Analyzing Small-Signal Stability in a Multi-Source Single-Area Power System with a Load-Frequency Controller Coordinated with a Photovoltaic System
Abstract
:1. Introduction
2. Load Frequency Control
3. Photovoltaic System
4. Small-Signal Model
4.1. Participation Coefficients of Generation Units
4.2. Rotating Mass Model
4.3. Governor-Turbine Dynamic Model of Hydro Energy Facility
4.4. Governor-Turbine Dynamic Model of Thermal Power Plant
4.5. Governor-Turbine Dynamic Model of Thermal Power Plant
5. Simulation Results
5.1. Demand Step Increase without PV System
5.2. Effect of Photovoltaic System
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
ΔF | Frequency deviation |
ΔPM | Mechanical power deviation |
ΔPD | Demand load deviation |
JM | Combined inertial constant |
KD | Load-damping constant |
ΔPMH | Hydro turbine mechanical power deviation |
ΔPMR | Thermal with reheater turbine mechanical power deviation |
ΔPMW | Thermal without reheater turbine mechanical power deviation |
TW | Nominal starting time of water in penstock |
TT | Steam turbine time constant |
TR | Long reset time |
References
- Fathollahi, A.; Gheisarnejad, M.; Boudjadar, J.; Homayounzadeh, M.; Khooban, M.-H. Optimal Design of Wireless Charging Electric Buses-Based Machine Learning: A Case Study of Nguyen-Dupuis Network. IEEE Trans. Veh. Technol. 2023, 72, 8449–8458. [Google Scholar] [CrossRef]
- Yildirim, B.; Razmi, P.; Fathollahi, A.; Gheisarnejad, M.; Khooban, M.H. Neuromorphic deep learning frequency regulation in stand-alone microgrids. Appl. Soft Comput. 2023, 144, 110418. [Google Scholar] [CrossRef]
- Fathollahi, A.; Kargar, A.; Yaser Derakhshandeh, S. Enhancement of power system transient stability and voltage regulation performance with decentralized synergetic TCSC controller. Int. J. Electr. Power Energy Syst. 2022, 135, 107533. [Google Scholar] [CrossRef]
- Fathollahi, A.; Gheisarnejad, M.; Andresen, B.; Farsizadeh, H.; Khooban, M.-H. Robust Artificial Intelligence Controller for Stabilization of Full-Bridge Converters Feeding Constant Power Loads. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 3504–3508. [Google Scholar] [CrossRef]
- Salas, V.; Olías, E.; Barrado, A.; Lázaro, A. Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Sol. Energy Mater. Sol. Cells 2006, 90, 1555–1578. [Google Scholar] [CrossRef]
- Ghorbani, H.; Majidi, B. Power density optimization through optimal selection of PM properties in a PM-SyncRM using FEM analysis. In Proceedings of the 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Shiraz, Iran, 12–14 February 2019; pp. 44–49. [Google Scholar]
- Motaghi, A.; AaLIzadeh, M.; Abbasian, M. Reactive power compensation and reducing network transmission losses by optimal placement of parallel and series FACTS devices with fuzzy-evolutionary method. J. Intell. Proced. Electr. Technol. 2019, 9, 27–38. [Google Scholar]
- Ghfarokhi, G.S.; Arezoomand, M.; Mahmoodian, H. Analysis and simulation of the single-machine infinite-bus with power system stabilizer and parameters variation effects. In Proceedings of the 2007 International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, 25–28 November 2007; pp. 167–171. [Google Scholar]
- Rajamand, S. Load frequency control and dynamic response improvement using energy storage and modeling of uncertainty in renewable distributed generators. J. Energy Storage 2021, 37, 102467. [Google Scholar] [CrossRef]
- Jeddi-Golfazani, M.; Vahedi, M.; Gandomkar, M. Design of robust reset controller based on optimal after reset performance to improve the performance of an industrial robot control. J. Intell. Proced. Electr. Technol. 2023, 14, 83–100. [Google Scholar]
- Wang, W.; Yorino, N.; Sasaki, Y.; Zoka, Y.; Bedawy, A.; Kawauchi, S. A novel adaptive model predictive frequency control using unscented Kalman filter. Electr. Power Syst. Res. 2022, 213, 108721. [Google Scholar] [CrossRef]
- Ahmed, E.M.; Mohamed, E.A.; Selim, A.; Aly, M.; Alsadi, A.; Alhosaini, W.; Alnuman, H.; Ramadan, H.A. Improving load frequency control performance in interconnected power systems with a new optimal high degree of freedom cascaded FOTPID-TIDF controller. Ain Shams Eng. J. 2023, 14, 102207. [Google Scholar] [CrossRef]
- Li, B.; Hu, S.; Zhong, Q.; Shi, K.; Zhong, S. Dynamic memory event-triggered proportional-integral-based H∞ load frequency control for multi-area wind power systems. Appl. Math. Comput. 2023, 453, 128070. [Google Scholar] [CrossRef]
- Rajaguru, V.; Annapoorani, K.I. Virtual synchronous generator based superconducting magnetic energy storage unit for load frequency control of micro-grid using African vulture optimization algorithm. J. Energy Storage 2023, 65, 107343. [Google Scholar] [CrossRef]
- Mosaad, M.I.; Sabiha, N.A. Ferroresonance Overvoltage Mitigation Using STATCOM for Grid-connected Wind Energy Conversion Systems. J. Mod. Power Syst. Clean Energy 2022, 10, 407–415. [Google Scholar] [CrossRef]
- Jafari, E.; Marjanian, A.; Solaymani, S.; Shahgholian, G. Designing an Emotional Intelligent Controller for IPFC to Improve the Transient Stability Based on Energy Function. J. Electr. Eng. Technol. 2013, 8, 478–489. [Google Scholar] [CrossRef]
- Haghshenas, G.; Mehdi Mirtalaei, S.M.; Mordmand, H.; Shahgholian, G. High step-up boost-flyback converter with soft switching for photovoltaic applications. J. Circuits Syst. Comput. 2019, 28, 1950014. [Google Scholar] [CrossRef]
- Bordihn, S.; Fladung, A.; Schlipf, J.; Kontges, M. Machine Learning Based Identification and Classification of Field-Operation Caused Solar Panel Failures Observed in Electroluminescence Images. IEEE J. Photovolt. 2022, 12, 827–832. [Google Scholar] [CrossRef]
- Shojaee, M.; Azizi, S. Decentralized Robust Control of a Coupled Wind Turbine and Diesel Engine Generator System. IEEE Trans. Power Syst. 2023, 38, 807–817. [Google Scholar] [CrossRef]
- Fathollahi, A.; Andresen, B. Multi-Machine Power System Transient Stability Enhancement Utilizing a Fractional Order-Based Nonlinear Stabilizer. Fractal Fract. 2023, 7, 808. [Google Scholar] [CrossRef]
- Rasool, S.; Muttaqi, K.M.; Sutanto, D. A Multi-Filter Based Dynamic Power Sharing Control for a Hybrid Energy Storage System Integrated to a Wave Energy Converter for Output Power Smoothing. IEEE Trans. Sustain. Energy 2022, 13, 1693–1706. [Google Scholar] [CrossRef]
- Keyvani-Boroujeni, B.; Fani, B.; Shahgholian, G.; Alhelou, H.H. Virtual Impedance-Based Droop Control Scheme to Avoid Power Quality and Stability Problems in VSI-Dominated Microgrids. IEEE Access 2021, 9, 144999–145011. [Google Scholar] [CrossRef]
- Aziz, A.; Oo, A.T.; Stojcevski, A. Frequency regulation capabilities in wind power plants. Sustain. Energy Technol. Assess. 2018, 26, 47–76. [Google Scholar] [CrossRef]
- Siti, M.; Mbungu, N.; Tungadio, D.; Banza, B.; Ngoma, L. Application of load frequency control method to a multi-microgrid with energy storage system. J. Energy Storage 2022, 52, 104629. [Google Scholar] [CrossRef]
- Deepak, M. Improving the dynamic performance in load frequency control of an interconnected power system with multi source power generation using superconducting magnetic energy storage (SMES). In Proceedings of the 2014 International Conference on Advances in Green Energy (ICAGE), Thiruvananthapuram, India, 17–18 December 2014; pp. 106–111. [Google Scholar]
- Shankar, G.; Mukherjee, V. Quasi oppositional harmony search algorithm-based controller tuning for load frequency control of multi-source multi-area power system. Int. J. Electr. Power Energy Syst. 2016, 75, 289–302. [Google Scholar] [CrossRef]
- Koley, I.; Bhowmik, P.S.; Datta, A. Load frequency control in a hybrid thermal-wind-photovoltaic power generation system. In Proceedings of the 2017 4th International Conference on Power, Control & Embedded Systems (ICPCES), Allahabad, India, 9–11 March 2017; pp. 1–5. [Google Scholar]
- Abd-Elazim, S.M.; Ali, E.S. Load frequency controller design of a two-area system composing of PV grid and thermal generator via firefly algorithm. Neural Comput. Appl. 2018, 30, 607–616. [Google Scholar] [CrossRef]
- Aluko, A.O.; Dorrell, D.G.; Carpanen, R.P.; Ojo, E.E. Heuristic Optimization of Virtual Inertia Control in Grid-Connected Wind Energy Conversion Systems for Frequency Support in a Restructured Environment. Energies 2020, 13, 564. [Google Scholar] [CrossRef]
- Ghosh, A.; Ray, A.K.; Nurujjaman; Jamshidi, M. Voltage and frequency control in conventional and PV integrated power systems by a particle swarm optimized Ziegler–Nichols based PID controller. SN Appl. Sci. 2021, 3, 314. [Google Scholar] [CrossRef]
- He, T.; Li, S.; Wu, S.; Li, K. Small-Signal Stability Analysis for Power System Frequency Regulation with Renewable Energy Participation. Math. Probl. Eng. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Mokhtar, M.; Marei, M.I.; Sameh, M.A.; Attia, M.A. An adaptive load frequency control for power systems with re-newable energy sources. Energies 2022, 15, 573. [Google Scholar] [CrossRef]
- Topno, P.N.; Chanana, S. Load frequency control of a two-area multi-source power system using a tilt integral derivative controller. J. Vib. Control. 2018, 24, 110–125. [Google Scholar] [CrossRef]
- Rezaei, M.A.; Fathollahi, A.; Akbari, E.; Saki, M.; Khorgami, E.; Teimouri, A.R.; Chronopoulosd, A.T.; Mosavi, A.H. Reliability Calculation Improvement of Electrolytic Capacitor Banks Used in Energy Storage Applications Based on In-ternal Capacitor Faults and Degradation. IEEE Access 2024, 12, 13146–13164. [Google Scholar] [CrossRef]
- Alhelou, H.H.; Hamedani-Golshan, M.E.; Zamani, R.; Heydarian-Forushani, E.; Siano, P. Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review. Energies 2018, 11, 2497. [Google Scholar] [CrossRef]
- Shahgholian, G.; Fattollahi, A. Improving Power System Stability Using Transfer Function: A Comparative Analysis. Eng. Technol. Appl. Sci. Res. 2017, 7, 1946–1952. [Google Scholar] [CrossRef]
- Khadanga, R.K.; Kumar, A.; Panda, S. A modified Grey Wolf Optimization with Cuckoo Search Algorithm for load frequency controller design of hybrid power system. Appl. Soft Comput. 2022, 124, 109011. [Google Scholar] [CrossRef]
- Oshnoei, S.; Fathollahi, A.; Oshnoei, A.; Khooban, M.H. Microgrid Frequency Regulation Based on a Fractional Order Cascade Controller. Fractal Fract. 2023, 7, 343. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, C.; Liu, X.; Chen, H. Distributed Model Predictive Load Frequency Control of the Multi-Area Power System After Deregulation. IEEE Trans. Ind. Electron. 2017, 64, 5129–5139. [Google Scholar] [CrossRef]
- Parmar, K.S.; Majhi, S.; Kothari, D. Load frequency control of a realistic power system with multi-source power generation. Int. J. Electr. Power Energy Syst. 2012, 42, 426–433. [Google Scholar] [CrossRef]
- Pandey, S.K.; Mohanty, S.R.; Kishor, N. A literature survey on load–frequency control for conventional and dist-ribution generation power systems. Renew. Sustain. Energy Rev. 2013, 25, 318–334. [Google Scholar] [CrossRef]
- Aluko, A.O.; Carpanen, R.P.; Dorrell, D.G.; Ojo, E.E. Robust State Estimation Method for Adaptive Load Frequency Control of Interconnected Power System in a Restructured Environment. IEEE Syst. J. 2021, 15, 5046–5056. [Google Scholar] [CrossRef]
- Fattollahi, A.; Dehghani, M.; Yousefi, M.R. Analysis and Simulation Dynamic Behavior of Power System Equipped with PSS and Excitation System Stabilizer. Signal Process. Renew. Energy 2022, 6, 99–111. [Google Scholar]
- Alam, M.S.; Chowdhury, T.A.; Dhar, A.; Al-Ismail, F.S.; Choudhury, M.S.H.; Shafiullah, M.; Hossain, M.I.; Hossain, M.A.; Ullah, A.; Rahman, S.M. Solar and wind energy integrated system frequency control: A critical review on recent developments. Energies 2023, 16, 812. [Google Scholar] [CrossRef]
- Bevrani, H.; Golpîra, H.; Messina, A.R.; Hatziargyriou, N.; Milano, F.; Ise, T. Power system frequency control: An updated review of current solutions and new challenges. Electr. Power Syst. Res. 2021, 194, 107114. [Google Scholar] [CrossRef]
- Kerdphol, T.; Rahman, F.S.; Mitani, Y. Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration. Energies 2018, 11, 981. [Google Scholar] [CrossRef]
- Abrazeh, S.; Mohseni, S.-R.; Zeitouni, M.J.; Parvaresh, A.; Fathollahi, A.; Gheisarnejad, M.; Khooban, M.-H. Virtual Hardware-in-the-Loop FMU Co-Simulation Based Digital Twins for Heating, Ventilation, and Air-Conditioning (HVAC) Systems. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 7, 65–75. [Google Scholar] [CrossRef]
- Saravanan, S.; Babu, N.R. Maximum power point tracking algorithms for photovoltaic system—A review. Renew. Sustain. Energy Rev. 2016, 57, 192–204. [Google Scholar] [CrossRef]
- Mohammadzamani, F.; Hashemi, M.; Shahgholian, G. Adaptive control of nonlinear time-delay systems in the presence of output constraints and actuators faults. Int. J. Control. 2023, 96, 541–553. [Google Scholar] [CrossRef]
- Hussein-Sachit, A.; Fani, B.; Delshad, M.; Shahgholian, G.; Golsorkhi- Esfahani, A. Analysis and implementation of second-order step-up converter using winding cross coupled inductors for photovoltaic applications. J. Sol. Energy Res. 2023, 8, 1516–1525. [Google Scholar]
- Josia, H. Off-grid solar PV system design and analysis in isolated island for sustainable energy access: A case study in sukun island, indonesia. J. Sol. Energy Res. 2023, 8, 1609–1621. [Google Scholar]
- Katche, M.L.; Makokha, A.B.; Zachary, S.O.; Adaramola, M.S. A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems. Energies 2023, 16, 2206. [Google Scholar] [CrossRef]
- Zeng, G.-Q.; Xie, X.-Q.; Chen, M.-R. An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations. Energies 2017, 10, 1840. [Google Scholar] [CrossRef]
- Bakeer, A.; Magdy, G.; Chub, A.; Bevrani, H. A sophisticated modeling approach for photovoltaic systems in load frequency control. Int. J. Electr. Power Energy Syst. 2022, 134, 107330. [Google Scholar] [CrossRef]
- Hassan, S.M.U.; Ramli, M.A.M.; Milyani, A.H. Robust Load Frequency Control of Hybrid Solar Power Systems Using Optimization Techniques. Front. Energy Res. 2022, 10, 902776. [Google Scholar] [CrossRef]
- Fattollahi-Dehkordi, A.; Shahgholian, G.; Fani, B. Decentralized Synergistic Control of Multi-Machine Power System Using Power System Stabilizer. Signal Process. Renew. Energy 2020, 4, 1–21. [Google Scholar]
- Tavakoli, M.; Pouresmaeil, E.; Adabi, J.; Godina, R.; Catalão, J.P. Load-frequency control in a multi-source power system connected to wind farms through multi terminal HVDC systems. Comput. Oper. Res. 2018, 96, 305–315. [Google Scholar] [CrossRef]
- Zamani, M.; Shahgholian, G.; Fathollahi, A.; Mosavi, A.; Felde, I. Improving Interarea Mode Oscillation Damping in Multi-Machine Energy Systems through a Coordinated PSS and FACTS Controller Framework. Sustainability 2023, 15, 16070. [Google Scholar] [CrossRef]
- Sarker, M.A.; Kamrul-Hasan, A.K.M. Load frequency control in power system. J. Sci. Eng. 2016, 10, 23–30. [Google Scholar]
- Bhuyan, S.; Dey, S.H.N.; Paul, S.; Chaine, S. Analysis of Frequency Regulation for a Hydro-Thermal System with ALFC-DR Model. In Proceedings of the 2021 1st International Conference on Power Electronics and Energy (ICPEE), Bhubaneswar, India, 2–3 January 2021; pp. 1–5. [Google Scholar]
- Zimmer, G. Modelling and simulation of steam turbine processes: Individual models for individual tasks. Math. Comput. Model. Dyn. Syst. 2008, 14, 469–493. [Google Scholar] [CrossRef]
- Shankar, R.; Bhushan, R.; Chatterjee, K. Small-signal stability analysis for two-area interconnected power system with load frequency controller in coordination with FACTS and energy storage device. Ain Shams Eng. J. 2016, 7, 603–612. [Google Scholar] [CrossRef]
- Kumar, M.; Hote, Y.V. Graphic RCRA-PIDA tuning based on maximum sensitivity for automatic generation control of thermal and hydro power systems. IET Gener. Transm. Distrib. 2020, 14, 6427–6439. [Google Scholar] [CrossRef]
- Tunç, C. Stability and bounded of solutions to non-autonomous delay differential equations of third order. Nonlinear Dyn. 2010, 62, 945–953. [Google Scholar] [CrossRef]
- Tunc, C. On some qualitative behaviors of solutions to a kind of third order nonlinear delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, 1–19. [Google Scholar] [CrossRef]
- Aghadavoodi, E.; Shahgholian, G. A new practical feed-forward cascade analyzes close loop identification of combustion control loop system through RANFIS and NARX. Appl. Therm. Eng. 2018, 133, 381–395. [Google Scholar] [CrossRef]
- Padiachy, V.; Mehta, U. Novel Fractional-Order Proportional-Integral Controller for Hybrid Power System with Solar Grid and Reheated Thermal Generator. Solar 2023, 3, 298–321. [Google Scholar] [CrossRef]
- Rajan, R.; Fernandez, F.M. Small-signal stability analysis and frequency regulation strategy for photovoltaic sources in interconnected power system. Electr. Eng. 2021, 103, 3005–3021. [Google Scholar] [CrossRef]
Parameter | Symbol | Hydro Energy Facility | Thermal Energy Facility | |
---|---|---|---|---|
With Reheat-Turbine | Without Reheat-Turbine | |||
Governor time constant | TG1, TG2, TG3 | 0.2 | 0.2 | 0.2 |
Turbine time constant | TW, TT, TC | 1 | 0.3 | 0.3 |
Droop constant | RP1, RP2, RP3 | 0.05 | 0.05 | 0.05 |
Reheater time constant | TH | - | 7 | - |
Strong pressure coefficient | FH | - | 0.3 | - |
Slope ratio | α | 0.76 | - | - |
Long reset time | TR | 5 | - | - |
Parameter | Symbol | Value |
---|---|---|
Damping coefficient | KD | 1 |
System inertia constant | JM | 6 |
Hydro power plant participation coefficient | KHY | 0.3 |
Coefficient of participation of thermal power plant with reheater | KRH | 0.5 |
Coefficient of participation of thermal power plant without reheater | KWR | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahgholian, G.; Fathollahi, A. Analyzing Small-Signal Stability in a Multi-Source Single-Area Power System with a Load-Frequency Controller Coordinated with a Photovoltaic System. AppliedMath 2024, 4, 452-467. https://doi.org/10.3390/appliedmath4020024
Shahgholian G, Fathollahi A. Analyzing Small-Signal Stability in a Multi-Source Single-Area Power System with a Load-Frequency Controller Coordinated with a Photovoltaic System. AppliedMath. 2024; 4(2):452-467. https://doi.org/10.3390/appliedmath4020024
Chicago/Turabian StyleShahgholian, Ghazanfar, and Arman Fathollahi. 2024. "Analyzing Small-Signal Stability in a Multi-Source Single-Area Power System with a Load-Frequency Controller Coordinated with a Photovoltaic System" AppliedMath 4, no. 2: 452-467. https://doi.org/10.3390/appliedmath4020024
APA StyleShahgholian, G., & Fathollahi, A. (2024). Analyzing Small-Signal Stability in a Multi-Source Single-Area Power System with a Load-Frequency Controller Coordinated with a Photovoltaic System. AppliedMath, 4(2), 452-467. https://doi.org/10.3390/appliedmath4020024