The Role of Cyano-HAB (Cyanobacteria Harmful Algal Blooms) in the One Health Approach to Global Health
Abstract
:1. Introduction
2. Cyanobacteria Characteristics and Their Toxins
3. Cases of Health Effects on Animals
4. Cases of Human Health Effects
5. Italian Cases
5.1. Lake Vico
5.2. Lake Albano
5.3. Lake Occhito
6. Discussion
- -
- Enhanced monitoring: implementing advanced and continuous monitoring of water bodies for early detection of harmful algal blooms and toxin levels, utilizing both traditional sampling methods and emerging technologies like remote sensing.
- -
- Public awareness and education: raising awareness among local communities, fishermen, and farmers about the risks of algal toxins and promoting safe practices to reduce exposure.
- -
- Water treatment innovations: investing in and applying effective water treatment solutions that can remove a broad range of algal toxins, ensuring the safety of drinking water and irrigation supplies.
- -
- Regulatory and policy frameworks: developing and enforcing regulations and guidelines for water quality management, including acceptable levels of algal toxins in water and food products, to protect public health and the environment.
- -
- Research and collaboration: encouraging interdisciplinary research on the impacts of harmful algal blooms and fostering collaboration among scientists, policymakers, water managers, and public health officials to share knowledge and develop integrated solutions.
7. Conclusions
8. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- King, L.J.; Anderson, L.R.; Blackmore, C.G.; Blackwell, M.J.; Lautner, E.A.; Marcus, L.C.; Meyer, T.E.; Monath, T.P.; Nave, J.E.; Ohle, J. Executive summary of the AVMA One Health Initiative Task Force report. J. Am. Vet. Med. Assoc. 2008, 233, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Barrett, M.; Osofsky, S. One Health: Interdependence of people, other species, and the plane. In Jekel’s Epidemiology, Biostatistics, Preventive Medicine, and Public Health, 4th ed.; Katz, D., Elmore, J., Eds.; Saunders: Philadelphia, PA, USA, 2013; pp. 364–377. [Google Scholar]
- Zinsstag, J.; Schelling, E.; Waltner-Toews, D.; Tanner, M. From “One Medicine” to “One Health” and systemic approaches to health and well-being. Prev. Vet. Med. 2011, 101, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Harada, M. Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 1995, 25, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Van der Schalie, W.H.; Gardner, H.S., Jr.; Bantle, J.A.; De Rosa, C.T.; Finch, R.A.; Reif, J.S.; Reuter, R.H.; Backer, L.C.; Burger, J.; Folmar, L.C.; et al. Animals as sentinels of human health hazards of environmental chemicals. Environ. Health Perspect. 1999, 107, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Hall, N.S.; Calandrino, E.S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 2011, 409, 1739–1745. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.W.; Berry, D.L.; Boyer, G.L.; Gobler, C.J. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 2009, 8, 715–725. [Google Scholar] [CrossRef]
- Carmichael, W. A world overview—One-hundred-twenty-seven years of research on toxic cyanobacteria—Where do we go from here? In Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Advances in Experimental Medicine and Biology; Hudnell, H.K., Ed.; Springer: New York, NY, USA, 2008; Volume 619. [Google Scholar] [CrossRef]
- Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef] [PubMed]
- Flores, N.M.; Miller, T.R.; Stockwell, J.D. A Global Analysis of the Relationship between Concentrations of Microcystins in Water and Fish. Front. Mar. Sci. 2018, 5, 30. [Google Scholar] [CrossRef]
- Yunlu, J.; Huiling, L.; Yueming, Q.; Wei, C.; Lirong, S. Phytotoxicity, bioaccumulation and potential risks of plant irrigations using cyanobloom-loading freshwater. Sci. Total Environ. 2018, 624, 704–712. [Google Scholar] [CrossRef]
- Hu, J.; Liu, J.; Zhu, Y.; Diaz-Perez, Z.; Sheridan, M.; Royer, H.; Leibensperger, R., III; Maizel, D.; Brand, L.; Popendorf, K.J. Exposure to aerosolized algal toxins in south Florida increases short- and long-term health risk in drosophila model of aging. Toxins 2020, 12, 787. [Google Scholar] [CrossRef]
- Garamszegi, S.P.; Banack, S.A.; Duque, L.L.; Metcalf, J.S.; Stommel, E.W.; Cox, P.A.; Davis, D.A. Detection of β-N-methylamino-l-alanine in postmortem olfactory bulbs of Alzheimer’s disease patients using UHPLC-MS/MS: An autopsy case-series study. Toxicol. Rep. 2023, 6, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Parisio, R.; Filippini, T.; Mantione, V.; Platania, A.; Odone, A.; Signorelli, C.; Pietrini, V.; Mandrioli, J.; Teggi, S.; et al. Living near waterbodies as a proxy of cyanobacteria exposure and risk of amyotrophic lateral sclerosis: A population-based case-control study. Environ. Res. 2020, 186, 109530. [Google Scholar] [CrossRef] [PubMed]
- Chorus, I.; Welker, M. (Eds.) Toxic Cyanobacteria in Water, 2nd ed.; CRC Press: Boca Raton, FL, USA; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Bouaïcha, N.; Miles, C.O.; Beach, D.G.; Labidi, Z.; Djabri, A.; Benayache, N.Y.; Nguyen-Quang, T. Structural Diversity, Characterization and Toxicology of Microcystins. Toxins 2019, 11, 714. [Google Scholar] [CrossRef] [PubMed]
- Welker, M.; von Döhren, H. Cyanobacterial peptides—Nature’s own combinatorial biosynthesis. FEMS Microbiol. Rev. 2006, 30, 530–563. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.L.; Loftin, K.A.; Meyer, M.T.; Ziegler, A.C. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environ. Sci. Technol. 2010, 44, 7361–7368. [Google Scholar] [CrossRef] [PubMed]
- Jüttner, F.; Watson, S.B. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl. Environ. Microbiol. 2007, 73, 4395–4406. [Google Scholar] [CrossRef] [PubMed]
- Hilborn, E.D.; Beasley, V.R. One Health and cyanobacteria in freshwater systems: Animal illnesses and deaths are sentinel events for human health risks. Toxins 2015, 7, 1374–1395. [Google Scholar] [CrossRef] [PubMed]
- Moestrup, Ø. Toxic blue-green algae (cyanobacteria) in 1833. Phycologia 1996, 35, 5. [Google Scholar] [CrossRef]
- Francis, G. Poisonous Australian lake. Nature 1878, 18, 11–12. [Google Scholar] [CrossRef]
- Schwimmer, M.; Schwimmer, D. Medical aspects of phycology. In Proceedings of the Algae, Man, and the Environment, Syracuse, NY, USA, 18–30 June 1967; Jackson, D.F., Ed.; Syracuse University Press: Syracuse, NY, USA, 1968. [Google Scholar]
- Porter, E.M. Fourth biennial report of board of regents of university of Minnesota, supplementary I. In Investigation of Supposed Poisonous Vegetation in the Waters of Some of the Lakes of Minnesota; Department of Agriculture: Minneapolis, MN, USA, 1886; Volume 9, pp. 5–96. [Google Scholar]
- Steyn, D.G. Poisoning of animals and human beings by algae. S. Afr. J. Sci. 1945, 41, 243–244. [Google Scholar]
- Gunn, G.J.; Rafferty, A.G.; Rafferty, G.C.; Cockburn, N.; Edwards, C.; Beattie, K.A.; Codd, G.A. Fatal canine neurotoxicosis attributed to blue-green algae (cyanobacteria). Vet. Rec. 1992, 130, 301–302. [Google Scholar] [CrossRef] [PubMed]
- Chellappa, N.T.; Costa, M.A.M.; Marinho, I.D.R. Harmful cyanobacterial blooms from semiarid freshwater ecosystems of Northeast Brazil. Australia. Aust. Soc. Limnol. 2000, 38, 45–49. [Google Scholar]
- Matsunaga, H.; Harad, K.I.; Senma, M.; Ito, Y.; Yasuda, N.; Ushida, S.; Kimura, Y. Possible cause of unnatural mass death of wild birds in a pond in Nishinomiya, Japan: Sudden appearance of toxic cyanobacteria. Nat. Toxins 1999, 7, 81–86. [Google Scholar] [CrossRef]
- Stewart, I.; Seawright, A.A.; Shaw, G.R. Cyanobacterial poisoning in livestock, wild mammals and birds—An overview. Adv. Exp. Med. Biol. 2008, 619, 613–637. [Google Scholar] [PubMed]
- Gillam, W.G. The effect on livestock of water contaminated with freshwater algae. J. Am. Vet. Med. Assoc. 1925, 67, 780. [Google Scholar]
- May, V.; McBarron, E.J. Occurrence of the blue-green alga, Anabaena circinuiis Rabenh, in New South Wales and toxicity to mice and honey bees. J. Aust. Inst. Agric. Sci. 1973, 39, 264–266. [Google Scholar]
- Zimba, P.V.; Khoo, L.; Carmichael, W.W.; Gaunt, P. Confirmation of catfish mortalities resulting from microcystin produced during Microcystis blooms. J. Phycol. 2000, 36, 72–73. [Google Scholar] [CrossRef]
- Jewel, M.A.S.; Affan, M.A.; Khan, S. Fish mortality due to a cyanobacterial bloom in an aquaculture pond in Bangladesh. Pak. J. Biol. Sci. 2003, 6, 1046–1050. [Google Scholar] [CrossRef]
- Singh, S.; Asthana, R.K. Assessment of microcystin concentration in carp and catfish: A case study from Lakshmikund Pond, Varanasi, India. Bull. Environ. Contam. Toxicol. 2014, 92, 687–692. [Google Scholar] [CrossRef]
- Galey, F.D.; Beasley, V.R.; Carmichael, W.W.; Kleppe, G.; Hooser, S.B.; Haschek, W.M. Blue-green algae (Microcystis aeruginosa) hepatotoxicosis in dairy cows. Am. J. Vet. Res. 1987, 48, 1415–1420. [Google Scholar] [PubMed]
- McLeod, J.A.; Bondar, G.F. A case of suspected algal poisoning in Manitoba. Can. J. Public Health. 1952, 43, 347–350. [Google Scholar] [PubMed]
- Beasley, V.R.; Cook, W.O.; Dahlem, A.M.; Hooser, S.B.; Lovell, R.A.; Valentine, W.M. Algae intoxication in livestock and waterfowl. Vet. Clin. N. Am. Food Anim. Pract. 1989, 5, 345–361. [Google Scholar] [CrossRef] [PubMed]
- Codd, G.A.; Edwards, C.; Beattie, K.A.; Barr, W.M.; Gunn, G.J. Fatal attraction to cyanobacteria? Nature 1992, 359, 110–111. [Google Scholar] [CrossRef] [PubMed]
- Benayache, N.Y.; Afri-Mehennaoui, F.Z.; Kherief-Nacereddine, S.; Vo-Quoc, B.; Hushchyna, K.; Nguyen-Quang, T.; Bouaïcha, N. Massive fish death associated with the toxic cyanobacterial Planktothrix sp. bloom in the Béni-Haroun Reservoir (Algeria). Environ. Sci. Pollut. Res. 2022, 29, 80849–80859. [Google Scholar] [CrossRef] [PubMed]
- Corkill, N.; Smith, R.; Seckington, M.; Pontefract, R. Poisoning at Rutland Water. Vet. Rec. 1989, 125, 356. [Google Scholar] [CrossRef] [PubMed]
- Hamill, K.D. Toxicity in benthic freshwater cyanobacteria (blue-green algae): First observations in New Zealand. N. Zeal. J. Mar. Freshw. Res. 2001, 35, 1057–1059. [Google Scholar] [CrossRef]
- Olsen, T.A. Toxic plankton. In Proceedings of the Inservice Training Course in Water Works Problems, University of Michigan, School of Public Health, Ann Arbor, MI, USA, 15–16 February 1951; University of Michigan: Ann Arbor, MI, USA, 1951; pp. 86–95. [Google Scholar]
- Rose, E.T. Toxic algae in Iowa lakes. Proc. Iowa Acad. Sci. 1953, 60, 738–745. [Google Scholar]
- Eriksson, J.; Meriluoto, J.; Lindholm, T. Can cyanobacterial peptide toxins accumulate in aquatic food chains? In Perspectives in microbial ecology, Proceedings of the Fourth International Symposium on Microbial Ecology, Ljubljana, Slovenia, 24–29 August 1986; Megusar, F., Gantar, M., Eds.; Slovene Society for Microbiology: Ljubljana, Slovenia, 1986; pp. 655–658. [Google Scholar]
- Skulberg, O.M.; Codd, G.A.; Carmichael, W.W. Toxic blue-green algal blooms in Europe: A growing problem. Ambio 1984, 13, 244–247. [Google Scholar]
- Mancini, M.; Rodriguez, C.; Bagnis, G.; Liendo, A.; Prosperi, C.; Bonansea, M.; Tundisi, J.G. Cianobacterial bloom and animal mass mortality in a reservoir from Central Argentina. Braz. J. Biol. 2010, 70, 841–845. [Google Scholar] [CrossRef]
- Bossenmaier, E.F.; Olson, T.A.; Rueger, M.E.; Marshall, W.H. Some field and laboratory aspects of duck sickness at Whitewater Lake, Manitoba. Trans. N. Am. Wildl. Conf. 1954, 19, 163. [Google Scholar]
- Keymer, I.F.; Smith, G.R.; Roberts, T.A.; Heaney, S.I.; Hibberd, D.J. Botulism as a factor in waterfowl mortality at St. James’s Park. Vet. Rec. 1972, 90, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.; Lawson, A.; Nalewajko, C.; Murkin, H.; Ross, L.; Oguma, K.; McIntyre, T. Algal toxins—Initiators of avian botulism? Environ. Toxicol. 1999, 15, 558–567. [Google Scholar] [CrossRef]
- Sotton, B.; Guillard, J.; Anneville, O. Trophic transfer of microcystins through the lake pelagic food web: Evidence for the role of zooplankton as a vector in fish contamination. Sci. Total Environ. 2014, 466–467, 152–163. [Google Scholar] [CrossRef]
- Codd, G.A.; Metcalf, J.S.; Beattie, K.A. Retention of Microcystis aeruginosa and microcystin by salad lettuce (Lactuca sativa) after spray irrigation with water containing cyanobacteria. Toxicon 1999, 37, 1181–1185. [Google Scholar] [CrossRef]
- Soares, R.M.; Magalhães, V.F.; Azevedo, S.M.F.O. Accumulation and depuration of microcystins (cyanobacteria hepatotoxins) in Tilapia rendalli (Cichlidae) under laboratory conditions. Aquat. Toxicol. 2004, 70, 1–10. [Google Scholar] [CrossRef]
- Chen, J.; Song, L.; Dai, J.; Gan, N.; Liu, Z. Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 2004, 43, 393–400. [Google Scholar] [CrossRef]
- Ernst, B.; Hoeger, S.J.; O’Brien, E.; Dietrich, D.R. Oral toxicity of the microcystin- containing cyanobacterium Planktothrix rubescens in European whitefish (Coregonus lavaretus). Aquat. Toxicol. 2006, 79, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Baganz, D.; Staaks, G.; Pflugmacher, S.; Steinberg, C.E.W. A comparative study on microcystin-LR induced behavioural changes of two fish species (Danio rerio and Leucaspius delineatus). Environ. Toxicol. 2004, 19, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Malbrouck, C.; Kestemont, P. Effect of microcystins on fish. Environ. Toxicol. Chem. 2006, 25, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Cazenave, J.; Wunderlin, D.A.; De los Angeles Bistoni, M.; Ame, M.V.; Krause, E.; Pflugmacher, S.; Wiegend, C. Uptake, tissue distribution and accumulation of microcystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis. A field and laboratory study. Aquat. Toxicol. 2005, 75, 178–190. [Google Scholar] [CrossRef]
- Wood, S.A.; Briggs, L.R.; Sprosen, J.; Ruck, J.G.; Wear, R.G.; Holland, P.T.; Bloxham, M. Changes in concentration of microcystins in Rainbow trout, freshwater mussels, and cyanobacteria in Lakes Rotoiti and Rotoehu. Environ. Toxicol. 2006, 21, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Amrani, A.; Nasri, H.; Azzouz, A.; Kadi, Y.; Bouaïcha, N. Variation in cyanobacterial hepatotoxin (microcystin) content of water samples and two species of fishes collected from a shallow lake in Algeria. Arch. Env. Contam. Toxicol. 2014, 66, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Haney, J.F. Foodweb transfer, accumulation and depuration of microcystins, a cyanobacterial toxin in pump-kinseed sunfish (Lepomis gibbosus). Toxicon 2006, 48, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Jochimsen, E.M.; Carmichael, W.W.; An, J.S.; Cardo, D.M.; Cookson, S.T.; Holmes, C.E.M.; Antunes, M.B.D.C.; Filho, D.A.D.M.; Lyra, T.M.; Barreto, V.S.T. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med. 1998, 338, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.M.; Yuan, M.; Servaites, J.C.; Delgado, A.; Magalhães, V.F.; Hilborn, E.D.; Carmichael, W.W.; Azevedo, S.M.F.O. Sublethal exposure from microcystins to renal insufficiency patients in Rio de Janeiro, Brazil. Environ. Toxicol. 2006, 21, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Pouria, S.; de Andrade, A.; Barbosa, J.; Cavalcanti, R.L.; Barreto, V.T.; Ward, C.J.; Preiser, W.; Poon, G.K.; Neild, G.H.; Codd, G.A. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet 1998, 352, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Hilborn, E.D.; Soares, R.M.; Servaites, J.C.; Delgado, A.G.; Magalhães, V.F.; Carmichael, W.W.; Azevedo, S.M. Sublethal microcystin exposure and biochemical outcomes among hemodialysis patients. PLoS ONE 2013, 8, e69518. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.C.; Gammie, A.J.; Hollinrake, K.; Codd, G.A. Pneumonia associated with contact with cyanobacteria. Br. Med. J. 1990, 300, 1440–1441. [Google Scholar] [CrossRef]
- Rapala, J.; Robertson, A.; Negri, A.P.; Berg, K.A.; Tuomi, P.; Lyra, C.; Erkomaa, K.; Lahti, K.; Hoppu, K.; Lepistö, L. First report of saxitoxin in Finnish lakes and possible associated effects on human health. Environ. Toxicol. 2005, 20, 331–340. [Google Scholar] [CrossRef]
- Stewart, I.; Webb, P.M.; Schluter, P.J.; Shaw, G.R. Recreational and occupational field exposure to freshwater cyanobacteria—A review of anecdotal and case reports, epidemiological studies and the challenges for epidemiologic assessment. Environ. Health 2006, 5, 6. [Google Scholar] [CrossRef]
- Giannuzzi, L.; Sedan, D.; Echenique, R.; Andrinolo, D. An acute case of intoxication with cyanobacteria and cyanotoxins in recreational water in Salto Grande Dam, Argentina. Mar. Drugs 2011, 9, 2164–2175. [Google Scholar] [CrossRef] [PubMed]
- Hilborn, E.D.; Roberts, V.A.; Backer, L.; Deconno, E.; Egan, J.S.; Hyde, J.B.; Nicholas, D.C.; Wiegert, E.J.; Billing, L.M.; Diorio, M. Algal bloom-associated disease outbreaks among users of freshwater lakes—United States, 2009–2010. MMWR Morb. Mortal Wkly Rep. 2014, 63, 11–15. [Google Scholar] [PubMed]
- Heise, H.A. Symptoms of hay fever caused by algae. J. Allergy 1949, 20, 383–385. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, H.; Du, X.; Shi, Z.; Liu, X.; Wang, R.; Zhang, S.; Tian, Z.; Shi, L.; Guo, H.; et al. Advances in the toxicology research of microcystins based on Omics approaches. Environ. Int. 2021, 154, 106661. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.G.; Reif, C.B. Cutaneous sensitization to blue-green algae. J. Allergy 1953, 24, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Pilotto, L.S.; Douglas, R.M.; Burch, M.D.; Cameron, S.; Beer, M.; Rouch, G.J.; Robinson, P.; Kirk, M.; Cowie, C.T.; Hardiman, S. Health effects of exposure to cyanobacteria (blue-green algae) during recreational water activities. Aust. N. Zeal J. Public Health 1977, 21, 562–566. [Google Scholar] [CrossRef]
- Billings, W.H. Water-associated human illness in Northeastern Pennsylvania and its suspected association with blue-green algae blooms. In The Water Environment: Algal Toxins and Health Environmental Science Research; Carmichael, W., Ed.; Plenum Press: New York, NY, USA, 1981; pp. 243–255. [Google Scholar]
- Soong, F.S.; Maynard, E.; Kirke, K.; Luke, C. Illness associated with blue-green algae. Med. J. Aust. 1992, 156, 67. [Google Scholar] [CrossRef]
- Walker, S.R.; Lund, J.C.; Schumacher, D.G.; Brakhage, P.A.; McManus, B.C.; Miller, J.D.; Augustine, M.M.; Carney, J.J.; Holland, R.S.; Hoagland, K.D.; et al. Nebraska experience. Adv. Exp. Med. Biol. 2008, 619, 139–152. [Google Scholar] [CrossRef]
- Lévesque, B.; Gervais, M.C.; Chevalier, P.; Gauvin, D.; Anassour-Laouan-Sidi, E.; Gingras, S.; Fortin, N.; Brisson, G.; Greer, C.; Bird, D. Prospective study of acute health effects in relation to exposure to cyanobacteria. Sci. Total Environ. 2014, 466–467, 397–403. [Google Scholar] [CrossRef]
- Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water—A Guide to Their Public Health Consequences, Monitoring and Management; Routledge: London, UK; New York, NY, USA, 1999. [Google Scholar]
- Chen, J.; Zhu, J.; Wang, G.; Groopman, J.D.; Kensler, T.W. Qidong: A crucible for studies on liver cancer etiology and prevention. Cancer Biol. Med. 2019, 16, 24–37. [Google Scholar] [CrossRef]
- Eynard, F.; Mez, F.; Walther, J.L. Risk of cyanobacterial toxins in Riga waters (Latvia). Water Res. 2000, 34, 2979–2988. [Google Scholar] [CrossRef]
- Falconer, I.R.; Beresford, A.M.; Runnegar, M.T. Evidence of liver damage by toxin from a bloom of the blue-green alga, Microcystis aeruginosa. Med. J. Aust. 1983, 1, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Du, X.; Liu, H.; Chen, X.; Ma, Y.; Wang, R.; Tian, Z.; Zhang, S.; Guo, H.; Zhang, H. Update on the adverse effects of microcystins on the liver. Environ. Res. 2021, 195, 110890. [Google Scholar] [CrossRef]
- Byth, S. Palm Island mystery disease. Med. J. Aust. 1980, 2, 40–42. [Google Scholar] [CrossRef] [PubMed]
- Teixera, M.; Costa, M.; Carvalho, V.; Pereira, M.; Hage, E. Gastroenteritis epidemic in the area of the Itaparica Dam, Bahia, Brazil. Bull. Pan Am. Health Organ. (PAHO) 1993, 27, 244–253. [Google Scholar]
- Hawkins, P.R.; Runnegar, M.T.; Jackson, A.R.; Falconer, I.R. Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green Alga) Cylindrospermopsis raciborskii (Woloszynska) seenaya and subba raju isolated from a domestic water supply reservoir. Appl. Environ. Microbiol. 1985, 50, 1292–1295. [Google Scholar] [CrossRef]
- El Saadi, O.; Esterman, A.J.; Cameron, S.; Roder, D.M. Murray River water, raised cyanobacterial cell counts, and gastrointestinal and dermatological symptoms. Med. J. Aust. 1995, 162, 122–125. [Google Scholar] [CrossRef]
- Tisdale, E.S. Epidemic of intestinal disorders in Charleston, W. Va. occurring simultaneously with unprecedented water supply conditions. Am. J. Public. Health 1931, 2, 198–200. [Google Scholar]
- Veldee, M.V. An Epidemiological Study of Suspected Water-borne Gastroenteritis. Am. J. Public Health Nations Health 1931, 21, 1227–1235. [Google Scholar] [CrossRef]
- Lippy, E.C.; Erb, J. Gastrointestinal illness at Sewickley, PA. J. Am. Vet. Med. Assoc. 1976, 68, 606–610. [Google Scholar] [CrossRef]
- Bourke, A.T.C.; Hawes, R.B.; Neilson, A.; Stallman, N.D. An outbreak of hepato-enteritis (the Palm Island mystery disease) possibly caused by algal intoxication. Toxicon 1983, 21 (Suppl. 3), 45–48. [Google Scholar] [CrossRef]
- Annadotter, H.; Cronberg, G.; Lawton, L.; Hansson, H.; Göthe, U.; Skulberg, O. An extensive outbreak of gastroenteritis associated with the toxic cyanobacterium Planktothrix agardhii (Oscillatoriales, Cyanophyceaea) in Scania, South Sweden. In Cyanotoxins: Occurrence, Causes, Consequences; Chorus, I., Ed.; Springer: Berlin, Germany, 2001; pp. 200–208. [Google Scholar]
- Ueno, Y.; Nagata, S.; Tsutsumi, T.; Hasegawa, A.; Watanabe, M.F.; Park, H.D.; Chen, G.C.; Chen, G.; Yu, S.Z. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 1996, 17, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Fleming, L.E.; Rivero, C.; Burns, J.; Williama, C.; Bean, J.A.; Shea, K.A.; Stinn, J. Blue green algae (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida. Harmful Algae 2002, 1, 157–168. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, H.; Chen, K. Relationship between microcystin in drinking water and colorectal cancer. Biomed. Environ. Sci. 2002, 15, 166–171. [Google Scholar] [PubMed]
- Svircev, Z.; Krstic, S.; Miladinov Mikov, M.; Baltic, V.; Vidovic, M. Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 36–55. [Google Scholar] [CrossRef] [PubMed]
- Gorham, T.; Dowling Root, E.; Jia, Y.; Shum, C.K.; Lee, J. Relationship between cyanobacterial bloom impacted drinking water sources and hepatocellular carcinoma incidence rates. Harmful Algae 2020, 95, 101801. [Google Scholar] [CrossRef] [PubMed]
- Genitsaris, S.; Kormas, K.A.; Moustaka-Gouni, M. Airborne algae and cyanobacteria: Occurrence and related health effects. Front. Biosci. 2011, 3, 772–787. [Google Scholar]
- Dillenberg, H.O.; Dehnel, M.K. Toxic waterbloom in Saskatchewan, 1959. Can. Med. Assoc. J. 1960, 83, 1151–1154. [Google Scholar]
- Winter, J.; DeSellas, A.M.; Fletcher, R.; Heintsch, L.; Morley, A.; Nakamoto, L.; Utsumi, K. Algal blooms in Ontario, Canada: Increases in reports since 1994. Lake Reserv. Manag. 2011, 27, 107–114. [Google Scholar] [CrossRef]
- Pearson, M.J.; Ferguson, A.J.D.; Codd, G.A.; Reynolds, C.S.; Fawell, J.K.; Hamilton, R.M.; Attwood, M.R. Toxic Blue-Green Algae: Report of the National Rivers Authority Water Quality; Series n. 2; Stanley L.: Rushden, UK, 1990. [Google Scholar]
- Vidal, F.; Sedan, D.; D’Agostino, D.; Cavalieri, M.; Mullen, E.; Parot Varela, M.; Flores, C.; Caixach, J.; Andrinolo, D. Recreational exposure during algal bloom in Carrasco Beach, Uruguay: A liver failure case report. Toxins 2017, 9, 267. [Google Scholar] [CrossRef]
- Southwell, B.J.; Sinclair, J. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Anal. Bioanal. Chem. 2010, 397, 1705–1714. [Google Scholar] [CrossRef]
- Carmichael, W.W.; Gorham, P.R. Freshwater cyanophyte toxins: Types and their effects on the use of micro algae biomass. In Algae Biomass: Production and Use; Shelef, G., Soeder, C.J., Eds.; Elsevier/North-Holland Biomedical Press: Amsterdam, The Netherlands, 1980; pp. 437–448. [Google Scholar]
- Bruno, M.; Fiori, M.; Mattei, D.; Melchiorre, S.; Messineo, V.; Volpi, F.; Bogialli, S.; Nazzari, M. ELISA and LC-MS/MS methods for determining cyanobacterial toxins in blue-green algae food supplements. Nat. Prod. Res. 2006, 20, 827–834. [Google Scholar] [CrossRef] [PubMed]
- IARC. Ingested nitrate and nitrite, and cyanobacterial peptide toxins. In Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2010; p. 94. ISBN 978-92-832-1294-2. [Google Scholar]
- US EPA. Toxicological Reviews of Cyanobacterial Toxins: Microcystins LR, RR, YR and LA; National Center for Environmental Assessment Office of Research and Development: Cincinnati, OH, USA, 2006.
- US EPA. Drinking Water Health Advisories for Two Cyanobacterial Toxins; US Environmental Protection Agency: Washington, DC, USA, 2015.
- Carollo, A.; Barbanti, L.; Gerletti, M.; Chiaudani, G.; Ferrari, I. Quaderni IRSA; CNR: Rome, Italy, 1974. [Google Scholar]
- Dyer, M. The water quality at Lago di Vico during 1992–1993. Sci. Total Environ. 1995, 171, 77–83. [Google Scholar] [CrossRef]
- Mazza, R.; Capelli, G.; Teoli, P.; Bruno, M.; Messineo, V.; Melchiorre, S.; Di Corcia, A. Toxin contamination of surface and subsurface water bodies connected with Lake Vico’s watershed (Central Italy). In Drinking Water: Contamination, Toxicity and Treatment; Romero, J.D., Molina, P.S., Eds.; Nova Publishers Inc.: New York, NY, USA, 2008; pp. 1–100. [Google Scholar]
- Bruno, M.; Gallo, P.; Messineo, V.; Melchiorre, S. Health risk associated with microcystin presence in the environment: The case of an Italian lake (Lake Vico, Central Italy). Int. J. Environ. Prot. 2012, 2, 34–41. [Google Scholar]
- Magalhães, V.F.; Marinho, M.M.; Domingos, P.; Oliveira, A.C.; Costa, S.M.; Azevedo, L.O.; Azevedo, S.M.F.O. Microcystins (cyanobacteria hepatotoxins) bioaccumulation in fish and crustaceans from Sepetiba Bay (Brasil, RJ). Toxicon 2003, 42, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z.A.; Carmichael, W.W.; Hussein, A.A. Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ. Toxicol. Int. J. 2003, 18, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Messineo, V.; Mattei, D.; Melchiorre, S.; Salvatore, G.; Bogialli, S.; Salzano, R.; Mazza, R.; Capelli, G.; Bruno, M. Microcystin diversity in a Planktothrix rubescens population from Lake Albano (Central Italy). Toxicon 2006, 48, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.; Melchiorre, S.; Messineo, V.; Volpi, F.; Di Corcia, A.; Aragona, I.; Guglielmone, G.; Di Paolo, C.; Cenni, M.; Ferranti, P.; et al. Microcystin detection in contaminated fish from italian lakes using ELISA immunoassays and LC-MS/MS analysis. In Handbook on Cyanobacteria: Biochemistry, Biotechnology and Applications; Nova Science Publishers: New York, NY, USA, 2009; pp. 191–210. [Google Scholar]
- Clausi, M.T.; Vita, V.; Bruno, M.; Franchino, C.; Trifirò, G.; Palumbo, M.P.; Floridi, F.; De Pace, R. Validation of ELISA methods for search and quantification of β-n-methylamino-l-alanine in water and fish tissue. Int. J. Environ. Anal. Chem. 2016, 96, 1290–1299. [Google Scholar] [CrossRef]
- De Pace, R.; Vita, V.; Bucci, M.S.; Gallo, P.; Bruno, M. Microcystin contamination in sea mussel farms from the Italian Southern Adriatic Coast following cyanobacterial blooms in an artificial reservoir. J. Ecosyst. 2014, 2014, 374027. [Google Scholar] [CrossRef]
- Bruno, M.; De Pace, R.; Messineo, V. Contaminazione da Cianotossine nei Vegetali Eduli: Rischi Sanitari, Metodi di Rilevazione, Depurazione; Istituto Superiore di Sanità: Roma, Italy, 2021; (Rapporti ISTISAN 21/21). [Google Scholar]
- Chondrogianni, C.; Ariztegui, D.; Guilizzoni, P.; Lami, A. Lakes Albano and Nemi (central Italy): An overview. Mem.-Ist. Ital. Idrobiol. 1996, 55, 17–22. [Google Scholar]
- Cannicci, G. Su una eccezionale fioritura del lago di Albano. Boll. Pesca Piscicoltura. Idrobiol. 1954, 24, 221–233. [Google Scholar]
- Influnet. Available online: https://www.epicentro.iss.it/influenza/influnet (accessed on 18 July 2024).
- Banack, S.A.; Caller, T.; Henegan, P.; Haney, J.; Murby, A.; Metcalf, J.S.; Powell, J.; Cox, P.A.; Stommel, E. Detection of cyanotoxins, β-N-methylamino-l-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins 2015, 7, 322–336. [Google Scholar] [CrossRef] [PubMed]
- Gulati, R.D.; Donk, E.V. Lakes in the Netherlands, their origin, eutrophication and restoration: State-of-the-art review. Hydrobiologia 2002, 478, 73–106. [Google Scholar] [CrossRef]
- Yang, G.S.; Ma, R.H.; Zhang, L.; Jiang, J.H.; Yao, S.C.; Zhang, M.; Zeng, H.A. The current situation of lakes in China and the major problems and protection strategies. J. Lake Sci. 2010, 22, 799–810. [Google Scholar]
- Jin, X.; Bi, L.; Lyu, T.; Chen, J.; Zhang, H.; Pan, G. Amphoteric starch-based bicomponent modified soil for mitigation of harmful algal blooms with broad salinity tolerance: Flocculation, algal regrowth, and ecological safety. Water Res. 2019, 165, 115005. [Google Scholar] [CrossRef]
- Zhang, Y. Control and remediation methods of eutrophic lakes in the past 30 years. Water Sci. Technol. 2020, 81, 6. Available online: http://iwaponline.com/wst/article-pdf/81/6/1099/768737/wst081061099.pdf (accessed on 18 July 2024). [CrossRef] [PubMed]
- Bruno, M.; Messineo, V. Moderne Strategie di Risanamento e Ripristino Dello Stato Trofico in Corpi D’acqua Eutrofizzati; Istituto Superiore di Sanità: Roma, Italy, 2022; (Rapporti ISTISAN 22/23). [Google Scholar]
- Backer, L.C.; Manassaram-Baptiste, D.; LePrell, R.; Bolton, B. Cyanobacteria and algae blooms: Review of health and environmental data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007–2011. Toxins 2015, 7, 1048–1064. [Google Scholar] [CrossRef]
- Roberts, V. Building Health Surveillance Capacity for Illnesses and Outbreaks Associated with Harmful Algal Blooms. Available online: http://www2.epa.gov/sites/production/files/2014-12/documents/habs-roberts-12-10-14.pdf (accessed on 18 July 2024).
- Cox, P.A.; Banack, S.A.; Murch, S.J.; Rasmussen, U.; Tien, G.; Bidigare, R.R. Diverse taxa of cyanobacteria produce β-N- methylamino-L-alanine, a neurotoxic amino acid. Proc. Nat. Acad. Sci. USA 2005, 102, 5074–5078. [Google Scholar] [CrossRef]
- Brand, L.E.; Pablo, J.; Compton, A.; Hammerschlag, N.; Mash, D.C. Cyanobacterial blooms and the occurrence of the neurotoxin, beta-N-methylamino-L-alanine (BMAA), in South Florida aquatic food webs. Harmful Algae 2010, 9, 620–635. [Google Scholar] [CrossRef]
- Jonasson, S.; Eriksson, J.; Berntzon, L.; Spáčil, Z.; Ilag, L.L.; Ronnevi, L.O.; Rasmussen, U.; Bergman, B. Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc. Natl. Acad. Sci. USA 2010, 107, 9252–9257. [Google Scholar] [CrossRef]
- Ferranti, P.; Fabbrocino, S.; Cerulo, M.G.; Bruno, M.; Serpe, L.; Gallo, P. Characterisation of biotoxins produced by a cyanobacteria bloom in Lake Averno using two LC-MS based techniques. Food Addit. Contam. 2008, 25, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- Bustaffa, E.; Minichilli, F.; Messineo, V.; Buscarinu, P.; De Pace, R.; Sechi, O.; Tumino, R.; Sensi, F.; Bruno, M. Contamination of Drinking Water by Cyanotoxins in Reservoirs: An Ecological Study Approach. Adv. New Underst. Med. Sci. 2024, 2, 129–153. [Google Scholar] [CrossRef]
- Laneve, G.; Téllez, A.; Kallikkattil Kuruvila, A.; Bruno, M.; Messineo, V. Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy. Remote Sens. 2024, 16, 1792. [Google Scholar] [CrossRef]
Location | Matrix | P. rubescens Bloom (Max n, Cells/L) | MCST Max Value | BMAA Max Value | Reference |
---|---|---|---|---|---|
Vico | Lake water | 72.5 × 106 (Jan 2007) | 350 μg/L (March 2008) | 718 μg/L Nov 2009 | [111] |
Wells water | 350 ng/L (Jan 2008 Caparola) | ||||
Fish (Coregonus lavaretus) | 26.56 ng/g | ||||
Hazelnuts | 2.3 ng/g (2010) | ||||
Albano | Lake water | 298 × 106 (Jan 2008) | [114] | ||
Fish (Salmo trutta lacustris) | 2.41 ng/g (Aug 2006) | [115] | |||
Occhito | Lake water | 14 × 109 (April 2009) | 298 μg/L (March 2009) | 24.14 ppb (March 2014) | [116] |
Fish | 2.98 ng/g (May 2009) | 0.95 μg/g (Nov 2014) | [116] | ||
Mussels (Mytilus galloprovincialis) | 256 ng/g (May 2009) | ||||
Mussels (Chamelea galina) | 2.3 ng/g (May 2009) | ||||
Vegetables (Asparagus) | 1.5 ng/g (Oct 2015) | [117,118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messineo, V.; Bruno, M.; De Pace, R. The Role of Cyano-HAB (Cyanobacteria Harmful Algal Blooms) in the One Health Approach to Global Health. Hydrobiology 2024, 3, 238-262. https://doi.org/10.3390/hydrobiology3030016
Messineo V, Bruno M, De Pace R. The Role of Cyano-HAB (Cyanobacteria Harmful Algal Blooms) in the One Health Approach to Global Health. Hydrobiology. 2024; 3(3):238-262. https://doi.org/10.3390/hydrobiology3030016
Chicago/Turabian StyleMessineo, Valentina, Milena Bruno, and Rita De Pace. 2024. "The Role of Cyano-HAB (Cyanobacteria Harmful Algal Blooms) in the One Health Approach to Global Health" Hydrobiology 3, no. 3: 238-262. https://doi.org/10.3390/hydrobiology3030016
APA StyleMessineo, V., Bruno, M., & De Pace, R. (2024). The Role of Cyano-HAB (Cyanobacteria Harmful Algal Blooms) in the One Health Approach to Global Health. Hydrobiology, 3(3), 238-262. https://doi.org/10.3390/hydrobiology3030016