A Rational Approximation of the Two-Term Machin-like Formula for π
Abstract
:1. Preliminaries
2. Methodologies
2.1. Arctangent Function
2.2. Tangent Function
3. Algorithmic Implementation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beckmann, P. A History of Pi; Golem Press: New York, NY, USA, 1971. [Google Scholar]
- Berggren, L.; Borwein, J.; Borwein, P. Pi: A Source Book, 3rd ed.; Springer-Verlag: New York, NY, USA, 2004. [Google Scholar]
- Borwein, J.; Bailey, D. Mathematics by Experiment—Plausible Reasoning in the 21st Century, 2nd ed.; Taylor & Francis Group: Abingdon, UK, 2008. [Google Scholar]
- Agarwal, R.P.; Agarwal, H.; Sen, S.K. Birth, growth and computation of pi to ten trillion digits. Adv. Differ. Equ. 2013, 2023, 100. [Google Scholar] [CrossRef]
- Abrarov, S.M.; Quine, B.M. A formula for pi involving nested radicals. Ramanujan J. 2018, 46, 657–665. [Google Scholar] [CrossRef]
- Servi, L.D. Nested square roots of 2. Am. Math. Mon. 2003, 110, 326–330. [Google Scholar] [CrossRef]
- Abrarov, S.M.; Quine, B.M. An iteration procedure for a two-term Machin-like formula for pi with small Lehmer’s measure. arXiv 2017, arXiv:1706.08835. [Google Scholar]
- Gasull, A.; Luca, F.; Varona, J.L. Three essays on Machin’s type formulas. Indag. Math. 2023, 34, 1373–1396. [Google Scholar] [CrossRef]
- Wolfram Cloud. A Wolfram Notebook Playing with Machin-like Formulas. Available online: https://www.wolframcloud.com/obj/exploration/MachinLike.nb (accessed on 5 June 2024).
- Campbell, J. Nested radicals obtained via the Wilf–Zeilberger method and related results. Maple Trans. 2023, 3, 16011. [Google Scholar] [CrossRef]
- Maritz, M.F. Extracting pi from chaos. Coll. Math. J. 2024, 55, 86–99. [Google Scholar] [CrossRef]
- Spíchal, L. Using the golden section to approximate π. Math. Mag. 2022, 97, 315–320. [Google Scholar] [CrossRef]
- Alferov, O. A rapidly converging Machin-like formula for π. arXiv 2023, arXiv:arxiv:2403.09654. [Google Scholar]
- Abrarov, S.M.; Jagpal, R.K.; Siddiqui, R.; Quine, B.M. A new form of the Machin-like formula for π by iteration with increasing integers. J. Integer Seq. 2022, 25, 22.4.5. [Google Scholar]
- Abrarov, S.M.; Jagpal, R.K.; Siddiqui, R.; Quine, B.M. Algorithmic determination of a large integer in the two-term Machin-like formula for pi. Mathematics 2021, 9, 2162. [Google Scholar] [CrossRef]
- Abrarov, S.M.; Jagpal, R.K.; Siddiqui, R.; Quine, B.M. An iterative method for computing π by argument reduction of the tangent function. Math. Comput. Appl. 2024, 29, 17. [Google Scholar] [CrossRef]
- Borwein, J.M.; Borwein, P.B. Pi and the AGM—A Study in Analytic Number Theory and Computational Complexity; Wiley & Sons Inc.: Hoboken, NJ, USA, 1987. [Google Scholar]
- Chien-Lih, H. More Machin-type identities. Math. Gaz. 1997, 81, 120–121. [Google Scholar] [CrossRef]
- Chien-Lih, H. An elementary derivation of Euler’s series for the arctangent function. Math. Gaz. 2005, 89, 469–470. [Google Scholar] [CrossRef]
- Abrarov, S.M.; Siddiqui, R.; Jagpal, R.K.; Quine, B.M. A generalized series expansion of the arctangent function based on the enhanced midpoint integration. AppliedMath 2023, 3, 395–405. [Google Scholar] [CrossRef]
- Ypma, T.J. Historical development of the Newton—Raphson method. SIAM Rev. 1995, 37, 531–551. [Google Scholar] [CrossRef]
- Knuth, D.E.; Buckholtz, T.J. Computation of tangent, Euler, and Bernoulli numbers. Math. Comp. 1967, 21, 663–688. [Google Scholar] [CrossRef]
- Harvey, D. A multimodular algorithm for computing Bernoulli numbers. Math. Comput. 2010, 79, 2361–2370. [Google Scholar] [CrossRef]
- Bailey, D.H.; Bauschke, H.H.; Borwein, P.; Garvan, F.; Vanderwerff, M.T.J.D.; Wolkowicz, H. Computational and Analytical Mathematics; Springer: New York, NY, USA, 2013. [Google Scholar]
- Beebe, N.H.F. The Mathematical Function Computation Handbook; Springer International Publishing AG: New York, NY, USA, 2017. [Google Scholar]
- The Online Encyclopedia of Integer Sequences. Expansion of 1/Pi in Base 2. OEIS: A127266. Available online: https://oeis.org/A127266 (accessed on 5 June 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abrarov, S.M.; Siddiqui, R.; Jagpal, R.K.; Quine, B.M. A Rational Approximation of the Two-Term Machin-like Formula for π. AppliedMath 2024, 4, 868-888. https://doi.org/10.3390/appliedmath4030047
Abrarov SM, Siddiqui R, Jagpal RK, Quine BM. A Rational Approximation of the Two-Term Machin-like Formula for π. AppliedMath. 2024; 4(3):868-888. https://doi.org/10.3390/appliedmath4030047
Chicago/Turabian StyleAbrarov, Sanjar M., Rehan Siddiqui, Rajinder Kumar Jagpal, and Brendan M. Quine. 2024. "A Rational Approximation of the Two-Term Machin-like Formula for π" AppliedMath 4, no. 3: 868-888. https://doi.org/10.3390/appliedmath4030047
APA StyleAbrarov, S. M., Siddiqui, R., Jagpal, R. K., & Quine, B. M. (2024). A Rational Approximation of the Two-Term Machin-like Formula for π. AppliedMath, 4(3), 868-888. https://doi.org/10.3390/appliedmath4030047