Changes in the Chemical Composition and Bioactive Compounds of Quinoa Seeds by Germination †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Malted Quinoa Flours
2.3. Physicochemical Characterization of the Flours
2.3.1. Proximate Analysis
2.3.2. Total Amino Acids Profile
2.3.3. In Vitro Protein Digestibility
2.3.4. Total Fatty Acids Profile
2.3.5. Evaluation of Antioxidant Properties
2.4. Statistical Analysis
3. Results and Discussion
Physico-Chemical Characterization of the Flours
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. J. Sci. Food Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Edney, M.J.; Izydorczyk, M.S. Malt types and products. In Encyclopedia of Food Sciences and Nutrition, 3rd ed.; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 3671–3677. [Google Scholar]
- Miranda-Villa, P.P.; Mufari, J.R.; Bergesse, A.E.; Calandri, E.L. Effects of Whole and Malted Quinoa Flour Addition on Gluten-Free Muffins Quality. J. Food Sci. 2019, 84, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Mufari, J.R.; Miranda-Villa, P.P.; Calandri, E.L. Quinoa germ and starch separation by wet milling, performance and characterization of the fractions. LWT 2018, 96, 527–534. [Google Scholar] [CrossRef]
- Dierick, N.; Vervaeke, I.; Decuypere, J.; Hendrickx, H. Protein Digestion in Pigs Measured In Vivo and In Vitro; Just, A., Jørgensen, H., Fernández, J.A., Eds.; Digestive Physiology in the Pig; National Institute of Animal Science: Copenhagen, Denmark, 1985; pp. 329–332. [Google Scholar]
- Carciochi, R.A.; Dimitrov, K.; Galván D’Alessandro, L. Effect of malting conditions on phenolic content, Maillard reaction products formation, and antioxidant activity of quinoa seeds. J. Food Sci. Technol. 2016, 53, 3978–3985. [Google Scholar] [CrossRef] [PubMed]
- Bergesse, A.E.; Asensio, C.M.; Quiroga, P.R.; Ryan, L.C.; Grosso, N.R.; Nepote, V. Microencapsulation of phenolic compounds extracted from soybean seed coats by spray-drying. J. Food Sci. 2023, 88, 4457–4471. [Google Scholar] [CrossRef] [PubMed]
- Omary, M.B.; Fong, C.; Rothschild, J.; Finney, P. Effects of Germination on the Nutritional Profile of Gluten-Free Cereals and Pseudocereals: A Review. Cereal Chem. 2012, 89, 1–14. [Google Scholar] [CrossRef]
- Maldonado-Alvarado, P.; Pavón-Vargas, D.J.; Abarca-Robles, J.; Valencia-Chamorro, S.; Haros, C.M. Effect of germination on the nutritional properties, phytic acid content, and phytase activity of quinoa (Chenopodium quinoa Willd). Foods 2023, 12, 389. [Google Scholar] [CrossRef] [PubMed]
- Pachari Vera, E.; Alca, J.J.; Rondón Saravia, G.; Callejas Campioni, N.; Jachmanián Alpuy, I. Comparison of the lipid profile and tocopherol content of four Peruvian quinoa (Chenopodium quinoa Willd.) cultivars (‘Amarilla de Maranganí’, ‘Blanca de Juli’, INIA 415 ‘Roja Pasankalla’, INIA 420 ‘Negra Collana’) during germination. J. Cereal Sci. 2019, 88, 132–137. [Google Scholar] [CrossRef]
- Prasad, P.; Sahu, J.K. Effect of soaking and germination on grain matrix and glycaemic potential: A comparative study on white quinoa, proso and foxtail millet flours. Food Biosci. 2023, 56, 103105. [Google Scholar] [CrossRef]
- Moongngarm, A.; Saetung, N. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chem. 2010, 122, 782–788. [Google Scholar] [CrossRef]
- Guardianelli, L.M.; Salinas, M.V.; Puppo, M.C. Chemical and thermal properties of flours from germinated amaranth seeds. J. Food Meas. Charact. 2019, 13, 1078–1088. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.K.; Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
Components | Germination Time | ||||
---|---|---|---|---|---|
QF0 | QF12 | QF24 | QF48 | QF72 | |
Moisture | 9.59 a ± 0.23 | 16.49 d ± 0.01 | 13.24 b ± 0.01 | 14.33 c ± 0.01 | 16.86 e ± 0.14 |
Ash | 1.97 a ± 0.02 | 1.68 a ± 0.10 | 2.29 a ± 0.13 | 2.05 a ± 0.11 | 1.89 a ± 0.26 |
Lipids | 7.87 a ± 0.22 | 7.65 a ± 0.52 | 9.56 b ± 0.03 | 11.07 c ± 0.57 | 15.63 d ± 0.26 |
Proteins | 13.56 a ± 0.30 | 17.19 b ± 0.10 | 17.38 b ± 0.25 | 18.34 c ± 0.10 | 18.03 c ± 0.16 |
Carbohydrates | 76.60 | 73.48 | 70.77 | 68.54 | 64.45 |
% PD | 71 b ± 2 | 72 b ± 1 | 81 c ± 1 | 82 c ± 1 | 62 a ± 2 |
Amino Acids | QF0 | QF12 | QF24 | QF48 | QF72 |
---|---|---|---|---|---|
Aspartic ac. | 0.442 a ± 0.028 | 0.973 b ± 0.094 | 0.954 b ± 0.076 | 1.067 b ± 0.008 | 1.090 c ± 0.013 |
Glutamic ac. | 1.487 a ± 0.013 | 1.601 c ± 0.022 | 1.580 b ± 0.061 | 1.500 a ± 0.055 | 1.553 b ± 0.037 |
Serine | 0.025 a ± 0.003 | 0.354 b ± 0.004 | 0.348 b ± 0.025 | 0.379 c ± 0.004 | 0.502 d ± 0.105 |
Histidine | 0.033 a ± 0.004 | 0.761 d ± 0.022 | 0.596 b ± 0.000 | 0.660 c ± 0.003 | 0.769 d ± 0.171 |
Glycine | 0.438 a ± 0.004 | 0.638 c ± 0.003 | 0.570 b ± 0.009 | 0.550 b ± 0.002 | 0.559 b ± 0.071 |
Threonine | 0.071 a ± 0.003 | 0.508 c ± 0.018 | 0.430 b ± 0.010 | 0.485 c ± 0.008 | 0.560 d ± 0.009 |
Arginine | 0.758 a ± 0.005 | 1.281 d ± 0.029 | 1.075 c ± 0.032 | 1.128 c ± 0.020 | 0.877 b ± 0.056 |
Alanine | 0.654 d ± 0.001 | 0.550 c ± 0.010 | 0.512 b ± 0.003 | 0.498 a ± 0.003 | 0.554 c ± 0.017 |
Proline | 0.048 a ± 0.015 | 0.188 b ± 0.046 | nd | nd | nd |
Tyrosine | 0.130 a ± 0.015 | 0.601 d ± 0.014 | 0.463 b ± 0.042 | 0.513 c ± 0.099 | 0.580 c ± 0.076 |
Valine | 0.571 e ± 0.020 | 0.144 c ± 0.005 | 0.107 b ± 0.008 | 0.086 a ± 0.061 | 0.553 d ± 0.004 |
Methionine ± Cysteine | 5.360 a ± 0.019 | 5.994 b ± 0.106 | 6.936 c ± 0.171 | 6.816 c ± 0.227 | 6.091 b ± 1.026 |
Isoleucine | 0.404 a ± 0.002 | 0.616 d ± 0.006 | 0.583 c ± 0.016 | 0.518 b ± 0.007 | 0.687 d ± 0.103 |
Leucine | 0.561 a ± 0.002 | 0.872 c ± 0.016 | 0.796 b ± 0.023 | 0.776 b ± 0.002 | 1.056 d ± 0.146 |
Phenylalanine | 0.253 a ± 0.002 | 0.800 e ± 0.006 | 0.640 c ± 0.011 | 0.573 b ± 0.034 | 0.733 d ± 0.110 |
Lysine | 0.480 a ± 0.004 | 0.471 a ± 0.003 | 0.530 b ± 0.010 | 0.602 c ± 0.005 | 0.774 d ± 0.126 |
% of Recovery | 92.44 | 95.10 | 92.72 | 86.74 | 93.82 |
Fatty Acids | QF0 | QF12 | QF24 | QF48 | QF72 | |
---|---|---|---|---|---|---|
Miristic | 14:0 | nd | 0.20 a ± 0.01 | 0.23 a ± 0.03 | 0.24 a ± 0.01 | 0.22 a ± 0.03 |
Pentadecylic | 15:0 | nd | 0.14 a ± 0.01 | 0.12 a ± 0.02 | 0.14 a ± 0.02 | 0.13 a ± 0.01 |
Palmitic | 16:0 | 9.2 a ± 0.3 | 12.1 c ± 0.2 | 12.5 c ± 0.4 | 12.5 c ± 0.2 | 11.3 b ± 0.4 |
Palmitoleic | 16:1 | nd | 0.41 a ± 0.02 | 0.42 a ± 0.03 | 0.38 a ± 0.03 | 0.42 a ± 0.02 |
Margaric | 17:0 | nd | nd | 0.10 a ± 0.03 | 0.11 a ± 0.03 | 0.10 a ± 0.03 |
17:1 | nd | nd | 0.12 a ± 0.03 | 0.12 a ± 0.03 | 0.13 a ± 0.03 | |
Stearic | 18:0 | 1.03 c ± 0.03 | 0.90 b ± 0.02 | 0.81 a ± 0.02 | 0.79 a ± 0.01 | 0.91 b ± 0.03 |
Oleic (ω9) | 18:1 | 27.6 c ± 0.4 | 27.4 c ± 0.5 | 24.6 b ± 0.2 | 23.2 a ± 0.5 | 26.8 c ± 0.2 |
Linoleic (ω6) | 18:2 | 54.9 c ± 0.2 | 44.9 a ± 0.4 | 44.3 a ± 0.2 | 45.4 b ± 0.3 | 45.8 b ± 0.2 |
Linolenic (ω3) | 18:3 | 5.7 a ± 0.4 | 8.2 b ± 0.4 | 9.8 c ± 0.4 | 10.2 c ± 0.4 | 8.9 b ± 0.4 |
Arachidonic | 20:0 | 0.33 a ± 0.02 | 0.60 b ± 0.03 | 0.78 c ± 0.02 | 0.81 c ± 0.02 | 0.58 b ± 0.04 |
Gondolic | 20:1 | 1.19 a ± 0.01 | 2.49 c ± 0.02 | 2.50 c ± 0.02 | 1.72 b ± 0.03 | 2.68 d ± 0.03 |
20:2 | nd | 0.18 a ± 0.02 | 0.21 a ± 0.01 | 0.20 a ± 0.01 | 0.22 a ± 0.03 | |
Behenic | 22:0 | nd | 0.98 b ± 0.02 | 1.10 b ± 0.03 | 1.11 b ± 0.03 | 0.89 a ± 0.02 |
Erucic | 22:1 | nd | 1.91 b ± 0.05 | 2.45 c ± 0.02 | 2.71 d ± 0.02 | 1.58 a ± 0.03 |
Tricosylic | 23:0 | nd | 0.10 a ± 0.02 | 0.1 a ± 0.01 | 0.11 a ± 0.02 | nd |
Lignoceric | 24:0 | nd | 0.42 a ± 0.02 | 0.58 b ± 0.02 | 0.60 b ± 0.03 | 0.41 a ± 0.01 |
24:1 | nd | 0.18 a ± 0.04 | 0.20 a ± 0.03 | 0.21 a ± 0.04 | 0.19 a ± 0.02 | |
Saturated (S) | 10.56 | 15.44 | 16.33 | 16.41 | 14.54 | |
Monounsaturated (MI) | 28.79 | 32.39 | 30.30 | 28.34 | 31.80 | |
Poliunsaturated (PI) | 60.6 | 53.28 | 54.31 | 55.80 | 54.92 | |
ω6/ω3 | 9.63 | 5.47 | 4.52 | 4.45 | 5.15 | |
PU/MU | 2.10 | 1.64 | 1.79 | 1.97 | 1.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mufari, J.R.; Miranda-Villa, P.P.; Bergesse, A.E.; Rodríguez-Ruiz, A.C.; Calandri, E.L. Changes in the Chemical Composition and Bioactive Compounds of Quinoa Seeds by Germination. Biol. Life Sci. Forum 2024, 37, 11. https://doi.org/10.3390/blsf2024037011
Mufari JR, Miranda-Villa PP, Bergesse AE, Rodríguez-Ruiz AC, Calandri EL. Changes in the Chemical Composition and Bioactive Compounds of Quinoa Seeds by Germination. Biology and Life Sciences Forum. 2024; 37(1):11. https://doi.org/10.3390/blsf2024037011
Chicago/Turabian StyleMufari, Jesica Romina, Patricia Paola Miranda-Villa, Antonella Estefania Bergesse, Andrea Carolina Rodríguez-Ruiz, and Edgardo Luis Calandri. 2024. "Changes in the Chemical Composition and Bioactive Compounds of Quinoa Seeds by Germination" Biology and Life Sciences Forum 37, no. 1: 11. https://doi.org/10.3390/blsf2024037011
APA StyleMufari, J. R., Miranda-Villa, P. P., Bergesse, A. E., Rodríguez-Ruiz, A. C., & Calandri, E. L. (2024). Changes in the Chemical Composition and Bioactive Compounds of Quinoa Seeds by Germination. Biology and Life Sciences Forum, 37(1), 11. https://doi.org/10.3390/blsf2024037011