The Mechanics Underpinning Non-Deterministic Computation in Cortical Neural Networks
Abstract
:1. Introduction
2. Methods
2.1. Modeling the Cortical Neuron as a Two-State Quantum System
2.2. Modeling the Cortical Neuron Membrane Potential as a Function of Component Pure States
2.3. Modeling the Information Encoded by the Multi-State System, in Terms of von Neumann Entropy
2.4. Generating a Distribution of Possible System States from Quantum Uncertainty
2.5. Reducing the Probability Distribution into a Single Observable System State
2.6. Restoring Uncertainty after the System State Is Transiently Defined
2.7. Converting Probabilistic System States to Temporally Irreversible Signaling Outcomes
2.8. Conditions under Which Quantum Fluctuations Contribute to Dissipation Dynamics
2.9. Assumptions of the Model
2.9.1. Neurons Are Functionally Isolated but Remain Sensitive to External Perturbations
2.9.2. Uncertainty in the State of Individual Ions Affects the Voltage State of the Neuron
2.9.3. The Estimated Decoherence Timescales Meet the Criteria for a Quantum System
3. Results
3.1. The Expected Wavelength of Spontaneous Free Energy Release during Information Compression
3.2. Specific Predictions of This Model
3.2.1. Thermal Free Energy Is Spontaneously Released during Computation as Information Is Compressed
3.2.2. The Spontaneous Release of Thermal Free Energy during Information Compression Prompts Synchronized Firing across the Neural Network
4. Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Softky, W.R.; Koch, C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 1993, 13, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Powers, R.K.; Binder, M.D. Effective synaptic current and motoneuron firing rate modulation. J. Neurophysiol. 1995, 74, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Stern, E.A.; Kincaid, A.E.; Wilson, C.J. Spontaneous subthreshold membrane poten-tial fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 1997, 77, 1697–1715. [Google Scholar] [CrossRef] [PubMed]
- Dorval, A.D.; White, J.A. Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. J. Neurosci. 2005, 25, 10025–10028. [Google Scholar] [CrossRef] [PubMed]
- Haider, B.; Duque, A.; Hasenstaub, A.R.; McCormick, D.A. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 2006, 26, 4535–4545. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.M.; Ma, W.J.; Kiani, R.; Hanks, T.; Churchland, A.K.; Roitman, J.; Shadlen, M.N.; Latham, P.E.; Pouget, A. Probabilistic population codes for Bayesian decision making. Neuron 2008, 60, 1142–1152. [Google Scholar] [CrossRef] [PubMed]
- Maoz, O.; Tkačik, G.; Esteki, M.S.; Kiani, R.; Schneidman, E. Learning probabilistic neural representations with randomly connected circuits. Proc. Natl. Acad. Sci. USA 2020, 117, 25066–25073. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, S.; Fakharian, M.A.; Ghazizadeh, A. Stimulus presentation can enhance spik-ing irregularity across subcortical and cortical regions. PLoS Comput. Biol. 2022, 18, e1010256. [Google Scholar] [CrossRef] [PubMed]
- Rinzel, J.; Miller, R.N. Numerical calculation of stable and unstable periodic solu-tions to the Hodgkin-Huxley equations. Math. Biosci. 1980, 49, 27–59. [Google Scholar] [CrossRef]
- Rowat, P. Interspike interval statistics in the stochastic Hodgkin-Huxley model: Coex-istence of gamma frequency bursts and highly irregular firing. Neural Comput. 2007, 19, 1215–1250. [Google Scholar] [CrossRef]
- Austin, T.D. The emergence of the deterministic Hodgkin-Huxley equations as a limit from the underlying stochastic ion channel mechanism. Ann. Appl. Prob. 2008, 18, 1279–1325. [Google Scholar] [CrossRef]
- Montbrió, E.; Pazó, D. Exact mean-field theory explains the dual role of electrical synapses in collective synchronization. Phys. Rev. Lett. 2020, 125, 248101. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.S.; Kusch, L.; Aquilue, D.; Yalcinkaya, B.H.; Depannemaecker, D.; Ancourt, K.; Nghiem, T.-A.E.; Jirsa, V.; Destexhe, A. A comprehensive neural simulation of slow-wave sleep and highly responsive wakefulness dynamics. Front. Comput. Neurosci. 2021, 16, 1058957. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.J. Interspike interval distributions of spiking neurons driven by fluctuating inputs. J. Neurophysiol. 2011, 106, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, C.M.; Hille, B. Voltage-gated ion channels and electrical excitability. Neuron 1998, 20, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.-H.; Hoyles, M.; Allen, T.; Kuyucak, S. Study of ionic currents across a model membrane channel using brownian dynamics. Biophys. J. 1998, 75, 793–809. [Google Scholar] [CrossRef]
- Stoll, E.A. A thermodynamical model of non-deterministic computation in cortical neural networks. Phys. Biol. 2024, 21, 016003. [Google Scholar] [CrossRef]
- Born, M. Statistical Interpretation of Quantum Mechanics. Science 1955, 122, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Pauli, W. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 1925, 31, 765–783. [Google Scholar] [CrossRef]
- Caldeira, A.O.; Leggett, A.J. Path integral approach to quantum Brownian motion. Phys. A 1983, 121, 587–616. [Google Scholar] [CrossRef]
- Caldeira, A.O.; Leggett, A.J. Quantum tunnelling in a dissipative system. Ann. Phys. 1983, 149, 374–456. [Google Scholar] [CrossRef]
- Chang, L.-D.; Waxman, D. Quantum Fokker-Planck equation. J. Phys. C 1985, 18, 5873–5879. [Google Scholar] [CrossRef]
- Khriplovich, I.B.; Lamoreaux, S.K. CP Violation Without Strangeness: Electric Dipole Moments of Particles, Atoms, and Molecules; Springer: Berlin, Germany, 2012. [Google Scholar]
- Feynman, R.P. Forces in Molecules. Phys. Rev. 1939, 56, 340. [Google Scholar] [CrossRef]
- Esteve, J.G.; Falceto, F.; Garcia Canal, C. Generalization of the Hellmann-Feynman theorem. Phys. Lett. A 2010, 374, 819–822. [Google Scholar] [CrossRef]
- Stoll, E.A. An energy-efficient process of non-deterministic computation drives the emergence of predictive models and exploratory behavior. Front. Cognit. 2024, 2, 1171273. [Google Scholar] [CrossRef]
- Bethe, H.A. The electromagnetic shift of energy levels. Phys. Rev. 1947, 72, 339. [Google Scholar] [CrossRef]
- Holstein, B.A. The van der waals interaction. Am. J. Phys. 2001, 69, 441–449. [Google Scholar] [CrossRef]
- Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Berut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 2012, 483, 187–189. [Google Scholar] [CrossRef]
- Jun, Y.; Gavrilov, M.; Beckhoefer, J. High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett. 2014, 113, 190601. [Google Scholar] [CrossRef]
- Yan, L.L.; Xiong, T.P.; Rehan, K.; Zhou, F.; Liang, D.F.; Chen, L.; Zhang, J.Q.; Yang, W.L.; Ma, Z.H.; Feng, M. Single-atom demonstration of the quantum Landauer principle. Phys. Rev. Lett. 2018, 120, 210601. [Google Scholar] [CrossRef] [PubMed]
- Von Neumann, J. Mathematical Foundations of Quantum Mechanics; Springer: Berlin, Germany, 1932; Volume 205, p. 116277. [Google Scholar]
- Callen, H.B.; Welton, T.A. Irreversibility and generalized noise. Phys. Rev. 1951, 83, 34. [Google Scholar] [CrossRef]
- Tegmark, M. Why the brain is probably not a quantum computer. Inf. Sci. 2000, 128, 155–179. [Google Scholar] [CrossRef]
- Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 1966, 29, 255–284. [Google Scholar] [CrossRef]
- Martyushev, L.M.; Nazarova, A.S.; Seleznev, V.D. On the problem of minimum en-tropy production in the nonequilibrium stationary state. J. Phys. A 1966, 40, 371–380. [Google Scholar] [CrossRef]
- Taube, J.S. Interspike interval analyses reveal irregular firing patterns at short, but not long, intervals in rat head direction cells. J. Neurophysiol. 2010, 104, 1635–1648. [Google Scholar] [CrossRef] [PubMed]
- Naito, T.; Sadakane, O.; Okamoto, M.; Sato, H. Orientation tuning of surround sup-pression in lateral geniculate nucleus and primary visual cortex of cat. Neuroscience 2007, 149, 962–975. [Google Scholar] [CrossRef] [PubMed]
- Averbeck, B.B.; Latham, P.E.; Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 2006, 7, 358–366. [Google Scholar] [CrossRef]
- Shadlen, M.N.; Newsome, W.T. The variable discharge of cortical neurons: Implica-tions for connectivity, computation, and information coding. J. Neurosci. 1998, 18, 3870–3896. [Google Scholar] [CrossRef]
- Lee, D.; Port, N.L.; Kruse, W.; Georgopoulos, A.P. Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex. J. Neurosci. 1998, 18, 1161–1170. [Google Scholar] [CrossRef]
- Cui, H.; Anderson, R.A. Different representations of potential and selected motor plans by distinct parietal areas. J. Neurosci. 2011, 31, 18130–18136. [Google Scholar] [CrossRef]
- Jackson, A.; Mavoori, J.; Fetz, E.E. Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey. J. Neurophysiol. 2007, 97, 360–374. [Google Scholar] [CrossRef]
- Russo, A.A.; Bittner, S.R.; Perkins, S.M.; Seely, J.S.; London, B.M.; Lara, A.H.; Miri, A.; Marshall, N.J.; Kohn, A.; Jessell, T.M.; et al. Motor cortex embeds muscle-like commands in an untangled population response. Neuron 2018, 97, 953–966. [Google Scholar] [CrossRef]
- Hubel, D.H.; Wiesel, T.N. Receptive fields of single neurones in the cat’s striate cor-tex. J. Physiol. 1959, 148, 574–591. [Google Scholar] [CrossRef]
- Mendonça, P.R.; Vargas-Caballero, M.; Erdélyi, F.; Szabó, G.; Paulsen, O.; Robinson, H.P. Stochastic and deterministic dynamics of intrinsically irregular firing in cortical inhibitory interneurons. eLife 2016, 5, e16475. [Google Scholar] [CrossRef]
- Wimmer, K.; Compte, A.; Roxin, A.; Peixoto, D.; Renart, A.; de la Rocha, J. Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nat. Commun. 2015, 6, 6177. [Google Scholar] [CrossRef] [PubMed]
- Melloni, L.; Schwiedrzik, C.M.; Müller, N.; Rodriguez, E.; Singer, W. Expectations change the signatures and timing of electrophysiological correlates of perceptual awareness. J. Neurosci. 2011, 31, 1386–1396. [Google Scholar] [CrossRef]
- Huang, S.; Hong, S.; De Schutter, E. Non-linear leak currents affect mammalian neuron physiology. Front. Cell. Neurosci. 2015, 9, 432. [Google Scholar]
- Stoll, E.A. Random electrical noise drives non-deterministic computation in cortical neural networks. bioRxiv 2022. [Google Scholar] [CrossRef]
- Isojima, Y.; Isoshima, T.; Nagai, K.; Kikuchi, K.; Nakagawa, H. Ultraweak biochem-iluminescence detected from rat hippocampal slices. Neuroreport 1995, 6, 658–660. [Google Scholar] [CrossRef]
- Kobayashi, M.; Takeda, M.; Sato, T.; Yamazaki, Y.; Kaneko, K.; Ito, K.; Kato, H.; Inaba, H. In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain correlated with cere-bral energy metabolism. Neurosci. Res. 1999, 34, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, Y.; Cui, Y.; Yamagata, A.; Niigaki, M.; Hirohata, T.; Oishi, N.; Watanabe, Y. Activity-dependent neural tissue oxidation emits intrinsic ultraweak photons. Biochem. Biophys. Res. Commun. 2001, 285, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Dai, J. Spatiotemporal imaging of glutamate-induced biophotonic activities and transmission in neural circuits. PLoS ONE 2014, 9, e85643. [Google Scholar] [CrossRef] [PubMed]
- Amaroli, A.; Marcoli, M.; Venturini, A.; Passalacqua, M.; Agnati, L.F.; Signore, A.; Raffetto, M.; Maura, G.; Benedicenti, S.; Cervetto, C. Near-infrared laser photons induce glutamate release from cerebro-cortical nerve terminals. J. Biophotonics 2018, 11, e201800102. [Google Scholar] [CrossRef] [PubMed]
- Naeser, M.A.; Ho, M.D.; Martin, P.I.; Hamblin, M.R.; Koo, B.B. Increased functional connectivity within intrinsic neural networks in chronic stroke following treatment with red/near-infrared transcranial photobiomodulation. Photobiomodul. Photomed. Laser Surg. 2020, 38, 115–131. [Google Scholar] [PubMed]
- Tan, X.; Rajguru, S.; Young, H.; Xia, N.; Stock, S.R.; Xiao, X.; Richter, C.P. Radiant en-ergy required for infrared neural stimulation. Sci. Rep. 2015, 5, 13273. [Google Scholar] [CrossRef] [PubMed]
- Stoll, E.A. Modeling electron interference at the neuronal membrane yields a holo-graphic projection of representative information content. bioRxiv 2022. [Google Scholar] [CrossRef]
- Levy, W.B.; Calvert, V.G. Communication consumes 35 times more energy than computation in human cortex, but both costs are needed to predict synapse number. Proc. Natl. Acad. Sci. USA 2021, 118, e2008173118. [Google Scholar] [CrossRef]
- Buzsaki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef]
- Engel, A.K.; Singer, W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci. 2001, 5, 16–25. [Google Scholar] [CrossRef]
- Stacey, W.C.; Krieger, A.; Litt, B. Network recruitment to coherent oscillations in a hippocampal computer model. J. Neurophysiol. 2011, 105, 1464–1481. [Google Scholar] [CrossRef]
- Whittington, M.A.; Cunningham, M.O.; LeBeau, F.E.N.; Racca, C.; Traub, R.D. Mul-tiple origins of the cortical gamma rhythm. Dev. Neurobiol. 2010, 71, 92–106. [Google Scholar] [CrossRef]
- Timofeev, I.; Bazhenov, M.; Seigneur, J.; Sejnowski, T. Neuronal synchronization and thalamocortical rhythms in sleep, wake, and epilepsy. In Jasper’s Basic Mechanisms of the Epilepsies, 4th ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Gansel, K.S. Neural synchrony in cortical networks: Mechanisms and implications for neural information processing and coding. Front. Integr. Neurosci. 2022, 16, 900715. [Google Scholar] [CrossRef]
- Astumian, R.D.; Moss, F. The constructive role of noise in fluctuation driven transport and stochastic resonance. Chaos 1998, 8, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, V. Stochastic resonance in non-equilibrium systems. Phys. Rev. E 2019, 100, 062124. [Google Scholar] [CrossRef]
- Lindner, B.; Schimansky-Geier, L. Analytical approach to the stochastic Fitz-Hugh-Nagumo system and coherence resonance. Phys. Rev. E 1999, 60, 7270–7276. [Google Scholar] [CrossRef]
- Lindner, B.; Garcia-Ojalvo, J.; Neiman, A.; Schimansky-Geier, L. Effects of noise in excitable systems. Phys. Rep. 2004, 392, 321–424. [Google Scholar] [CrossRef]
- Valenti, D.; Augello, G.; Spagnolo, B. Dynamics of a FitzHugh-Nagumo system sub-jected to autocorrelated noise. Eur. Phys. J. B 2008, 65, 443–451. [Google Scholar] [CrossRef]
- Surazhevsky, I.A.; Demim, V.A.; Ilyasov, A.I.; Emelyanov, A.V.; Nikiruy, K.E.; Rylkov, V.V.; Shchanikov, S.A.; Bordanov, I.A.; Gerasimova, S.A.; Guseinov, D.V.; et al. Noise-assisted persistence and re-covery of memory state in a memristive spiking neuromorphic network. Chaos 2021, 146, 110890. [Google Scholar]
- Geisler, C.; Brunel, N.; Wang, X.J. Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. J. Physiol. 2005, 94, 4344–4361. [Google Scholar]
- Brunel, N. Dynamics of sparsely-connected networks of excitatory and inhibitory spik-ing neurons. J. Comput. Neurosci. 2000, 8, 183–208. [Google Scholar] [CrossRef]
- Csibra, G.; Davis, G.; Spratling, M.W.; Johnson, M.H. Gamma oscillations and ob-ject processing in the infant brain. Science 2000, 290, 1582–1585. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, C.S.; Knight, R.T. Mechanisms of human attention: Event-related poten-tials and oscillations. Neurosci. Biobehav. Rev. 2001, 25, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Hameroff, S.R.; Penrose, R. Consciousness in the universe: A review of the ‘OrchOR’ theory. Phys. Life Rev. 2014, 11, 39–78. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Wu, J.; Ali, T.M.; Ameen, T.; Altaher, A.S.; Moustafa, A.A.; Zhu, Q.; Xiong, R. Cortico-Hippocampal computational modeling using quantum-inspired neural networks. Front. Comput. Neurosci. 2020, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, M.; Zhang, Y. Quantum pulse coupled neural network. Neural Netw. 2022, 152, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Jeswal, S.K.; Chakraverty, S. Recent developments and applications in quantum neu-ral network: A review. Arch. Comput. Methods Eng. 2019, 26, 793–807. [Google Scholar] [CrossRef]
- Adair, R.K. Noise and stochastic resonance in voltage-gated ion channels. Proc. Natl. Acad. Sci. USA 2003, 100, 12099–12104. [Google Scholar] [CrossRef]
Classical models | ||
Proposed Mechanism | Predicted Observation | Evidence For/Against |
The energy efficiency of the system is the result of optimal synaptic weighting, optimal ion channel distribution, and other molecular mechanisms. | Net production of physical entropy in the human brain is compatible with classical assumptions, with ATP turnover producing some amount of entropy. | The computational cost for each spike is an astounding 0.1 W: In the context of known caloric intake, this energy requirement is “off by a factor of .” [60] |
Present model | ||
Proposed Mechanism | Predicted Observation | Evidence For/Against |
The energy efficiency of the system is the result of information compression, with neural outcomes prompted by the extraction of correlations, consistencies, or ‘predictive value’. | Net production of physical entropy in the human brain is far too low to retain the assumptions of a classical system, with the amount of work done per calorie showing near-perfect use. | “The energy efficiency of the human brain is consistent with this model of non-deterministic computation.” [17] “This computational process maximizes free energy availability.” [26] |
Classical models | ||
Proposed Mechanism | Predicted Observation | Evidence For/Against |
The observed synchronous firing at a range of nested frequencies is the result of information encoding, with neural signaling outcomes prompted by a common stimulus. | A combination of gap junctions, chemical synapses, ephaptic coupling, changes in ion concentration, and optimization of neural connectivity over time prompts synchronous firing. | These events are not readily simulated: “It is difficult, however, to identify the exact contribution of each mechanism to a specific type of oscillation.” [65] The problem is “non-trivial.” [66] |
Present model | ||
Proposed Mechanism | Predicted Observation | Evidence For/Against |
The observed synchronous firing at a range of nested frequencies is the result of information compression, with neural signaling outcomes prompted by the extraction of correlations. | An infrared photon pulse drops the membrane potential of some neurons, while other neurons in cortical up-state fire, resulting in synchronous firing but not ictal activity across the network. | The predictions of this model should be tested: specifically, spontaneous infrared photon release is expected to be temporally correlated with neural oscillations, but not with ictal activity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoll, E.A. The Mechanics Underpinning Non-Deterministic Computation in Cortical Neural Networks. AppliedMath 2024, 4, 806-827. https://doi.org/10.3390/appliedmath4030043
Stoll EA. The Mechanics Underpinning Non-Deterministic Computation in Cortical Neural Networks. AppliedMath. 2024; 4(3):806-827. https://doi.org/10.3390/appliedmath4030043
Chicago/Turabian StyleStoll, Elizabeth A. 2024. "The Mechanics Underpinning Non-Deterministic Computation in Cortical Neural Networks" AppliedMath 4, no. 3: 806-827. https://doi.org/10.3390/appliedmath4030043
APA StyleStoll, E. A. (2024). The Mechanics Underpinning Non-Deterministic Computation in Cortical Neural Networks. AppliedMath, 4(3), 806-827. https://doi.org/10.3390/appliedmath4030043