Prospect of (Nd3+) Complexes and Its Nanoparticles as Promising Novel Anticancer Agents in Particular Targeting Breast Cancer Cell Lines
Abstract
:1. Introduction
2. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marques, C. Cancer: Lessons to learn from the past. In Bone Sarcomas and Bone Metastases-From Bench to Bedside; Elsevier: Amsterdam, The Netherlands, 2022; pp. 5–15. [Google Scholar]
- Tarin, D. Causes of cancer and mechanisms of carcinogenesis. In Understanding Cancer: The Molecular Mechanisms, Biology, Pathology and Clinical Implications of Malignant Neoplasia; Springer: Berlin/Heidelberg, Germany, 2023; pp. 229–279. [Google Scholar]
- Justiz-Vaillant, A.; Gardiner, L.; Mohammed, M.; Surajbally, M.; Maharaj, L.; Ramsingh, L.; Simon, M.; Seegobin, M.; Niles, M.; Vuma, S. Narrative Literature Review on Risk Factors Involved In Breast Cancer, Brain Cancer, Colon Rectal Cancer, Gynecological Malignancy, Lung Cancer, and Prostate Cancer. Preprints 2021. [Google Scholar] [CrossRef]
- Houghton, S.C.; Hankinson, S.E. Cancer progress and priorities: Breast cancer. Cancer Epidemiol. Biomark. Prev. 2021, 30, 822–844. [Google Scholar] [CrossRef] [PubMed]
- Swallah, M.S.; Bondzie-Quaye, P.; Yu, X.; Fetisoa, M.R.; Shao, C.S.; Huang, Q. Elucidating the protective mechanism of ganoderic acid DM on breast cancer based on network pharmacology and in vitro experimental validation. Biotechnol. Appl. Biochem. 2024, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar] [CrossRef]
- Pedersen, R.N.; Esen, B.Ö.; Mellemkjær, L.; Christiansen, P.; Ejlertsen, B.; Lash, T.L.; Nørgaard, M.; Cronin-Fenton, D. The incidence of breast cancer recurrence 10-32 years after primary diagnosis. JNCI J. Natl. Cancer Inst. 2022, 114, 391–399. [Google Scholar] [CrossRef]
- Meena, K.; Kumari, S.; Mishra, S.; Saini, M.; Chauhan, J.S. The Role of Genetics and Hormones in Women’s Health. In Women’s Health: A Comprehensive Guide to Common Health Issues in Women; Bentham Science Publishers: Sharjah, United Arab Emirates, 2024; pp. 74–100. [Google Scholar]
- Mahdavi, M.; Nassiri, M.; Kooshyar, M.M.; Vakili-Azghandi, M.; Avan, A.; Sandry, R.; Pillai, S.; Lam, A.K.y.; Gopalan, V. Hereditary breast cancer; Genetic penetrance and current status with BRCA. J. Cell. Physiol. 2019, 234, 5741–5750. [Google Scholar] [CrossRef]
- Makovec, T. Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol. Oncol. 2019, 53, 148–158. [Google Scholar] [CrossRef]
- Schmidbaur, H. Metallo-Drugs: Development and Action of Anticancer Agents; De Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Garreffa, E.; Arora, D. Breast cancer in the elderly, in men and during pregnancy. Surgery 2024, 42, 918–925. [Google Scholar]
- Doostmohammadi, A.; Jooya, H.; Ghorbanian, K.; Gohari, S.; Dadashpour, M. Potentials and future perspectives of multi-target drugs in cancer treatment: The next generation anti-cancer agents. Cell Commun. Signal. 2024, 22, 228. [Google Scholar] [CrossRef]
- de Siqueira, L.R.P.; de Moraes Gomes, P.A.T.; de Lima Ferreira, L.P.; de Melo Rêgo, M.J.B.; Leite, A.C.L. Multi-target compounds acting in cancer progression: Focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur. J. Med. Chem. 2019, 170, 237–260. [Google Scholar] [CrossRef]
- Bai, Y.; Aodeng, G.; Ga, L.; Hai, W.; Ai, J. Research Progress of Metal Anticancer Drugs. Pharmaceutics 2023, 15, 2750. [Google Scholar] [CrossRef] [PubMed]
- Leitão, M.I.P.; Morais, T.S. Tailored Metal-Based Catalysts: A New Platform for Targeted Anticancer Therapies. J. Med. Chem. 2024, 67, 16967–16990. [Google Scholar] [CrossRef] [PubMed]
- Dabrowiak, J.C. Metals in Medicine; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Abdolmaleki, S.; Aliabadi, A.; Khaksar, S. Riding the metal wave: A review of the latest developments in metal-based anticancer agents. Coord. Chem. Rev. 2024, 501, 215579. [Google Scholar] [CrossRef]
- Qader, S.M.; Muhammed, A.M.; Omer, R.A.; Abdulkareem, E.I.; Rashid, R.F. Potential of organometallic complexes in medicinal chemistry. Rev. Inorg. Chem. 2024. [Google Scholar] [CrossRef]
- Kostova, I. Lanthanides as anticancer agents. Curr. Med. Chem.-Anti-Cancer Agents 2005, 5, 591–602. [Google Scholar] [CrossRef]
- Presenjit; Chaturvedi, S.; Singh, A.; Gautam, D.; Singh, K.; Mishra, A.K. An insight into the Effect of Schiff Base and their d and f Block Metal complexes on various Cancer cell lines as Anticancer agents: A review. Anti-Cancer Agents Med. Chem.-Anti-Cancer Agents 2024, 24, 488–503. [Google Scholar] [CrossRef]
- Ngoepe, M.P.; Clayton, H.S. Metal complexes as DNA synthesis and/or repair inhibitors: Anticancer and antimicrobial agents. Pharm. Front. 2021, 3, e164–e182. [Google Scholar] [CrossRef]
- Terán, A.; Ferraro, G.; Imbimbo, P.; Sánchez-Peláez, A.E.; Monti, D.M.; Herrero, S.; Merlino, A. Steric hindrance and charge influence on the cytotoxic activity and protein binding properties of diruthenium complexes. Int. J. Biol. Macromol. 2023, 253, 126666. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.X.; Li, M.; Wang, C.; Wang, F.; Zong, H.; Wang, B.; Lv, Z.; Song, N.; Liu, J. Extension of a biotic ligand model for predicting the toxicity of neodymium to wheat: The effects of pH, Ca2+ and Mg2+. Ecotoxicol. Environ. Saf. 2024, 271, 116013. [Google Scholar] [CrossRef]
- Abánades Lázaro, I.; Chen, X.; Ding, M.; Eskandari, A.; Fairen-Jimenez, D.; Giménez-Marqués, M.; Gref, R.; Lin, W.; Luo, T.; Forgan, R.S. Metal–organic frameworks for biological applications. Nat. Rev. Methods Primers 2024, 4, 42. [Google Scholar] [CrossRef]
- Elattar, R.H.; El-Malla, S.F.; Kamal, A.H.; Mansour, F.R. Applications of metal complexes in analytical chemistry: A review article. Coord. Chem. Rev. 2024, 501, 215568. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, W.; Deng, H.; Hu, X.; Zhang, J.; Wang, Y. Robust antibacterial activity of rare-earth ions on planktonic and biofilm bacteria. Biomed. Mater. 2024, 19, 045014. [Google Scholar] [CrossRef]
- Ma, J.; Sun, R.; Xia, K.; Xia, Q.; Liu, Y.; Zhang, X. Design and application of fluorescent probes to detect cellular physical microenvironments. Chem. Rev. 2024, 124, 1738–1861. [Google Scholar] [CrossRef]
- Ahmad, J.; Wahab, R.; Siddiqui, M.A.; Farshori, N.N.; Saquib, Q.; Ahmad, N.; Al-Khedhairy, A.A. Neodymium oxide nanostructures and their cytotoxic evaluation in human cancer cells. J. Trace Elem. Med. Biol. 2022, 73, 127029. [Google Scholar] [CrossRef]
- Kaczmarek, M.T.; Zabiszak, M.; Nowak, M.; Jastrzab, R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev. 2018, 370, 42–54. [Google Scholar] [CrossRef]
- Badria, F.A.; Soliman, S.M.; Atef, S.; Islam, M.S.; Al-Majid, A.M.; Dege, N.; Ghabbour, H.A.; Ali, M.; El-Senduny, F.F.; Barakat, A. Anticancer indole-based chalcones: A structural and theoretical analysis. Molecules 2019, 24, 3728. [Google Scholar] [CrossRef]
- Yan, S.; Na, J.; Liu, X.; Wu, P. Different Targeting Ligands-Mediated Drug Delivery Systems for Tumor Therapy. Pharmaceutics 2024, 16, 248. [Google Scholar] [CrossRef]
- Swamy, P.C.A.; Sivaraman, G.; Priyanka, R.N.; Raja, S.O.; Ponnuvel, K.; Shanmugpriya, J.; Gulyani, A. Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coord. Chem. Rev. 2020, 411, 213233. [Google Scholar] [CrossRef]
- Parker, D.; Williams, J.G. Responsive luminescent lanthanide complexes. In Metal Ions in Biological Systems; Marcel Decker: New York, NY, USA, 2003; Volume 40, pp. 233–280. [Google Scholar]
- Somerville, R.J.; Odena, C.; Obst, M.F.; Hazari, N.; Hopmann, K.H.; Martin, R. Ni (I)–alkyl complexes bearing phenanthroline ligands: Experimental evidence for CO2 insertion at Ni (I) centers. J. Am. Chem. Soc. 2020, 142, 10936–10941. [Google Scholar] [CrossRef]
- Xie, J.; Lee, S.; Chen, X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010, 62, 1064–1079. [Google Scholar] [CrossRef]
- Mu, Q.; Wang, H.; Zhang, M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin. Drug Deliv. 2017, 14, 123–136. [Google Scholar] [CrossRef]
- Akhter, S.; Ahmad, I.; Ahmad, M.Z.; Ramazani, F.; Singh, A.; Rahman, Z.; Ahmad, F.J.; Storm, G.; Kok, R.J. Nanomedicines as cancer therapeutics: Current status. Curr. Cancer Drug Targets 2013, 13, 362–378. [Google Scholar] [CrossRef]
- Maksimović, M.; Omanović-Mikličanin, E. Towards green nanotechnology: Maximizing benefits and minimizing harm. In Proceedings of the CMBEBIH 2017: Proceedings of the International Conference on Medical and Biological Engineering 2017, Sarajevo, Bosnia and Herzegovina, 16–18 March 2017; Springer: Singapore, 2017. [Google Scholar]
- Kahlon, S.K.; Sharma, G.; Julka, J.; Kumar, A.; Sharma, S.; Stadler, F.J. Impact of heavy metals and nanoparticles on aquatic biota. Environ. Chem. Lett. 2018, 16, 919–946. [Google Scholar] [CrossRef]
- Bour, A.; Mouchet, F.; Silvestre, J.; Gauthier, L.; Pinelli, E. Environmentally relevant approaches to assess nanoparticles ecotoxicity: A review. J. Hazard. Mater. 2015, 283, 764–777. [Google Scholar] [CrossRef]
- Cârâc, A.; Boscencu, R.; Dinică, R.M.; Guerreiro, J.F.; Silva, F.; Marques, F.; Campello, M.P.C.; Moise, C.; Brîncoveanu, O.; Enăchescu, M. Synthesis, characterization and antitumor activity of two new dipyridinium ylide based lanthanide (III) complexes. Inorg. Chim. Acta 2018, 480, 83–90. [Google Scholar] [CrossRef]
- Heffeter, P.; Jakupec, M.A.; Körner, W.; Wild, S.; von Keyserlingk, N.G.; Elbling, L.; Zorbas, H.; Korynevska, A.; Knasmüller, S.; Sutterlüty, H. Anticancer activity of the lanthanum compound [tris (1, 10-phenanthroline) lanthanum (III)] trithiocyanate (KP772; FFC24). Biochem. Pharmacol. 2006, 71, 426–440. [Google Scholar] [CrossRef]
- Palizban, A.; Sadeghi-Aliabadi, H.; Abdollahpour, F. Effect of cerium lanthanide on Hela and MCF-7 cancer cell growth in the presence of transferring. Res. Pharm. Sci. 2010, 5, 119. [Google Scholar]
- Bortner, C.D.; Oldenburg, N.B.; Cidlowski, J.A. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 1995, 5, 21–26. [Google Scholar] [CrossRef]
- Sarkar, T.; Banerjee, S.; Mukherjee, S.; Hussain, A. Mitochondrial selectivity and remarkable photocytotoxicity of a ferrocenyl neodymium (III) complex of terpyridine and curcumin in cancer cells. Dalton Trans. 2016, 45, 6424–6438. [Google Scholar] [CrossRef]
- Chen, D.; Cui, Q.C.; Yang, H.; Barrea, R.A.; Sarkar, F.H.; Sheng, S.; Yan, B.; Reddy, G.P.V.; Dou, Q.P. Clioquinol, a therapeutic agent for Alzheimer’s disease, has proteasome-inhibitory, androgen receptor–suppressing, apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts. Cancer Res. 2007, 67, 1636–1644. [Google Scholar] [CrossRef]
- Boldyrev, I.; Gaenko, G.; Moiseeva, E.; Deligeorgiev, T.; Kaloyanova, S.; Lesev, N.; Vasilev, A.; Molotkovsky, J. Europium complexes of 1, 10-phenanthrolines: Their inclusion in liposomes and cytotoxicity. Russ. J. Bioorg. Chem. 2011, 37, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-K.; Kang, M.-K.; Jung, K.-H.; Kang, S.-H.; Kim, Y.-H.; Jung, J.-C.; Lee, G.H.; Chang, Y.; Kim, T.-J. Gadolinium complex of DO3A-benzothiazole aniline (BTA) conjugate as a theranostic agent. J. Med. Chem. 2013, 56, 8104–8111. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wang, X.; Li, T.; Aime, S.; Sadler, P.J.; Guo, Z. Platinum (II)–Gadolinium (III) Complexes as Potential Single-Molecular Theranostic Agents for Cancer Treatment. Angew. Chem. 2014, 126, 13441–13444. [Google Scholar] [CrossRef]
- Kwong, W.-L.; Sun, R.W.-Y.; Lok, C.-N.; Siu, F.-M.; Wong, S.-Y.; Low, K.-H.; Che, C.-M. An ytterbium (III) porphyrin induces endoplasmic reticulum stress and apoptosis in cancer cells: Cytotoxicity and transcriptomics studies. Chem. Sci. 2013, 4, 747–754. [Google Scholar] [CrossRef]
- Zaki, N.G.; Mahmoud, W.H.; El Kerdawy, A.M.; Abdallah, A.M.; Mohamed, G.G. Structural characterization, thermal, DFT, cytotoxicity, and antimetastatic properties of cocaine complexes with La (III), Er (III), and Yb (III). Res. Chem. Intermed. 2020, 46, 3193–3216. [Google Scholar] [CrossRef]
- Aziz, A.A.A.; Sayed, M.A. Some novel rare earth metal ions complexes: Synthesis, characterization, luminescence and biocidal efficiency. Anal. Biochem. 2020, 598, 113645. [Google Scholar]
- Tăbăcaru, A.; Dediu, A.V.B.; Dinică, R.M.; Carac, G.; Basliu, V.; Campello, M.P.C.; Silva, F.; Pinto, C.I.; Guerreiro, J.F.; Martins, M. Biological properties of a new mixed lanthanide (III) complex incorporating a dypiridinium ylide. Inorg. Chim. Acta 2020, 506, 119517. [Google Scholar] [CrossRef]
- García-Valdivia, A.A.; Cepeda, J.; Fernández, B.; Medina-O’Donnell, M.; Oyarzabal, I.; Parra, J.; Jannus, F.; Choquesillo-Lazarte, D.; García, J.A.; Lupiáñez, J.A. 5-Aminopyridine-2-carboxylic acid as appropriate ligand for constructing coordination polymers with luminescence, slow magnetic relaxation and anti-cancer properties. J. Inorg. Biochem. 2020, 207, 111051. [Google Scholar] [CrossRef]
- Campello, M.P.C.; Palma, E.; Correia, I.; Paulo, P.M.; Matos, A.; Rino, J.; Coimbra, J.; Pessoa, J.C.; Gambino, D.; Paulo, A. Lanthanide complexes with phenanthroline-based ligands: Insights into cell death mechanisms obtained by microscopy techniques. Dalton Trans. 2019, 48, 4611–4624. [Google Scholar] [CrossRef]
- Meng, T.; Liu, T.; Qin, Q.-P.; Chen, Z.-L.; Zou, H.-H.; Wang, K.; Liang, F.-P. Mitochondria-localizing dicarbohydrazide Ln complexes and their mechanism of in vitro anticancer activity. Dalton Trans. 2020, 49, 4404–4415. [Google Scholar] [CrossRef]
- Kostova, I.; Manolov, I.; Momekov, G. Cytotoxic activity of new neodymium (III) complexes of bis-coumarins. Eur. J. Med. Chem. 2004, 39, 765–775. [Google Scholar] [CrossRef]
- Creaven, B.S.; Egan, D.A.; Kavanagh, K.; McCann, M.; Noble, A.; Thati, B.; Walsh, M. Synthesis, characterization and antimicrobial activity of a series of substituted coumarin-3-carboxylatosilver (I) complexes. Inorg. Chim. Acta 2006, 359, 3976–3984. [Google Scholar] [CrossRef]
- Patil, S.A.; Kandathil, V.; Sobha, A.; Somappa, S.B.; Feldman, M.R.; Bugarin, A.; Patil, S.A. Comprehensive review on medicinal applications of coumarin-derived imine–metal complexes. Molecules 2022, 27, 5220. [Google Scholar] [CrossRef]
- Gopinath, K.; Gnanasekar, S.; Al-Ghanim, K.A.; Nicoletti, M.; Govindarajan, M.; Arumugam, A.; Balalakshmi, C.; Thanakkasaranee, S. Fabrication of neodymium (Nd), cadmium (Cd) and Nd: Cd doped hybrid copper oxide nanocomposites: Evaluation of their antibacterial activity and cytotoxicity against human L132 cell line. Ceram. Int. 2023, 49, 29933–29947. [Google Scholar] [CrossRef]
- Chundawat, N.S.; Jadoun, S.; Zarrintaj, P.; Chauhan, N.P.S. Lanthanide complexes as anticancer agents: A review. Polyhedron 2021, 207, 115387. [Google Scholar] [CrossRef]
- Kostova, I.; Valcheva-Traykova, M. Synthesis, characterization, and antioxidant activity of a new Gd (III) complex. J. Coord. Chem. 2015, 68, 4082–4101. [Google Scholar] [CrossRef]
- Kostova, I.; Peica, N.; Kiefer, W. Theoretical and spectroscopic studies of new lanthanum (III) complex of orotic acid. Vib. Spectrosc. 2007, 44, 209–219. [Google Scholar] [CrossRef]
- Haas, K.L.; Franz, K.J. Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev. 2009, 109, 4921–4960. [Google Scholar] [CrossRef]
- Kostova, I.; Mojžiš, J.; Chiş, V. Theoretical and Experimental Vibrational Characterization of Biologically Active Nd(III) Complex. Molecules 2021, 26, 2726. [Google Scholar] [CrossRef]
- More, M.; Joshi, P.; Mishra, Y.; Khanna, P. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Mater. Today Chem. 2019, 14, 100195. [Google Scholar] [CrossRef]
- Karati, D.; Mukherjee, S.; Roy, S. An Explicative Review on the Current Advancement in Schiff Base-Metal Complexes as Anticancer Agents Evolved in the Past Decade: Medicinal Chemistry Aspects. Med. Chem. 2023, 19, 960–985. [Google Scholar] [CrossRef]
- Abd El-Halim, H.; Mohamed, G.G.; Anwar, M.N. Antimicrobial and anticancer activities of Schiff base ligand and its transition metal mixed ligand complexes with heterocyclic base. Appl. Organomet. Chem. 2018, 32, e3899. [Google Scholar] [CrossRef]
- Filippou, C.; Themistocleous, S.C.; Marangos, G.; Panayiotou, Y.; Fyrilla, M.; Kousparou, C.A.; Pana, Z.-D.; Tsioutis, C.; Johnson, E.O.; Yiallouris, A. Microbial Therapy and Breast Cancer Management: Exploring Mechanisms, Clinical Efficacy, and Integration within the One Health Approach. Int. J. Mol. Sci. 2024, 25, 1110. [Google Scholar] [CrossRef]
- Abdalla, E.M.; Abd-Allah, M. Synthesis, Characterization, Antimicrobial/Antitumor Activity of Binary and Ternary Neodymium (III) Complex with 2, 2′-((1E, 1′E)-(ethane-1, 2-diylbis (azaneylylidene)) bis (methaneylylidene)) diphenol and Imidazole. Egypt. J. Chem. 2022, 65, 735–744. [Google Scholar] [CrossRef]
- Meenakshi, P.; Kaur, K.; Bala, N.; Gupta, N.; Malik, A.K. Innovative Lanthanide Complexes: Shaping the future of cancer/tumor Chemotherapy. J. Trace Elem. Med. Biol. 2023, 80, 127277. [Google Scholar]
- de Oliveira Neto, J.G.; Viana, J.R.; Abreu, K.R.; Butarelli, A.L.A.; dos Santos, A.P.A.; Lage, M.R.; de Sousa, F.F.; Souto, E.B.; dos Santos, A.O. Antitumor neodymium(III) complex with 1,10-phenanthroline and nitrate ligands: A comprehensive experimental-theoretical study, in silico pharmacokinetic and cytotoxic properties. J. Mol. Struct. 2025, 1321, 139757. [Google Scholar] [CrossRef]
- Zheng, Y.Q.; Zhou, L.X.; Lin, J.L.; Zhang, S.W. Syntheses and Crystal Structures of Ln (phen)2(NO3)3 with Ln = Pr, Nd, Sm, Eu, Dy, and phen = 1, 10-phenanthroline. Z. Für Anorg. Allg. Chem. 2001, 627, 1643–1646. [Google Scholar] [CrossRef]
- Măciucă, A.-M.; Munteanu, A.-C.; Uivarosi, V. Quinolone complexes with lanthanide ions: An insight into their analytical applications and biological activity. Molecules 2020, 25, 1347. [Google Scholar] [CrossRef]
- Kostova, I.; Trendafilova, N.; Mihaylov, T. Theoretical and spectroscopic studies of pyridyl substituted bis-coumarins and their new neodymium (III) complexes. Chem. Phys. 2005, 314, 73–84. [Google Scholar] [CrossRef]
- Raju, L.; Rajkumar, E. Coordination compounds of iron, ruthenium and osmium. In Photochemistry and Photophysics of Coordination Compounds; Elsevier: Amsterdam, The Netherlands, 2023; pp. 135–203. [Google Scholar]
- Carbonati, T.; Cionti, C.; Cosaert, E.; Nimmegeers, B.; Meroni, D.; Poelman, D. NIR emitting GdVO4: Nd nanoparticles for bioimaging: The role of the synthetic pathway. J. Alloys Compd. 2021, 862, 158413. [Google Scholar] [CrossRef]
- Abo-Rehab, R.S.; Kasim, E.A.; Farhan, N.; Tolba, M.S.; Shehata, M.R.; Abdalla, E.M. Synthesis, characterization, anticancer, antibacterial, antioxidant, DFT, and molecular docking of novel La (III), Ce (III), Nd (III), and Dy (III) lanthanide complexes with Schiff base derived from 2-aminobenzothiazole and coumarin. Appl. Organomet. Chem. 2024, 38, e7622. [Google Scholar] [CrossRef]
- Wong, W.K.; Yang, X.; Jones, R.A.; Rivers, J.H.; Lynch, V.; Lo, W.K.; Xiao, D.; Oye, M.M.; Holmes, A.L. Multinuclear luminescent schiff-base Zn− Nd sandwich complexes. Inorg. Chem. 2006, 45, 4340–4345. [Google Scholar] [CrossRef]
- Madanhire, T.; Davids, H.; Pereira, M.C.; Hosten, E.C.; Abrahams, A.r. Lanthanide complexes with N-(2, 6-dimethylphenyl) oxamate: Synthesis, characterisation and cytotoxicity. Polyhedron 2020, 184, 114561. [Google Scholar] [CrossRef]
- Caporale, A.; Palma, G.; Mariconda, A.; Del Vecchio, V.; Iacopetta, D.; Parisi, O.I.; Sinicropi, M.S.; Puoci, F.; Arra, C.; Longo, P. Synthesis and antitumor activity of new group 3 metallocene complexes. Molecules 2017, 22, 526. [Google Scholar] [CrossRef]
- Sundrarajan, M.; Muthulakshmi, V. Green synthesis of ionic liquid mediated neodymium oxide nanoparticles by Andrographis paniculata leaves extract for effective bio-medical applications. J. Environ. Chem. Eng. 2021, 9, 104716. [Google Scholar] [CrossRef]
- Dang, Y.; Bai, J.; Lou, K.; Yang, R.; Gao, Y.; Tian, H.; Li, J.; Lin, L.; Lv, R.; Wang, P. Intraoperative Surgical Margin Assessment by NIR-II Imaging with Urine Excretable Nd-Based Nanoprobe in Breast Cancers. Adv. Funct. Mater. 2024, 34, 2311673. [Google Scholar] [CrossRef]
- Ansari, A.A.; Khan, A.; Alam, M.; Siddiqui, M.A.; Ahmad, N.; Alkhedhairy, A.A. Optically active neodymium hydroxide surface-functionalized mesoporous silica micro-cocoons for biomedical applications. Colloids Surf. B Biointerfaces 2020, 189, 110877. [Google Scholar] [CrossRef]
- Yang, Z.; Ji, Y.; Jia, Q.; Feng, Y.; Ji, R.; Bai, M.; Yan, H.; Sun, F.; Zhang, R.; Wang, Z. Real-time detection and resection of sentinel lymph node metastasis in breast cancer through a rare earth nanoprobe based NIR-IIb fluorescence imaging. Mater. Today Bio 2024, 28, 101166. [Google Scholar] [CrossRef]
- Alexander, A.; Pillai, A.S.; Manikantan, V.; Varalakshmi, G.S.; Akash, B.A.; Enoch, I.V. Magnetic and luminescent neodymium-doped carbon dot-cyclodextrin polymer nanocomposite as an anticancer drug-carrier. Mater. Lett. 2022, 313, 131830. [Google Scholar] [CrossRef]
- Bheeram, V.R.; Dadhich, A.S.; Nagumantri, R.; Rentala, S.; Saha, A.; Mukkamala, S.B. Gamma ray enhanced Vis-NIR photoluminescence and cytotoxicity of biocompatible silica coated Nd3+ doped GdPO4 nanophosphors. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019, 440, 11–18. [Google Scholar] [CrossRef]
- Jin, W.; Wang, Q.; Wu, M.; Li, Y.; Tang, G.; Ping, Y.; Chu, P.K. Lanthanide-integrated supramolecular polymeric nanoassembly with multiple regulation characteristics for multidrug-resistant cancer therapy. Biomaterials 2017, 129, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Jafarirad, S.; Hammami Torghabe, E.; Rasta, S.H.; Salehi, R. A novel non-invasive strategy for low-level laser-induced cancer therapy by using new Ag/ZnO and Nd/ZnO functionalized reduced graphene oxide nanocomposites. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. S2), 800–816. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Ye, J.; Ren, S.; Wang, G.; Lv, J.; Zhang, S.; Che, Y.; Li, Y.; Chen, B.; Ning, G. Temperature Feedback-Controlled Photothermal/Photodynamic/Chemodynamic Combination Cancer Therapy Based on NaGdF4: Er, Yb@ NaGdF4: Nd@ Cu-BIF Nanoassemblies. Adv. Healthc. Mater. 2020, 9, 2001205. [Google Scholar] [CrossRef]
Lanthanide Metals | Cell Line | Mode of Action | References |
---|---|---|---|
La3+, Nd3+ | MCF7 | Apoptotic cell death | [42] |
La3+ | MCF7 and MDA-MB-231 | DNA-laddering phenomenon | [43] |
La3+ | MDA-MB435 | DNA intercalation | [44] |
Ce3+ | MDA-MB-231 breast cancer cells, MCF-7 | Mechanism of action remains unclarified DNA cleavage | [45,46] |
Pr3+, Er3+ and Yb3+ | Human breast cancer (MCF7), and cervical (HeLa) | Programmed cell death | [47,48] |
La3+ | HeLa and MCF-7 cells | Complex accumulates within the mitochondria of HeLa cells and induces apoptosis, cleaves plasmid DNA | [49,50] |
Eu3+, Gd3+, Nd3+, Sm3+ and Tb3+ | HeLa and MCF-7 cells | Complex accumulates within the mitochondria of HeLa cells and induces apoptosis, cleaves plasmid DNA | [51] |
Eu3+ and Tb3+ | MDA-MB-231 (mammary cancer) and PC-3 (prostate carcinoma) cell lines, HBL-100 human breast carcinoma cells, and MCF7 cell lines | Complex and ct-DNA binding, Liposomes, anti- | [52] |
Gd3+ | Human breast cancer MCF-7 | angiogenic activity | [53] |
Pr3+, Er3+ and Yb3+ | human breast cancer (MCF7) | DNA fragmentation | [54] |
La3+, Er3+ and Yb3+ | MCF-7 | Elevated the cellular levels of caspase-3 and caspase-9 | [55] |
La3+, Sm3+ and Yb3+ | human breast cancer (MCF-7) cell lines | Intercalate into the double-stranded DNA (or) bind to the phosphate group of the DNA backbone | [56] |
La3+ and Nd3+ | Ovarian (A2780), breast (MCF7) | Caspase activation, DNA fragmentation, | [57] |
Ce3+, Nd3+, Gd3+ and Er3+ | MCF-7 | [56] |
Complex | Ligand | Geometry | Pathway | Doses Assay (IC50 = μm) | Time | Cell Line | Ref. | |
---|---|---|---|---|---|---|---|---|
C1, C2 | - | Distorted square anti-prismatic | MTT assay | Light | Dark | - | MCF-7 | [46] |
53.1 ± 2.5 (62.6 ± 2.8) | 80.3 ± 2.1 (94.5 ± 3.1) | |||||||
- | - | MTT assay | 4.2 ± 0.8 (9.6 ± 1.2) | >50 (>50) | - | MCF-7 | ||
C3, C4 | - | Tricapped trigonal prismatic | MTT assay | 13.2 ± 1.6 (19.9 ± 1.8) | >50 (>50 | - | MCF-7 | |
- | - | MTT assay | 0.7 ± 0.2 (2.1 ± 0.6) | >50 (>50) | - | MCF-7 | ||
C5 | L1 | Distorted pentagonal bipyramidal | MTT assay | MCF-7 (IC50 = 25) MDA-MB-231 (IC50 = 30) | 72 h | MCF-7, MDA-MB-231 | [23] | |
C6 | L2 | Distorted octahedral | MTT assay | - | - | MDA-MB231 | [71] | |
C7 | Distorted octahedral | MTT assay | - | - | MDA-MB231 | |||
C8 | L3 | Distorted dodecahedral | Hoechst nuclei staining assay | 1.6 ± 0.4 for L3 45 ± 18 for Cisplatin | 24 h | MCF-7 | [54] | |
0.3 ± 0.2 for L3 20 ± 6 for Cisplatin | 48 h | |||||||
C9 | - | Distorted bicapped square antiprismatic | MTT assay | 0.3 ± 0.2 for MCF-7 | 48 h | MCF-7 cells | [80] | |
C10 | L4 | Dodecahedral | MTT assay | 0.861 ± 0.544 | 24 h | MCF-7 | [79] | |
C11 | - | Icosahedral | MTT assay | 46.8 ± 6.46 | 24 h | MCF-7 | [81] | |
C12 | L5 | - | MTT assay | 6 ± 50 | 48 h | MDA. MB231 | [82] | |
C13 | L5 | - | MTT assay | - | - | MDA. MB231 | ||
C14 | L5 | - | MTT assay | - | - | MDA. MB231 |
Nd-Nanoparticles | Synthesis Method | Dose Assay (IC50) | Cell Line | Pathway | Modal | Cell Viability | Ref. |
---|---|---|---|---|---|---|---|
Nd2O3-IL | Green Synthesis Method | 63 μg/mL | MCF-7 | MTT assay | - | 25.82% | [83] |
Sio2@Nd(OH)3 | Sol–gel process | 25 μg/mL | MCF-7 A-549 | MTT assay | - | 75% | [85] |
Renps@HA | Thermal decomposition method | 50 μg mL−1 | MCF-7 MCF-10A MDA-MB-231 | MTT assay | In vivo | 95% | [86] |
Nd-doped C-dots | Hydrothermal method | 10 μg/mL 3.1 ± 0.4 | MCF-7 | MTT assay | In vitro | 86.3% | [87] |
Gdpo4:Nd3+@sio2 | Solution combustion method | 25 µg/mL | PC-3 MCF-7 | MTT assay | - | - | [88] |
PCD/siRNA/Nd-PC | - | 34.0 µg/mL | MCF-7 ADR cells | MTT assay | In vitro and in vivo | - | [89] |
Nd-zno/rgo ncs | Hydrothermal process | 25 µg/mL | MCF-7 | MTT assay | In vitro | 80% | [90] |
Nagdf4:Nd@Cu(II) | Thermal decomposition method | 400 µg/mL | Hela MCF-7 | MTT assay | In vitro and in vivo | 12% | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuilaiwi, F.A. Prospect of (Nd3+) Complexes and Its Nanoparticles as Promising Novel Anticancer Agents in Particular Targeting Breast Cancer Cell Lines. Future Pharmacol. 2025, 5, 4. https://doi.org/10.3390/futurepharmacol5010004
Abuilaiwi FA. Prospect of (Nd3+) Complexes and Its Nanoparticles as Promising Novel Anticancer Agents in Particular Targeting Breast Cancer Cell Lines. Future Pharmacology. 2025; 5(1):4. https://doi.org/10.3390/futurepharmacol5010004
Chicago/Turabian StyleAbuilaiwi, Faraj Ahmad. 2025. "Prospect of (Nd3+) Complexes and Its Nanoparticles as Promising Novel Anticancer Agents in Particular Targeting Breast Cancer Cell Lines" Future Pharmacology 5, no. 1: 4. https://doi.org/10.3390/futurepharmacol5010004
APA StyleAbuilaiwi, F. A. (2025). Prospect of (Nd3+) Complexes and Its Nanoparticles as Promising Novel Anticancer Agents in Particular Targeting Breast Cancer Cell Lines. Future Pharmacology, 5(1), 4. https://doi.org/10.3390/futurepharmacol5010004