossRef]
- Macauda, A.; Castelli, E.; Buda, G.; Pelosini, M.; Butrym, A.; Watek, M.; Kruszewski, M.; Vangsted, A.J.; Rymko, M.; Jamroziak, K.; et al. Inherited variation in the xenobiotic transporter pathway and survival of multiple myeloma patients. Br. J. Haematol. 2018, 183, 375–384. [Google Scholar] [CrossRef]
- Weissfeld, J.L.; Diergaarde, B.; Nukui, T.; Buch, S.; Pennathur, A.; Socinski, M.A.; Siegfried, J.M.; Romkes, M. Inherited variation in the ATP-binding cassette transporter ABCB1 and survival after chemotherapy for stage III-IV lung cancer. J. Thorac. Oncol. 2014, 9, 1264–1271. [Google Scholar] [CrossRef]
- Caronia, D.; Patiño-Garcia, A.; Peréz-Martínez, A.; Pita, G.; Moreno, L.T.; Zalacain-Díez, M.; Molina, B.; Colmenero, I.; Sierrasesúmaga, L.; Benítez, J.; et al. Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: A pharmacogenetic study. PLoS ONE 2011, 6, e26091. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jia, J.; Sun, Z.; Liu, C.; Li, Z.; Xiao, Y.; Yu, J.; Du, F.; Shi, Y.; Sun, J.; et al. Polymorphism of FGD4 and Myelosuppression in Patients with Esophageal Squamous Cell Carcinoma. Future Oncol. 2021, 17, 2351–2363. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Yang, X.; Du, F.; Shi, Y.; Sun, J.; Jia, J.; Liu, C.; Xiao, Y.; Yu, J.; Zhang, X.; et al. Association between polymorphisms of ABCB1 and prognosis in esophageal squamous cell carcinoma patients treated with taxane. J. Gene Med. 2022, 24, e3434. [Google Scholar] [CrossRef] [PubMed]
- Boora, G.K.; Kanwar, R.; Kulkarni, A.A.; Abyzov, A.; Sloan, J.; Ruddy, K.J.; Banck, M.S.; Loprinzi, C.L.; Beutler, A.S. Testing of candidate single nucleotide variants associated with paclitaxel neuropathy in the trial NCCTG N08C1 (Alliance). Cancer Med. 2016, 5, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.E.; Guo, Q.; Dorling, L.; Tyrer, J.; Ingle, S.; Hardy, R.; Vallier, A.-L.; Hiller, L.; Burns, R.; Jones, L.; et al. Replication of Genetic Polymorphisms Reported to Be Associated with Taxane-Related Sensory Neuropathy in Patients with Early Breast Cancer Treated with Paclitaxel. Clin. Cancer Res. 2014, 20, 2466–2475. [Google Scholar] [CrossRef] [PubMed]
- Athanasoulia, A.P.; Sievers, C.; Ising, M.; Brockhaus, A.C.; Yassouridis, A.; Stalla, G.K.; Uhr, M. Polymorphisms of the drug transporter gene ABCB1 predict side effects of treatment with cabergoline in patients with PRL adenomas. Eur. J. Endocrinol. 2012, 167, 327–335. [Google Scholar] [CrossRef]
- Sági, J.C.; Gézsi, A.; Egyed, B.; Jakab, Z.; Benedek, N.; Attarbaschi, A.; Köhrer, S.; Sipek, J.; Winkowska, L.; Zaliova, M.; et al. Pharmacogenetics of the Central Nervous System-Toxicity and Relapse Affecting the CNS in Pediatric Acute Lymphoblastic Leukemia. Cancers 2021, 13, 2333. [Google Scholar] [CrossRef] [PubMed]
- Madejczyk, A.M.; Canzian, F.; Góra-Tybor, J.; Campa, D.; Sacha, T.; Link-Lenczowska, D.; Florek, I.; Prejzner, W.; Całbecka, M.; Rymko, M.; et al. Impact of genetic polymorphisms of drug transporters ABCB1 and ABCG2 and regulators of xenobiotic transport and metabolism PXR and CAR on clinical efficacy of dasatinib in chronic myeloid leukemia. Front. Oncol. 2022, 12, 952640. [Google Scholar] [CrossRef]
- Campa, D.; Sainz, J.; Pardini, B.; Vodickova, L.; Naccarati, A.; Rudolph, A.; Novotny, J.; Försti, A.; Buch, S.; von Schönfels, W.; et al. A comprehensive investigation on common polymorphisms in the MDR1/ABCB1 transporter gene and susceptibility to colorectal cancer. PLoS ONE 2012, 7, e32784. [Google Scholar] [CrossRef]
- Rudolph, A.; Sainz, J.; Hein, R.; Hoffmeister, M.; Frank, B.; Forsti, A.; Brenner, H.; Hemminki, K.; Chang-Claude, J. Modification of menopausal hormone therapy-associated colorectal cancer risk by polymorphisms in sex steroid signaling, metabolism and transport related genes. Endocr. Relat. Cancer 2011, 18, 371–384. [Google Scholar] [CrossRef]
- MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk. Polymorphisms in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women. Breast Cancer Res. Treat. 2009, 120, 727–736. [Google Scholar]
- Vaclavikova, R.; Ehrlichova, M.; Hlavata, I.; Pecha, V.; Kozevnikovova, R.; Trnkova, M.; Adamek, J.; Edvardsen, H.; Kristensen, V.N.; Gut, I.; et al. Detection of frequent ABCB1 polymorphisms by high-resolution melting curve analysis and their effect on breast carcinoma prognosis. Clin. Chem. Lab. Med. 2012, 50, 1999–2007. [Google Scholar] [CrossRef] [PubMed]
- Cousar, J.m.L.; Conley, Y.P.; Willyerd, F.A.; Sarnaik, A.A.; Puccio, A.M.; Empey, P.E.; Kochanek, P.M.; Bell, M.J.; Okonkwo, D.O.; Clark, R.S.B. Influence of ATP-binding cassette polymorphisms on neurological outcome after traumatic brain injury. Neurocrit. Care 2013, 19, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Martino, A.; Campa, D.; Buda, G.; Sainz, J.; García-Sanz, R.; Jamroziak, K.; Reis, R.M.; Weinhold, N.; Jurado, M.; Ríos, R.; et al. Polymorphisms in xenobiotic transporters ABCB1, ABCG2, ABCC2, ABCC1, ABCC3 and multiple myeloma risk: A case–control study in the context of the International Multiple Myeloma rESEarch (IMMEnSE) consortium. Leukemia 2011, 26, 1419–1422. [Google Scholar] [CrossRef] [PubMed]
- Burgueño-Rodríguez, G.; Méndez, Y.; Olano, N.; Schelotto, M.; Castillo, L.; Soler, A.M.; da Luz, J. Pharmacogenetics of pediatric acute lymphoblastic leukemia in Uruguay: Adverse events related to induction phase drugs. Front. Pharmacol. 2023, 14, 1278769. [Google Scholar] [CrossRef]
- Thompson, P.; Wheeler, H.E.; Delaney, S.M.; Lorier, R.; Broeckel, U.; Devidas, M.; Reaman, G.H.; Scorsone, K.; Sung, L.; Dolan, M.E.; et al. Pharmacokinetics and pharmacogenomics of daunorubicin in children: A report from the Children’s Oncology Group. Cancer Chemother. Pharmacol. 2014, 74, 831–838. [Google Scholar] [CrossRef]
- Ji, Q.; Zhang, Y.; Hu, Y.; Liu, L.; Cao, S.; Gao, L.; Li, B.; Tian, Y.; Kong, L.; Wu, S.; et al. The Influence of Methotrexate-Related Transporter and Metabolizing Enzyme Gene Polymorphisms on Peri-Engraftment Syndrome and Graft-Versus-Host Disease after Haplo-Hematopoietic Stem Cell Transplantation in Pediatric Patients with Malignant Hematological Diseases. Blood 2023, 142 (Suppl. S1), 6960. [Google Scholar]
- White, K.L.; Vierkant, R.A.; Fogarty, Z.C.; Charbonneau, B.; Block, M.S.; Pharoah, P.D.P.; Chenevix-Trench, G.; for AOCS/ACS group; Rossing, M.A.; Cramer, D.W.; et al. Analysis of over 10,000 Cases finds no association between previously reported candidate polymorphisms and ovarian cancer outcome. Cancer Epidemiol. Biomark. Prev. 2013, 22, 987–992. [Google Scholar] [CrossRef]
- Peethambaram, P.; Fridley, B.L.; Vierkant, R.A.; Larson, M.C.; Kalli, K.R.; Elliott, E.A.; Oberg, A.L.; White, K.L.; Rider, D.N.; Keeney, G.L. Polymorphisms in ABCB1 and ERCC2 associated with ovarian cancer outcome. Int. J. Mol. Epidemiol. Genet. 2011, 2, 185. [Google Scholar]
- Xie, W.-W.; Zhang, L.; Wu, R.-R.; Yu, Y.; Zhao, J.-P.; Li, L.-H. Case-control association study of ABCB1 gene and major depressive disorder in a local Chinese Han population. Neuropsychiatr. Dis. Treat. 2015, 11, 1967–1971. [Google Scholar]
- Fujii, T.; Ota, M.; Hori, H.; Sasayama, D.; Hattori, K.; Teraishi, T.; Yamamoto, N.; Hashikura, M.; Tatsumi, M.; Higuchi, T.; et al. Association between the functional polymorphism (C3435T) of the gene encoding P-glycoprotein (ABCB1) and major depressive disorder in the Japanese population. J. Psychiatr. Res. 2012, 46, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-M.; Chiu, Y.-F.; Tsai, I.J.; Chen, C.-H.; Shen, W.W.; Liu, S.C.; Lu, S.-C.; Liu, C.-Y.; Hsiao, M.-C.; Tang, H.-S.; et al. ABCB1 gene polymorphisms are associated with the severity of major depressive disorder and its response to escitalopram treatment. Pharmacogenetics Genom. 2011, 21, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.; Chou, C.-H.; Yang, Y.K.; Lee, I.H.; Chen, P.S. Association between ABCB1 Polymorphisms and Antidepressant Treatment Response in Taiwanese Major Depressive Patients. Clin. Psychopharmacol. Neurosci. 2015, 13, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.-X.; Qiu, Y.; Xie, W.-W.; Wu, R.-R.; Yu, Y.; Wu, H.-S.; Li, L.-H. ABCB1 Gene Is Associated With Clinical Response to SNRIs in a Local Chinese Han Population. Front. Pharmacol. 2019, 10, 761. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.B.; Bousman, C.A.; Ng, C.H.; Byron, K.; Berk, M. ABCB1 polymorphism predicts escitalopram dose needed for remission in major depression. Transl. Psychiatry 2012, 2, e198. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Fukuda, T.; Serretti, A.; Wakeno, M.; Okugawa, G.; Ikenaga, Y.; Hosoi, Y.; Takekita, Y.; Mandelli, L.; Azuma, J.; et al. ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Progress Neuro-Psychopharmacol. Biol. Psychiatry 2008, 32, 398–404. [Google Scholar] [CrossRef]
- Ray, A.; Tennakoon, L.; Keller, J.; Sarginson, J.E.; Ryan, H.S.; Murphy, G.M.; Lazzeroni, L.C.; Trivedi, M.H.; Kocsis, J.H.; DeBattista, C.; et al. ABCB1 (MDR1) predicts remission on P-gp substrates in chronic depression. Pharmacogenomics J. 2014, 15, 332–339. [Google Scholar] [CrossRef]
- Menu, P.; Gressier, F.; Verstuyft, C.; Hardy, P.; Becquemont, L.; Corruble, E. Antidepressants and ABCB1 Gene C3435T Functional Polymorphism: A Naturalistic Study. Neuropsychobiology 2010, 62, 193–197. [Google Scholar] [CrossRef]
- Nikisch, G.; Eap, C.; Baumann, P. Citalopram enantiomers in plasma and cerebrospinal fluid of ABCB1 genotyped depressive patients and clinical response: A pilot study. Pharmacol. Res. 2008, 58, 344–347. [Google Scholar] [CrossRef]
- Gex-Fabry, M.; Eap, C.B.; Oneda, B.; Gervasoni, N.; Aubry, J.-M.; Bondolfi, G.; Bertschy, G. CYP2D6 and ABCB1 Genetic Variability: Influence on Paroxetine Plasma Level and Therapeutic Response. Ther. Drug Monit. 2008, 30, 474–482. [Google Scholar] [CrossRef]
- Vancova, Z.; Cizmarikova, M.; Dragasek, J.; Zofcakova, S.; Kolarcik, P.; Mojzis, J. Does G2677T Polymorphism of the MDR1 Gene Make a Difference in the Therapeutic Response to Paroxetine in Depressed Patients in a Slovakian Population? Med. Sci. Monit. 2018, 24, 3136–3145. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Wong, M.L.; Licinio, J. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: Association with major depression and antidepressant response in Mexican-Americans. Mol. Psychiatry 2009, 14, 1105–1118. [Google Scholar] [CrossRef]
- Breitenstein, B.; Scheuer, S.; Pfister, H.; Uhr, M.; Lucae, S.; Holsboer, F.; Ising, M.; Brückl, T.M. The clinical application of ABCB1 genotyping in antidepressant treatment: A pilot study. CNS Spectr. 2013, 19, 165–175. [Google Scholar] [CrossRef] [PubMed]
- de Klerk, O.L.; Nolte, I.M.; Bet, P.M.; Bosker, F.J.; Snieder, H.; den Boer, J.A.; Bruggeman, R.; Hoogendijk, W.J.; Penninx, B.W. ABCB1 gene variants influence tolerance to selective serotonin reuptake inhibitors in a large sample of Dutch cases with major depressive disorder. Pharmacogenomics J. 2012, 13, 349–353. [Google Scholar] [CrossRef]
- Geers, L.M.; Ochi, T.; Vyalova, N.M.; Losenkov, I.S.; Paderina, D.Z.; Pozhidaev, I.V.; Simutkin, G.G.; Bokhan, N.A.; Wilffert, B.; Touw, D.J.; et al. Influence of eight ABCB1 polymorphisms on antidepressant response in a prospective cohort of treatment-free Russian patients with moderate or severe depression: An explorative psychopharmacological study with naturalistic design. Hum. Psychopharmacol. 2022, 37, e2826. [Google Scholar] [CrossRef] [PubMed]
- Magarbeh, L.; Hassel, C.; Choi, M.; Islam, F.; Marshe, V.S.; Zai, C.C.; Zuberi, R.; Gammal, R.S.; Men, X.; Scherf-Clavel, M.; et al. ABCB1 Gene Variants and Antidepressant Treatment Outcomes: A Systematic Review and Meta-Analysis Including Results from the CAN-BIND-1 Study. Clin. Pharmacol. Ther. 2023, 114, 88–117. [Google Scholar] [CrossRef]
- Silberbauer, L.R.; Rischka, L.; Vraka, C.; Hartmann, A.M.; Godbersen, G.M.; Philippe, C.; Pacher, D.; Nics, L.; Klöbl, M.; Unterholzner, J.; et al. ABCB1 variants and sex affect serotonin transporter occupancy in the brain. Mol. Psychiatry 2022, 27, 4502–4509. [Google Scholar] [CrossRef]
- Bly, M.J.; Bishop, J.R.; Thomas, K.L.H.; Ellingrod, V.L. P-glycoprotein (PGP) polymorphisms and sexual dysfunction in female patients with depression and SSRI-associated sexual side effects. J. Sex. Marital. Ther. 2013, 39, 280–288. [Google Scholar] [CrossRef]
- Bet, P.M.; Verbeek, E.C.; Milaneschi, Y.; Straver, D.B.; Uithuisje, T.; Bevova, M.R.; Hugtenburg, J.G.; Heutink, P.; Penninx, B.W.; Hoogendijk, W.J. A common polymorphism in the ABCB1 gene is associated with side effects of PGP-dependent antidepressants in a large naturalistic Dutch cohort. Pharmacogenomics J. 2016, 16, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Chen, H.; Yang, R.; Yu, H.; Wu, Y.; Hu, Y. Type 2 Diabetes Risk and Lipid Metabolism Related to the Pleiotropic Effects of an ABCB1 Variant: A Chinese Family-Based Cohort Study. Metabolites 2022, 12, 875. [Google Scholar] [CrossRef] [PubMed]
- Zimprich, F.; Sunder-Plassmann, R.; Stogmann, E.; Gleiss, A.; Dal-Bianco, A.; Zimprich, A.; Plumer, S.; Baumgartner, C.; Mannhalter, C. Association of an ABCB1 gene haplotype with pharmacoresistance in temporal lobe epilepsy. Neurology 2004, 63, 1087–1089. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-C.; Tai, J.J.; Lin, C.-J.; Lee, M.-J.; Liou, H.-H. Complex Haplotypic Effects of the ABCB1 Gene on Epilepsy Treatment Response. Pharmacogenomics 2005, 6, 411–417. [Google Scholar] [CrossRef]
- Vahab, S.A.; Sen, S.; Ravindran, N.; Mony, S.; Mathew, A.; Vijayan, N.; Nayak, G.; Bhaskaranand, N.; Banerjee, M.; Satyamoorthy, K. Analysis of Genotype and Haplotype Effects of ABCB1 (MDR1) Polymorphisms in the Risk of Medically Refractory Epilepsy in an Indian Population. Drug Metab. Pharmacokinet. 2009, 24, 255–260. [Google Scholar] [CrossRef]
- Sun, F.; Cao, B.-Q.; Wang, B.; Wu, S.-Q.; Jiang, D.-H. Association between ABCB1 genetic polymorphism and the effect on epilepsy following phenytoin treatment. Exp. Ther. Med. 2016, 12, 1780–1784. [Google Scholar] [CrossRef]
- Lovrić, M.; Božina, N.; Hajnšek, S.; Kuzman, M.R.; Sporiš, D.; Lalić, Z.; Božina, T.; Granić, P. Association Between Lamotrigine Concentrations and ABCB1 Polymorphisms in Patients With Epilepsy. Ther. Drug Monit. 2012, 34, 518–525. [Google Scholar] [CrossRef]
- Smolarz, B.; Skalski, D.; Rysz, A.; Marchel, A.; Romanowicz, H.; Makowska, M. Polymorphism of the multidrug resistance 1 gene MDR1 G2677T/A (rs2032582) and the risk of drug-resistant epilepsy in the Polish adult population. Acta Neurol. Belg. 2017, 117, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Chouchi, M.; Klaa, H.; Ben-Youssef Turki, I.; Hila, L. ABCB1 Polymorphisms and Drug-Resistant Epilepsy in a Tunisian Population. Dis. Markers 2019, 2019, 1343650. [Google Scholar] [CrossRef]
- Escalante-Santiago, D.; Feria-Romero, I.A.; Ribas-Aparicio, R.M.; Rayo-Mares, D.; Fagiolino, P.; Vázquez, M.; Escamilla-Núñez, C.; Grijalva-Otero, I.; López-García, M.A.; Orozco-Suárez, S. MDR-1 and MRP2 Gene Polymorphisms in Mexican Epileptic Pediatric Patients with Complex Partial Seizures. Front. Neurol. 2014, 5, 184. [Google Scholar] [CrossRef]
- Kwan, P.; Wong, V.; Ng, P.W.; Lui, C.H.T.; Sin, N.C.; Poon, W.S.; Ng, H.K.; Wong, K.S.; Baum, L. Gene-Wide Tagging Study of Association between ABCB1 Polymorphisms and Multidrug Resistance in Epilepsy in Han Chinese. Pharmacogenomics 2009, 10, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Li, H.-J.; Feng, J.; Zhang, H.-L.; Ting-Ting, W.; Ma, L.; Yu, J.; Zhao, W.-B.; Sun, L.; Yu, L.-H.; et al. Impact of ABCB1 Polymorphisms on Lacosamide Serum Concentrations in Uygur Pediatric Patients With Epilepsy in China. Ther. Drug Monit. 2022, 44, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Abduljabbar, R.; Eid, T.D.; Yousef, A.-M.; Mukred, S.R.; Zawiah, M. SCN1A polymorphisms influence the antiepileptic drugs responsiveness in Jordanian epileptic patients. J. Med. Biochem. 2023, 42, 214. [Google Scholar] [CrossRef]
- Gao, L.; Yin, X.; Li, Y.; Xiao, H.; Yang, L.; Fan, H.; Qi, H.; Zhang, J.; Feng, J.; Zheng, F. Association of MDR1 gene polymorphisms with refractory epilepsy in children. Zhonghua Yi Xue Yi Chuan Xue Za Zhi = Zhonghua Yixue Yichuanxue Zazhi = Chin. J. Med. Genet. 2019, 36, 1073–1076. [Google Scholar]
- Das, A.; Balan, S.; Mathew, A.; Radhakrishnan, V.; Banerjee, M.; Radhakrishnan, K. Corpora amylacea deposition in the hippocampus of patients with mesial temporal lobe epilepsy: A new role for an old gene? Indian. J. Hum. Genet. 2011, 17 (Suppl. S1), S41–S47. [Google Scholar] [PubMed]
- Louis, S.; Busch, R.M.; Lal, D.; Hockings, J.; Hogue, O.; Morita-Sherman, M.; Vegh, D.; Najm, I.; Ghosh, C.; Bazeley, P.; et al. Genetic and molecular features of seizure-freedom following surgical resections for focal epilepsy: A pilot study. Front. Neurol. 2022, 13, 942643. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Hayashida, T.; Hamada, A.; Oki, S.; Oka, S.; Gatanaga, H. High plasma concentrations of dolutegravir in patients with ABCG2 genetic variants. Pharmacogenetics Genom. 2017, 27, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Ngaimisi, E.; Habtewold, A.; Minzi, O.; Makonnen, E.; Mugusi, S.; Amogne, W.; Yimer, G.; Riedel, K.-D.; Janabi, M.; Aderaye, G.; et al. Importance of ethnicity, CYP2B6 and ABCB1 genotype for efavirenz pharmacokinetics and treatment outcomes: A parallel-group prospective cohort study in two sub-Saharan Africa populations. PLoS ONE 2013, 8, e67946. [Google Scholar] [CrossRef]
- Coelho, A.V.C.; Silva, S.P.S.; de Alencar, L.C.A.; Stocco, G.; Crovella, S.; Brandão, L.A.C.; Guimarães, R.L. ABCB1 and ABCC1 variants associated with virological failure of first-line protease inhibitors antiretroviral regimens in Northeast Brazil patients. J. Clin. Pharmacol. 2013, 53, 1286–1293. [Google Scholar] [CrossRef]
- Dhoro, M.; Ngara, B.; Kadzirange, G.; Nhachi, C.; Masimirembwa, C. Genetic Variants of Drug Metabolizing Enzymes and Drug Transporter (ABCB1) as Possible Biomarkers for Adverse Drug Reactions in an HIV/AIDS Cohort in Zimbabwe. Curr. HIV Res. 2014, 11, 481–490. [Google Scholar] [CrossRef]
- Dhoro, M.; Zvada, S.; Ngara, B.; Nhachi, C.; Kadzirange, G.; Chonzi, P.; Masimirembwa, C. CYP2B6*6, CYP2B6*18, Body weight and sex are predictors of efavirenz pharmacokinetics and treatment response: Population pharmacokinetic modeling in an HIV/AIDS and TB cohort in Zimbabwe. BMC Pharmacol. Toxicol. 2015, 16, 4. [Google Scholar] [CrossRef]
- L‘Huillier, A.G.; Ing Lorenzini, K.; Crisinel, P.-A.; Rebsamen, M.C.; Fluss, J.; Korff, C.M.; Barbe, R.P.; Siegrist, C.-A.; Dayer, P.; Posfay-Barbe, K.M.; et al. ABCB1 Polymorphisms and Neuropsychiatric Adverse Events in Oseltamivir-Treated Children During Influenza H1N1/09 Pandemia. Pharmacogenomics 2011, 12, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-O.; Kim, S.-Y.; Yun, D.H.; Lee, S.-W. Association between ABCB1 Polymorphisms and Ischemic Stroke in Korean Population. Exp. Neurobiol. 2012, 21, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Chen, W.; Wang, Y.; Li, H.; Johnston, S.C.; Simon, T.; Zhao, X.; Liu, L.; Wang, D.; Meng, X.; et al. Clopidogrel in High-Risk Patients With Acute Nondisabling Cerebrovascular Events, I. Association Between ABCB1 Polymorphisms and Outcomes of Clopidogrel Treatment in Patients With Minor Stroke or Transient Ischemic Attack: Secondary Analysis of a Randomized Clinical Trial. JAMA Neurol. 2019, 76, 552–560. [Google Scholar]
- Zaorska, K.; Zawierucha, P.; Świerczewska, M.; Ostalska-Nowicka, D.; Zachwieja, J.; Nowicki, M. Prediction of steroid resistance and steroid dependence in nephrotic syndrome children. J. Transl. Med. 2021, 19, 130. [Google Scholar] [CrossRef]
- Levran, O.; O’Hara, K.; Peles, E.; Li, D.; Barral, S.; Ray, B.; Borg, L.; Ott, J.; Adelson, M.; Kreek, M.J. ABCB1 (MDR1) genetic variants are associated with methadone doses required for effective treatment of heroin dependence. Hum. Mol. Genet. 2008, 17, 2219–2227. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Li, J.-H.; Sheu, Y.-L.; Tang, H.-P.; Chang, W.-C.; Tang, T.-C.; Yeh, Y.-C.; Wang, S.-Y.; Liu, R.-H. Moving toward personalized medicine in the methadone maintenance treatment program: A pilot study on the evaluation of treatment responses in Taiwan. Biomed. Res. Int. 2013, 2013, 741403. [Google Scholar] [CrossRef] [PubMed]
- Coller, J.; Barratt, D.; Dahlen, K.; Loennechen, M.; Somogyi, A. ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clin. Pharmacol. Ther. 2006, 80, 682–690. [Google Scholar] [CrossRef]
- Hung, C.-C.; Chiou, M.-H.; Teng, Y.-N.; Hsieh, Y.-W.; Huang, C.-L.; Lane, H.-Y. Functional impact of ABCB1 variants on interactions between P-glycoprotein and methadone. PLoS ONE 2013, 8, e59419. [Google Scholar] [CrossRef]
- Hung, C.-C.; Chiou, M.-H.; Huang, B.-H.; Hsieh, Y.-W.; Hsieh, T.-J.; Huang, C.-L.; Lane, H.-Y. Impact of Genetic Polymorphisms in ABCB1, CYP2B6, OPRM1, ANKK1 and DRD2 Genes on Methadone Therapy in Han Chinese Patients. Pharmacogenomics 2011, 12, 1525–1533. [Google Scholar] [CrossRef]
- Kreutzwiser, D.; Tawfic, Q.A. Methadone for pain management: A pharmacotherapeutic review. CNS Drugs 2020, 34, 827–839. [Google Scholar] [CrossRef]
- Iwersen-Bergmann, S.; Plattner, S.; Hischke, S.; Müller, A.; Andresen-Streichert, H.; Jungen, H.; Erb, R.; Beer-Sandner, B. Brain/blood ratios of methadone and ABCB1 polymorphisms in methadone-related deaths. Int. J. Leg. Med. 2021, 135, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Zahari, Z.; Lee, C.S.; Ibrahim, M.A.; Musa, N.; Mohd Yasin, M.A.; Lee, Y.Y.; Tan, S.C.; Mohamad, N.; Ismail, R. ABCB1 Polymorphisms and Cold Pressor Pain Responses. Nurs. Res. 2017, 66, 134–144. [Google Scholar] [CrossRef]
- Bruce Budowle Laboratory (University of North Texas Health Science Center). Available online: https://www.ncbi.nlm.nih.gov/clinvar/submitters/506790/ (accessed on 12 August 2024).
- Christoffersen, D.J.; Damkier, P.; Feddersen, S.; Möller, S.; Thomsen, J.L.; Brasch-Andersen, C.; Brøsen, K. The ABCB1, rs9282564, AG and TT Genotypes and the COMT, rs4680, AA Genotype are Less Frequent in Deceased Patients with Opioid Addiction than in Living Patients with Opioid Addiction. Basic Clin. Pharmacol. Toxicol. 2016, 119, 381–388. [Google Scholar] [CrossRef]
- Sadhasivam, S.; Chidambaran, V.; Zhang, X.; Meller, J.; Esslinger, H.; Zhang, K.; Martin, L.J.; McAuliffe, J. Opioid-induced respiratory depression: ABCB1 transporter pharmacogenetics. Pharmacogenomics J. 2014, 15, 119–126. [Google Scholar] [CrossRef]
- Geers, L.M.; Pozhidaev, I.V.; Ivanova, S.A.; Freidin, M.B.; Schmidt, A.F.; Cohen, D.; Boiko, A.S.; Paderina, D.Z.; Fedorenko, O.Y.; Semke, A.V.; et al. Association between 8 P-glycoprotein (MDR1/ABCB1) gene polymorphisms and antipsychotic drug-induced hyperprolactinaemia. Br. J. Clin. Pharmacol. 2020, 86, 1827–1835. [Google Scholar] [CrossRef]
- Cho, H.Y.; Yoo, H.D.; Lee, Y.B. Influence of ABCB1 genetic polymorphisms on the pharmacokinetics of levosulpiride in healthy subjects. Neuroscience 2010, 169, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Ivashchenko, D.V.; Khoang, S.Z.; Makhmudova, B.V.; Buromskaya, N.I.; Shimanov, P.V.; Deitch, R.V.; Akmalova, K.A.; Shuev, G.N.; Dorina, I.V.; Nastovich, M.I.; et al. Pharmacogenetics of antipsychotics in adolescents with acute psychotic episode during first 14 days after admission: Effectiveness and safety evaluation. Drug Metab. Drug Interact. 2020, 35, 20200102. [Google Scholar] [CrossRef] [PubMed]
- Kuzman, M.R.; Medved, V.; Bozina, N.; Hotujac, L.; Sain, I.; Bilusic, H. The influence of 5-HT2C and MDR1 genetic polymorphisms on antipsychotic-induced weight gain in female schizophrenic patients. Psychiatry Res. 2008, 160, 308–315. [Google Scholar] [CrossRef]
- Piatkov, I.; Caetano, D.; Assur, Y.; Lau, S.L.; Jones, T.; Boyages, S.C.; McLean, M. ABCB1 and ABCC1 single-nucleotide polymorphisms in patients treated with clozapine. Pharmgenomics Pers. Med. 2017, 10, 235–242. [Google Scholar] [CrossRef]
- Skogh, E.; Sjödin, I.; Josefsson, M.; Dahl, M.-L. High Correlation Between Serum and Cerebrospinal Fluid Olanzapine Concentrations in Patients With Schizophrenia or Schizoaffective Disorder Medicating With Oral Olanzapine as the Only Antipsychotic Drug. J. Clin. Psychopharmacol. 2011, 31, 4–9. [Google Scholar] [CrossRef]
- Consoli, G.; Lastella, M.; Ciapparelli, A.; Dell‘Osso, M.C.; Ciofi, L.; Guidotti, E.; Danesi, R.; Dell‘Osso, L.; Del Tacca, M.; Di Paolo, A. ABCB1 polymorphisms are Associated with Clozapine Plasma Levels in Psychotic Patients. Pharmacogenomics 2009, 10, 1267–1276. [Google Scholar] [CrossRef]
- Rafaniello, C.; Sessa, M.; Bernardi, F.F.; Pozzi, M.; Cheli, S.; Cattaneo, D.; Baldelli, S.; Molteni, M.; Bernardini, R.; Rossi, F.; et al. The predictive value of ABCB1, ABCG2, CYP3A4/5 and CYP2D6 polymorphisms for risperidone and aripiprazole plasma concentrations and the occurrence of adverse drug reactions. Pharmacogenomics J. 2017, 18, 422–430. [Google Scholar] [CrossRef]
- Belmonte, C.; Ochoa, D.; Román, M.; Saiz-Rodríguez, M.; Wojnicz, A.; Gómez-Sánchez, C.I.; Martín-Vílchez, S.; Abad-Santos, F. Influence of CYP2D6, CYP3A4, CYP3A5 and ABCB1 Polymorphisms on Pharmacokinetics and Safety of Aripiprazole in Healthy Volunteers. Basic Clin. Pharmacol. Toxicol. 2018, 122, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Hattori, S.; Suda, A.; Kishida, I.; Miyauchi, M.; Shiraishi, Y.; Fujibayashi, M.; Tsujita, N.; Ishii, C.; Ishii, N.; Moritani, T.; et al. Effects of ABCB1 gene polymorphisms on autonomic nervous system activity during atypical antipsychotic treatment in schizophrenia. BMC Psychiatry 2018, 18, 231. [Google Scholar] [CrossRef] [PubMed]
- Koller, D.; Belmonte, C.; Lubomirov, R.; Saiz-Rodríguez, M.; Zubiaur, P.; Román, M.; Ochoa, D.; Carcas, A.; Wojnicz, A.; Abad-Santos, F. Effects of aripiprazole on pupillometric parameters related to pharmacokinetics and pharmacogenetics after single oral administration to healthy subjects. J. Psychopharmacol. 2018, 32, 1212–1222. [Google Scholar] [CrossRef]
- Xing, Q.; Gao, R.; Li, H.; Feng, G.; Xu, M.; Duan, S.; Meng, J.; Zhang, A.; Qin, S.; He, L. Polymorphisms of the ABCB1 Gene are Associated with the Therapeutic Response to Risperidone in Chinese Schizophrenia Patients. Pharmacogenomics 2006, 7, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Yasui-Furukori, N.; Tsuchimine, S.; Saito, M.; Nakagami, T.; Sato, Y.; Kaneko, S. Association between major Multidrug Resistance 1 (MDR1) gene polymorphisms and plasma concentration of prolactin during risperidone treatment in schizophrenic patients. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2007, 31, 1230–1234. [Google Scholar] [CrossRef]
- Suzuki, T.; Mihara, K.; Nakamura, A.; Kagawa, S.; Nagai, G.; Nemoto, K.; Kondo, T. Effects of Genetic Polymorphisms of CYP2D6, CYP3A5, and ABCB1 on the Steady-State Plasma Concentrations of Aripiprazole and Its Active Metabolite, Dehydroaripiprazole, in Japanese Patients With Schizophrenia. Ther. Drug Monit. 2014, 36, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Lázaro, I.; Herrero, M.J.; Jordán-De Luna, C.; Bosó, V.; Almenar, L.; Rojas, L.; Martínez-Dolz, L.; Megías-Vericat, J.E.; Sendra, L.; Miguel, A.; et al. Association of SNPs with the Efficacy and Safety of Immunosuppressant Therapy after Heart Transplantation. Pharmacogenomics 2015, 16, 971–979. [Google Scholar] [CrossRef]
- de Luna, C.J.; Cervera, M.H.; Lázaro, I.S.; Bonet, L.A.; Andrés, J.P.; Pellicer, S.A. Pharmacogenetic study of ABCB1 and CYP3A5 genes during the first year following heart transplantation regarding tacrolimus or cyclosporine levels. Transplant. Proc. 2011, 43, 2241–2243. [Google Scholar] [CrossRef]
- Moya, P.; Salazar, J.; Arranz, M.J.; Díaz-Torné, C.; Del Río, E.; Casademont, J.; Corominas, H.; Baiget, M. Methotrexate pharmacokinetic genetic variants are associated with outcome in rheumatoid arthritis patients. Pharmacogenomics 2016, 17, 25–29. [Google Scholar] [CrossRef]
- Arnone, D.; Omar, O.; Arora, T.; Östlundh, L.; Ramaraj, R.; Javaid, S.; Govender, R.D.; Ali, B.R.; Patrinos, G.P.; Young, A.H. Effectiveness of pharmacogenomic tests including CYP2D6 and CYP2C19 genomic variants for guiding the treatment of depressive disorders: Systematic review and meta-analysis of randomised controlled trials. Neurosci. Biobehav. Rev. 2023, 144, 104965. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.; Wang, X.; Xu, Q.; Zhang, Y.; Yin, T. Clinical benefits of pharmacogenetic algorithm-based warfarin dosing: Meta-analysis of randomized controlled trials. Thromb. Res. 2015, 135, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Tse, G.; Gong, M.; Li, G.; Wong, S.H.; Wu, W.K.; Wong, W.T.; Roever, L.; Lee, A.P.W.; Lip, G.Y.; Wong, M.C. Genotype-guided warfarin dosing vs. conventional dosing strategies: A systematic review and meta-analysis of randomized controlled trials. Br. J. Clin. Pharmacol. 2018, 84, 1868–1882. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhou, Y.; Chen, C.; Lu, M.; Ma, L.; Cui, Y. Genotype-guided dosing versus conventional dosing of warfarin: A meta-analysis of 15 randomized controlled trials. J. Clin. Pharm. Ther. 2019, 44, 197–208. [Google Scholar] [CrossRef]
Drug Response and Pharmacokinetics | Limited Information | |
---|---|---|
Rs ID | rs3842, rs1045642 (C3435T), rs1922240, rs2032582 (G2677T/A), rs2235013, rs2235033, rs2235046, rs2888599, rs4148727, rs9282564, rs13237132, rs17064, rs868755, rs1128503, rs1202168, rs1211152, rs1922242, rs2032588, rs2214102, rs2214103, rs2235018, rs2235020, rs2235035, rs2235074, rs3213619, rs10276036 | rs2235015 (DRD2 Taq1A), rs55852620, rs58898486 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skvarc, D.R.; Truong, T.T.T.; Lundin, R.M.; Barnes, R.; Wilkes, F.A.; Singh, A.B. Pharmacogenetics and the Blood–Brain Barrier: A Whirlwind Tour of Potential Clinical Utility. Future Pharmacol. 2024, 4, 574-589. https://doi.org/10.3390/futurepharmacol4030032
Skvarc DR, Truong TTT, Lundin RM, Barnes R, Wilkes FA, Singh AB. Pharmacogenetics and the Blood–Brain Barrier: A Whirlwind Tour of Potential Clinical Utility. Future Pharmacology. 2024; 4(3):574-589. https://doi.org/10.3390/futurepharmacol4030032
Chicago/Turabian StyleSkvarc, David R., Trang T. T. Truong, Robert M. Lundin, Russell Barnes, Fiona A. Wilkes, and Ajeet B. Singh. 2024. "Pharmacogenetics and the Blood–Brain Barrier: A Whirlwind Tour of Potential Clinical Utility" Future Pharmacology 4, no. 3: 574-589. https://doi.org/10.3390/futurepharmacol4030032
APA StyleSkvarc, D. R., Truong, T. T. T., Lundin, R. M., Barnes, R., Wilkes, F. A., & Singh, A. B. (2024). Pharmacogenetics and the Blood–Brain Barrier: A Whirlwind Tour of Potential Clinical Utility. Future Pharmacology, 4(3), 574-589. https://doi.org/10.3390/futurepharmacol4030032