Effects of Soil, Light, and Temperature on Freshwater Tannin Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Methods
2.2. Soil Experiments
2.2.1. Wetland Soils
2.2.2. Soil Mineral Components
2.3. Light Experiments
2.3.1. Ambient Light
2.3.2. Sunlight
2.4. Temperature
2.5. Statistical Analysis
3. Results
3.1. Wetland Soils
3.2. Soil Mineral Components
3.3. Light
3.4. Temperature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salminen, J.-P.; Karonen, M. Chemical ecology of tannins and other phenolics: We need a change in approach. Funct. Ecol. 2011, 25, 325–338. [Google Scholar] [CrossRef]
- Barbehenn, R.V.; Constabel, C.P. Tannins in plant-herbivore interactions. Phytochemistry 2011, 72, 1551–1565. [Google Scholar] [CrossRef]
- Ostrofsky, M.L. Effect of tannins on leaf processing and conditioning rates in aquatic ecosystems: An empirical approach. Can. J. Fish. Aquat. Sci. 1993, 50, 1176–1180. [Google Scholar] [CrossRef]
- Stoler, A.B.; Relyea, R.A. Reviewing the role of plant litter inputs to forested wetland ecosystems: Leafing through the literature. Ecol. Monogr. 2020, 90, e01400. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Brett, M.T.; Bunn, S.E.; Chandra, S.; Galloway, A.W.E.; Guo, F.; Kainz, M.J.; Kankaala, P.; Lau, D.C.P.; Moulton, T.P.; Power, M.E.; et al. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshw. Biol. 2017, 62, 833–853. [Google Scholar] [CrossRef]
- Siders, A.C.; Compson, Z.G.; Hungate, B.A.; Dijkstra, P.; Koch, G.W.; Wymore, A.S.; Grandy, A.S.; Marks, J.C. Litter identity affects assimilation of carbon and nitrogen by a shredding caddisfly. Ecosphere 2018, 9, e02340. [Google Scholar] [CrossRef]
- Serrano, L.; Perez-Romero, P.; Plazuelo, A.; Torres, A.; Toja, J. Microbial degradation of dissolved polyphenolic compounds in seasonal ponds. Int. Ver. Theor. Angew. Limnol. Verhandlungen 2000, 27, 3254–3259. [Google Scholar] [CrossRef]
- Bhat, T.K.; Singh, B.; Sharma, O.P. Microbial degradation of tannins—A current perspective. Biodegradation 1998, 9, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Serrano, L.; Guisande, C. Effects of polyphenolic compounds on phytoplankton. Verhandlungen Int. Ver. Theor. Angew. 1990, 24, 282–288. [Google Scholar] [CrossRef]
- Xie, L.; Ma, Z.; Yang, G.; Huang, Y.; Wen, T.; Deng, Y.; Sun, J.; Zheng, S.; Wu, F.; Huang, K.; et al. Study on the inhibition mechanism of eucalyptus tannins against Microcystis aeruginosa. Ecotoxicol. Environ. Saf. 2023, 249, 114452. [Google Scholar] [CrossRef]
- Battacharya, P.; Swarnakar, S.; Mukhopadhyay, A.; Ghosh, S. Exposure of composite tannery effluent on snail, Pila globosa: A comparative assessment of toxic impacts of the untreated and membrane treated effluents. Ecotoxicol. Environ. Saf. 2016, 126, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Dodd, C.E.; Buchholz, R. Apparent maladaptive oviposition site choice of Cope’s gray treefrog (Hyla chrysoscelis) when offered an array of pond conditions. Copeia 2018, 106, 492–500. [Google Scholar] [CrossRef]
- Earl, J.E.; Semlitsch, R.D. Effect of tannin source and concentration from tree leaves on two species of tadpoles. Environ. Toxicol. Chem. 2015, 34, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Temmink, J.H.M.; Field, J.A.; Van Haastrecht, J.C.; Merkelbach, R.C.M. Acute and sub-acute toxicity of bark tannins in carp (Cyprinus carpio L.). Water Res. 1989, 23, 341–344. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, M.; Deng, Y.; Li, J.; Li, J.; Pang, W.; Xie, L.; Jiang, D.; Huang, Z.; He, T.; et al. Acute toxicity of eucalyptus leachate tannins to zebrafish and the mitigation effect of Fe3+ on tannin toxicity. Ecotoxicol. Environ. Saf. 2022, 229, 113077. [Google Scholar] [CrossRef]
- Gong, H.; Qin, Z.; Chen, Z.; Li, J.; Chang, Z.; Li, J.; Chen, P. Effects of dietary tannic acid on growth, digestion, immunity and resistance to ammonia stress, and intestinal microbial community in Pacific white shrimp (Litopenaeus vannamei). Fishes 2022, 7, 327. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Wei, Y.; Norgbey, E.; Chen, Y.; Li, R.; Wang, C.; Cheng, Y.; Bofah-Buoh, R. Impact of Eucalyptus residue leaching on iron distribution in reservoir sediments assessed by high-resolution DGT technique. Environ. Sci. Pollut. Res. 2023, 30, 125718–125730. [Google Scholar] [CrossRef]
- Kinraide, T.B.; Hagerman, A.E. Interactive intoxicating and ameliorating effects of tannic acid, aluminum (Al3+), copper (Cu2+), and selenate (SeO42−) in wheat roots: A descriptive and mathematical assessment. Physiol. Plant 2010, 139, 68–79. [Google Scholar] [CrossRef]
- Cohen, J.S.; Rainford, S.-K.D.; Blossey, B. Community-weighted mean functional effect traits determine larval amphibian responses to litter mixtures. Oecologia 2014, 174, 1359–1366. [Google Scholar] [CrossRef]
- Libralato, G.; Avezzù, F.; Ghirardini, A.V. Lignin and tannin toxicity to Phaeodactylum tricornutum (Bohlin). J. Hazard. Mater. 2011, 194, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Magee-Christian, R.E.; Earl, J.E. Effects of leaf litter species on Cope’s Gray Treefrog oviposition site selection. Ichthyol. Herpetol. 2022, 110, 750–758. [Google Scholar] [CrossRef]
- Stoler, A.B.; Relyea, R.A. Love it or leaf it: Site selection of breeding treefrogs based on leaf litter subsidies. Ichthyol. Herpetol. 2021, 109, 785–790. [Google Scholar] [CrossRef]
- Stoler, A.B.; Berven, K.A.; Raffel, T.R. Leaf litter inhibits growth of an amphibian fungal pathogen. EcoHealth 2016, 13, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.W.; Larsen, A.; Palmer, C.M. Potential influence of plant chemicals on infectivity of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 2012, 101, 87–93. [Google Scholar] [CrossRef]
- Adams, C.K.; Saenz, D. Leaf litter of invasive Chinese tallow (Triadica sebifera) negatively affects hatching success of an aquatic breeding anuran, the southern leopard frog (Lithobates sphenocephalus). Can. J. Zool. 2012, 90, 991–998. [Google Scholar] [CrossRef]
- Cotten, T.B.; Kwiatkowski, M.A.; Saenz, D.; Collyer, M. Effects of an invasive plant, Chinese tallow (Triadica sebifera), on development and survival of anuran larvae. J. Herpetol. 2012, 46, 186–193. [Google Scholar] [CrossRef]
- Maerz, J.C.; Brown, C.J.; Chapin, C.T.; Blossey, B. Can secondary compounds of an invasive plant affect larval amphibians? Funct. Ecol. 2005, 19, 970–975. [Google Scholar] [CrossRef]
- Hassanpour, S.; Maheri-Sis, N.; Eshratkhah, B.; Baghbani, F. Plants and secondary metabolites (Tannins): A review. Int. J. For. Soil Eros. 2011, 1, 47–53. [Google Scholar]
- Hunter, M.D. The Phytochemical Landscape: Linking Trophic Interactions and Nutrient Dynamics; Princeton University Press: Princeton, NJ, USA, 2016; p. 360. [Google Scholar]
- Serrano, L. Leaching from vegetation of soluble polyphenolic compounds, and their abuandance in temporary ponds in the Doñana National Park (SW Spain). Hydrobiologia 1992, 229, 43–50. [Google Scholar] [CrossRef]
- Earl, J.E.; Castello, P.O.; Cohagen, K.E.; Semlitsch, R.D. Effects of subsidy quality on reciprocal subsidies: How leaf litter species changes frog biomass export. Oecologia 2014, 175, 209–218. [Google Scholar] [CrossRef]
- Maie, N.; Pisani, O.; Jaffé, R. Mangrove tannins in aquatic ecosystems: Their fate and possible influence on dissolved organic carbon and nitrogen cycling. Limnol. Oceanogr. 2008, 53, 160–171. [Google Scholar] [CrossRef]
- Müller, N.; Hempel, M.; Philipp, B.; Gross, E.M. Degradation of gallic acid and hydrolysable polyphenols is constitutively activated in the freshwater plant-associated bacterium Matsuebacter sp. FB25. Aquat. Microb. Ecol. 2007, 47, 83–90. [Google Scholar] [CrossRef]
- Prigione, V.; Trocini, B.; Spina, F.; Poli, A.; Romanisio, D.; Giovando, S.; Varese, G.C. Fungi from industrial tannins: Potential application in biotransformation and bioremediation of tannery wastewaters. Appl. Microbiol. Biotechnol. 2018, 102, 4203–4216. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Bhadury, P. Exploring changes in bacterioplankton community structure in response to tannic acid, a major component of mangrove litterfall of Sundarbans mangrove ecosystem: A laboratory mesocosm approach. Environ. Sci. Pollut. Res. 2022, 29, 2107–2121. [Google Scholar] [CrossRef]
- Cruz-Hernández, M.; Contreras-Esquivel, J.C.; Lara, F.; Rodríguez, R.; Aguilar, C. Isolation and Evaluation of Tannin-degrading Fungal Strains from the Mexican Desert. Z. Naturforschung C 2005, 60, 844–848. [Google Scholar] [CrossRef]
- Coulis, M.; Hättenschwiler, S.; Coq, S. The fate of condensed tannins during litter consumption by soil animals. Soil Biol. Biochem. 2009, 41, 2573–2578. [Google Scholar] [CrossRef]
- Hagerman, A.E. Fifty years of polyphenol-protein complexes. In Recent Advances in Polyphenol Research; Cheynier, V., Sarni-Manchado, P., Quideau, E., Eds.; Wiley: Hoboken, NJ, USA, 2012; Volume 3, pp. 71–97. [Google Scholar]
- Lang, T.; Ke, X.; Wei, J.; Hussain, M.; Li, M.; Gao, C.; Jiang, M.; Wang, Y.; Fu, Y.; Wu, K.; et al. Dynamics of tannin variations in mangrove leaf litter decomposition and their effects on environmental nitrogen and microbial activity. Sci. Total Environ. 2024, 908, 168150. [Google Scholar] [CrossRef] [PubMed]
- Maie, N.; Jaffé, R.; Miyoshi, T.; Childers, D.L. Quantitative and qualitative aspects of dissolve organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry 2006, 78, 285–314. [Google Scholar] [CrossRef]
- López-Portillo, J.; Lara-Domínguez, A.L.; Vázquez, G.; Aké-Castillo, J.A. Water quality and mangrove-derived tannins in four coastal lagoons from the Gulf of Mexico with variable hydrologic dynamics. J. Coast. Res. 2017, 77, 28–38. [Google Scholar] [CrossRef]
- Clesceri, L.S.; Greenberg, A.E.; Trussell, R.R. (Eds.) Standard Methods for the Examination of Water and Wastewater, 17th ed.; American Public Health Association: Washington, DC, USA, 1989; p. 1624. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- McEnroe, N.A.; Williams, C.J.; Xenopoulos, M.A.; Porcal, P.; Frost, P.C. Distinct optical chemistry of dissolved organic matter in urban pond ecosystems. PLoS ONE 2013, 8, e80334. [Google Scholar] [CrossRef]
- Haverkamp, N.; Beauducel, A. Violation of the sphericity assumption and its effect on type-I error rates in repeated measures ANOVA and multi-level linear models (MLM). Front. Psychol. 2017, 8, 1841. [Google Scholar] [CrossRef]
- Abdi, H. The Greenhouse-Geisser Correction. In Encyclopedia of Research Design; Salkind, N., Ed.; Sage: Thousand Oaks, CA, USA, 2010; pp. 1–10. [Google Scholar]
- Schmidt, M.A.; Halvorson, J.J.; Gonzalez, J.M.; Hagerman, A.E. Kinetics and binding capacity of six soils for structurally defined hydrolyzable and condensed tannins and related phenols. J. Soils Sediments 2012, 12, 366–375. [Google Scholar] [CrossRef]
- Halvorson, J.J.; Gonzalez, J.M.; Hagerman, A.E. Repeated applications of tannins and related phenolic compounds are retained by soil and affect cation exchange capacity. Soil Biol. Biochem. 2011, 43, 1139–1147. [Google Scholar] [CrossRef]
- Halvorson, J.J.; Gollany, H.T.; Kennedy, A.C.; Hagerman, A.E.; Gonzalez, J.M.; Wuest, S.B. Sorption of tannin and related phenolic compounds and effects on extraction of soluble-N in soil amended with several carbon sources. Agriculture 2012, 2, 52–72. [Google Scholar] [CrossRef]
- Dury, S.J.; Good, J.E.G.; Perrins, C.M.; Buse, A.; Kaye, T. The effects of increasing CO2 and temperature on oak leaf palatability and the implications for herbivorous insects. Glob. Change Biol. 1998, 4, 55–61. [Google Scholar] [CrossRef]
- Rier, S.T.; Tuchman, N.C.; Wetzel, R.G. Chemical changes to leaf litter from trees grown under elevated CO2 and the implications for microbial utilization in a stream ecosystem. Can. J. Fish. Aquat. Sci. 2005, 62, 185–194. [Google Scholar] [CrossRef]
- Top, S.M.; Preston, C.M.; Dukes, J.S.; Tharayil, N. Climate influences the content and chemical composition of foliar tannins in green and senesced tissues of Quercus rubra. Front. Plant Sci. 2017, 8, 423. [Google Scholar] [CrossRef]
- Ford, P.W.; Boon, P.I.; Lee, K. Methane and oxygen dynamics in a shallow floodplain lake: The significance of periodic stratification. Hydrobiologia 2002, 485, 97–110. [Google Scholar] [CrossRef]
- Kadlec, R.H. Water temperature and evapotranspiration in surface flow wetlands in hot arid climate. Ecol. Eng. 2006, 26, 328–340. [Google Scholar] [CrossRef]
- Reeder, B.C. Assessing constructed wetland functional success using diel changes in dissolved oxygen, pH, and temperature in submerged, emergent, and open-water habitats in the Beaver Creek Wetlands Complex, Kentucky (USA). Ecol. Eng. 2011, 37, 1772–1778. [Google Scholar] [CrossRef]
- Chimney, M.J.; Wenkert, L.; Pietro, K.C. Patterns of vertical stratification in a subtropical constructed wetland in south Florida (USA). Ecol. Eng. 2006, 27, 322–330. [Google Scholar] [CrossRef]
- Earl, J.E.; Cohagen, K.E.; Semlitsch, R.D. Effects of leachate from tree leaves and grass litter on tadpoles. Environ. Toxicol. Chem. 2012, 31, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.J. The impact of Leaf Litter Diversity on the Colonization of Aquatic Insects. Master’s Thesis, Louisiana Tech University, Ruston, LA, USA, 2023. [Google Scholar]
Soil Variable | Grassland | Forest |
---|---|---|
% Organic Matter ** | 1.96 ± 0.14 | 2.47 ± 0.16 |
pH * | 4.55 ± 0.06 | 4.74 ± 0.09 |
Calcium (ppm) *** | 241.79 ± 3.12 | 293.59 ± 13.36 |
Copper (ppm) ** | 0.48 ± 0.02 | 0.57 ± 0.04 |
Magnesium (ppm) *** | 39.94 ± 1.55 | 60.00 ± 0.79 |
Phosphorus (ppm) * | 18.84 ± 0.55 | 16.66 ± 1.24 |
Potassium (ppm) *** | 32.26 ± 1.05 | 49.66 ± 1.61 |
Sodium (ppm) | 19.60 ± 2.36 | 22.32 ± 1.75 |
Sulfur (ppm) ** | 20.88 ± 0.50 | 22.59 ± 0.82 |
Zinc (ppm) *** | 1.38 ± 0.11 | 2.26 ± 0.11 |
Soil Variable | Clay | Silt | Fine Sand | Coarse Sand |
---|---|---|---|---|
pH *** | 8.01 ± 0.01 A | 7.65 ± 0.28 A | 5.66 ± 0.36 B | 4.88 ± 0.13 C |
Calcium (ppm) *** | 4,635 ± 164 A | 5,171 ± 121 A | 47 ± 11 B | 26 ± 2 C |
Carbon (%) *** | 0.91 ± 0.08 A | 6.79 ± 1.24 B | 0.02 ± 0.02 C | 0.02 ± 0.01 C |
Copper (ppm) *** | 0.88 ± 0.07 A | 4.74 ± 0.03 B | 0.10 ± 0.01 C | 0.08 ± 0.00 C |
Magnesium (ppm) *** | 152.71 ± 3.21 A | 315.89 ± 9.44 B | 10.70 ± 0.54 C | 7.56 ± 0.39 C |
Nitrogen (%) *** | 0.14 ± 0.00 A | 0.47 ± 0.03 B | 0.03 ± 0.00 C | 0.02 ± 0.01 C |
Phosphorus (ppm) *** | 2.87 ± 0.66 A | 181.14 ± 1.22 B | 2.00 ± 0.18 A | 1.85 ± 0.04 A |
Potassium (ppm) *** | 101.90 ± 1.94 A | 894.61 ± 14.34 B | 5.92 ± 0.42 C | 8.54 ± 0.27 C |
Sodium (ppm) *** | 45.56 ± 1.13 A | 64.71 ± 4.47 B | 18.51 ± 0.20 C | 17.79 ± 1.97 C |
Sulfur (ppm) *** | 168.93 ± 14.16 A | 63.03 ± 0.84 B | 8.36 ± 0.37 C | 3.70 ± 0.14 D |
Zinc (ppm) *** | 0.59 ± 0.13 A | 10.80 ± 0.14 B | 0.17 ± 0.03 C | 0.06 ± 0.01 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Earl, J.E.; Aubert, J.F.; Michael, E.O.; Edwards, D.J. Effects of Soil, Light, and Temperature on Freshwater Tannin Concentrations. Hydrobiology 2025, 4, 2. https://doi.org/10.3390/hydrobiology4010002
Earl JE, Aubert JF, Michael EO, Edwards DJ. Effects of Soil, Light, and Temperature on Freshwater Tannin Concentrations. Hydrobiology. 2025; 4(1):2. https://doi.org/10.3390/hydrobiology4010002
Chicago/Turabian StyleEarl, Julia E., Joseph F. Aubert, Emma O. Michael, and Daniel J. Edwards. 2025. "Effects of Soil, Light, and Temperature on Freshwater Tannin Concentrations" Hydrobiology 4, no. 1: 2. https://doi.org/10.3390/hydrobiology4010002
APA StyleEarl, J. E., Aubert, J. F., Michael, E. O., & Edwards, D. J. (2025). Effects of Soil, Light, and Temperature on Freshwater Tannin Concentrations. Hydrobiology, 4(1), 2. https://doi.org/10.3390/hydrobiology4010002