Compositional Changes Associated with Successive Boiling of Wild Cynophalla retusa (Indian Bean) Pods Collected from the Paraguayan Chaco †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Experimental Design
2.3. Analysis
3. Results and Discussion
Mineral Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abraham de Noir, F.; Bravo, S. Frutos de leñosas nativas de Argentina; 1a; Universidad Nacional de Santiago del Estero—UNSE, Facultad de Ciencias Forestales: Santiago del Estero, Argentina, 2014; ISBN 978-987-1676-19-4. [Google Scholar]
- Schmeda-Hirschmann, G.; Theoduloz, C.; Jiménez-Aspee, F.; Echeverría, J. Bioactive constituents from south american prosopis and their use and toxicity. Curr. Pharm. Des. 2020, 26, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Arenas, P.; Scarpa, G.F. Edible Wild Plants of the Chorote Indians, Gran Chaco, Argentina. Bot. J. Linn. Soc. 2007, 153, 73–85. [Google Scholar] [CrossRef]
- Mereles, L.; Caballero, S.; Coronel, E.; Villalba, R.; López, J.; Piris, P.; Wiszovaty, L.; Delmás, G.; Friesen, A. Recursos alimentarios autóctonos del Chaco. Una mirada a su potencial nutritivo. Rojasiana; Special issue No. 6. 2022, pp. 1–65. San Lorenzo, Paraguay. Available online: https://qui.una.py.vxsct57016.avnam.net/wp-content/uploads/2024/07/1.-ROJASIANA-Serie-especial-6-DIGITAL-FINAL-.pdf (accessed on 12 November 2024).
- Sathe, S.; Venkatachalam, M. Influence of Processing Technologies on Phytate and Its Removal. In Food Phytates; CRC Press: Boca Raton, FL, USA, 2001; p. 32. ISBN 978-0-429-13488-3. [Google Scholar]
- Horwitz, W.; Chichilo, P.; Reynols, H. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; AOAC: Gaithersburg, MA, USA, 2000. [Google Scholar]
- Dona, A.-M.; Verchère, J.-F. Analytical Applications of Oxocarbons. Part 3. Specific Spectrophotometric Determination of Oxalic Acid by Dissociation of the Zirconium(IV)–Chloranilate Complex. Analyst 1991, 116, 533–536. [Google Scholar] [CrossRef]
- Iqbal, A.; Anwar, F.; Nadeem, R.; Sultana, B.; Mushtaq, M. Proximate Composition and Minerals Profile of Fruit and Flower of Karir (Capparis Decidua) from Different Regions of Punjab (Pakistan). Asian J. Chem. 2014, 26, 360–364. [Google Scholar] [CrossRef]
- Pujol, A.; Sanchis, P.; Grases, F.; Masmiquel, L. Phytate Intake, Health and Disease: “Let Thy Food Be Thy Medicine and Medicine Be Thy Food”. Antioxidants 2023, 12, 146. [Google Scholar] [CrossRef]
- Abdulwaliyu, I.; Arekemase, S.O.; Adudu, J.A.; Batari, M.L.; Egbule, M.N.; Okoduwa, S.I.R. Investigation of the Medicinal Significance of Phytic Acid as an Indispensable Anti-Nutrient in Diseases. Clin. Nutr. Exp. 2019, 28, 42–61. [Google Scholar] [CrossRef]
Compound | Cooking Time in Water at 100 °C (h) | ||||
---|---|---|---|---|---|
0 (raw) | 1 | 2 | 3 | 4 | |
Ca (mg/100 g) | 87.1 ± 6.8 a | 33.7 ± 5.3 b | 38.1 ± 6.1 b | 50.8 ± 2.3 c | 39.1 ± 6.3 bc |
Fe (mg/100 g) | 1.57 ± 0.25 a | 0.55 ± 0.19 b | 0.370 ± 0.050 bc | 0.34 ± 0.09 bc | 1.06 ± 0.64 bc |
Cu (mg/100 g) | 0.73 ± 0.06 a | 0.600 ± 0.028 b | 0.51 ± 0.04 c | 0.64 ± 0.01 bd | 0.71 ± 0.03 a |
Mg (mg/100 g) | 48.3 ± 4.9 a | 5.90 ± 0.78 b | 8.78 ± 1.01 bc | 11.9 ± 0.7 c | 7.26 ± 1.13 bc |
P (mg/100 g) | 98.1 ± 4.2 a | 24.3 ± 0.94 b | 19.4 ± 0.7 bc | 17.1 ± 0.7 c | 14.4 ± 0.9 c |
PA (PAE/100 g). | 1950 ± 316 ab | 1183 ± 365 b | 989 ± 126 b | 908 ± 25 b | 790 ± 180 b |
OA (mg/100 g). | 191.1 ± 1.4 a | 34.16 ± 6.83 b | 25.6 ± 1.5 bc | 21.1 ± 5.1 | Not detectable |
Alkaloids | +++ | - | - | - | - |
Relation | Boiling Time (h) | ||||
---|---|---|---|---|---|
0 (raw) | 1 | 2 | 3 | 4 | |
% P as PA | 5.61 ± 0.94 a | 13.7 ± 4.4 b | 14.4 ± 2.2 b | 14.9 ± 4.0 bc | 15.6 ±4.5 c |
PA/Ca | 1.30 ± 0.23 a | 1.20 ± 0.35 a | 1.23 ± 0.15 a | 1.00 ± 0.29 ab | 0.75 ± 0.09 b |
PA/Fe | 116 ± 15 ab | 206 ± 28 c | 257 ± 38 cd | 396 ± 298 ad | 79 ± 26 a |
OA/Ca | 0.84 ± 0.04 c | 0.23 ± 0.05 b | 0.21 ± 0.01 b | 0.15 ± 0.02 a | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suarez, A.; Mereles, L.; Piris, P.; Villalba, R.; Heinichen, O.; Caballero, S. Compositional Changes Associated with Successive Boiling of Wild Cynophalla retusa (Indian Bean) Pods Collected from the Paraguayan Chaco. Biol. Life Sci. Forum 2024, 37, 15. https://doi.org/10.3390/blsf2024037015
Suarez A, Mereles L, Piris P, Villalba R, Heinichen O, Caballero S. Compositional Changes Associated with Successive Boiling of Wild Cynophalla retusa (Indian Bean) Pods Collected from the Paraguayan Chaco. Biology and Life Sciences Forum. 2024; 37(1):15. https://doi.org/10.3390/blsf2024037015
Chicago/Turabian StyleSuarez, Adecia, Laura Mereles, Patricia Piris, Rocio Villalba, Olga Heinichen, and Silvia Caballero. 2024. "Compositional Changes Associated with Successive Boiling of Wild Cynophalla retusa (Indian Bean) Pods Collected from the Paraguayan Chaco" Biology and Life Sciences Forum 37, no. 1: 15. https://doi.org/10.3390/blsf2024037015
APA StyleSuarez, A., Mereles, L., Piris, P., Villalba, R., Heinichen, O., & Caballero, S. (2024). Compositional Changes Associated with Successive Boiling of Wild Cynophalla retusa (Indian Bean) Pods Collected from the Paraguayan Chaco. Biology and Life Sciences Forum, 37(1), 15. https://doi.org/10.3390/blsf2024037015