The Impacts of Anti-Inflammatory Agents on COVID-19 Cytokine Storm †
Abstract
:1. Introduction
Mechanisms of COVID-19 Cytokine Storm
2. Complications of Cytokine Storm
Anti-Inflammatory Agents Repurposed for the Management and Treatment of COVID-19 Cytokine Storm
3. Combination of Antiviral Treatment
4. Pros and Cons of the Use of Anti-Inflammatory Agents
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mortus, J.R.; Manek, S.E.; Brubaker, L.S.; Loor, M.; Cruz, M.A.; Trautner, B.W.; Rosengart, T.K. Thromboelastographic Results and Hypercoagulability Syndrome in Patients with Coronavirus Disease 2019 Who Are Critically Ill. JAMA Netw. Open 2020, 3, 2020–2023. [Google Scholar] [CrossRef]
- Yang, L.; Xie, X.; Tu, Z.; Fu, J.; Xu, D.; Zhou, Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct. Target. Ther. 2021, 6, 255. [Google Scholar] [CrossRef]
- Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020, 10, 102–108. [Google Scholar] [CrossRef]
- Tay, M.Z.; Poh, C.M.; Renia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Chukwuma, I.F.; Apeh, V.O.; Nwodo, O.F.C. Mechanisms and potential therapeutic targets of hyperinflammatory responses in SARS-CoV-2. Acta Virol. 2021, 65. [Google Scholar] [CrossRef]
- Chukwuma, I.F.; Apeh, V.O.; Emaimo, J. Cross talk on SARS-CoV-2 and human immunity. Niger. J. Pharm. Res. 2020, 16, 51–59. [Google Scholar] [CrossRef]
- de Mélo Silva Júnior, M.L.; de Souza, L.M.A.; Dutra, R.E.M.C.; Valente, R.G.D.M.; Melo, T.S. Review on therapeutic targets for COVID-19: Insights from cytokine storm. Postgrad. Med. J. 2021, 97, 391–398. [Google Scholar] [CrossRef]
- Rowaiye, A.B.; Okpalefe, O.A.; Adejoke, O.O.; Ogidigo, J.O.; Oladipo, O.H.; Ogu, A.C.; Oli, A.N.; Olofinase, S.; Onyekwere, O.; Abubakar, A.R.; et al. Attenuating the Effects of Novel COVID-19 (SARS-CoV-2) Infection-Induced Cytokine Storm and the Implications. J. Inflamm. 2021, 14, 1487–1510. [Google Scholar] [CrossRef]
- Ahmad, R.; Haque, M. Surviving the Storm: Cytokine Biosignature in SARS-CoV-2 Severity Prediction. Vaccines 2022, 10, 614. [Google Scholar] [CrossRef]
- Sapra, L.; Bhardwaj, A.; Azam, Z.; Madhry, D.; Verma, B.; Rathore, S.; Srivastava, R.K. Phytotherapy for treatment of cytokine storm in COVID-19. Front. Biosci.-Landmark 2021, 5, 51–75. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Al-Ahmed, S.H.; Muhammad, J.; Khan, A.; Sule, A.A.; Tirupathi, R.; Mutair, A.A.; Alhumaid, S.; Al-Omari, A.; Dhawan, M.; et al. Role of inflammatory cytokines in COVID-19 patients: A review on molecular mechanisms, immune functions, immunopathology and immunomodulatory drugs to counter cytokine storm. Vaccines 2021, 9, 436. [Google Scholar] [CrossRef]
- Skevaki, C.; Fragkou, P.C.; Cheng, C.; Xie, M.; Renz, H. Laboratory characteristics of patients infected with the novel SARS-CoV-2 virus. J. Infect. 2020, 81, 205–212. [Google Scholar] [CrossRef]
- Almayahi, Z.K.; Raveendran, A.V.; Al Malki, R.; Safwat, A.; Al Baloshi, M.; Abbas, A.; Al Salami, A.S.; Al Mujaini, S.M.; Al Dhuhli, K.; Al Mandhari, S. Clinical features, laboratory characteristics and risk factors for mortality of COVID-19 patients in a secondary hospital in Oman during the first wave of the SARS-CoV-2 pandemic. Bull. Natl. Res. Cent. 2022, 46, 139–150. [Google Scholar] [CrossRef]
- Hannawi, S.; Hannawi, H.; Naeem, K.B.; Elemam, N.M.; Hachim, M.Y.; Hachim, I.Y.; Darwish, A.S.; Al Salmi, I. Clinical and Laboratory Profile of Hospitalized Symptomatic COVID-19 Patients: Case Series Study from the First COVID-19 Center in the UAE. Front. Cell. Infect. Microbiol. 2021, 11, 632965. [Google Scholar] [CrossRef]
- Rezabakhsh, A.; Sadat-Ebrahimi, S.R.; Ala, A.; Nabavi, S.M.; Banach, M.; Ghaffari, S. A close-up view of dynamic biomarkers in the setting of COVID-19: Striking focus on cardiovascular system. J. Cell. Mol. Med. 2022, 26, 274–286. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, J.Y.; Yang, J.W.; Lee, K.H.; Effenberger, M.; Szpirt, W.; Kronbichler, A.; Shin, J. Il Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics 2021, 11, 316–329. [Google Scholar] [CrossRef]
- Iannaccone, G.; Scacciavillani, R.; Del Buono, M.G.; Camilli, M.; Ronco, C.; Lavie, C.J.; Abbate, A.; Crea, F.; Massetti, M.; Aspromonte, N. Weathering the Cytokine Storm in COVID-19: Therapeutic Implications. CardioRenal Med. 2020, 10, 277–287. [Google Scholar] [CrossRef]
- Llivisaca-Contreras, S.A.; Naranjo-mor, J.; Pino-acosta, A.; Pieters, L.; Berghe, W.V.; Manzano, P.; Vargas-p, J.; Le, F.; Cevallos-cevallos, J.M. Plants and Natural Products with Activity against Various Types of Coronaviruses: A Review with Focus on SARS-CoV-2. Molecules 2021, 26, 4099. [Google Scholar] [CrossRef]
- Mishra, S.K.; Tripathi, T. One year update on the COVID-19 pandemic: Where are we now? Acta Trop. 2021, 214, 105778. [Google Scholar] [CrossRef]
- Adegboyega, A.E.; Johnson, T.O.; Omale, S. Computational modeling of the pharmacological actions of some antiviral agents against SARS-CoV-2. In Data Science for COVID-19; Academic Press: Cambridge, MA, USA, 2021; pp. 467–482. [Google Scholar]
- Johnson, T.O.; Adegboyega, A.E.; Ojo, O.A.; Yusuf, A.J.; Iwaloye, O.; Ugwah-Oguejiofor, C.J.; Asomadu, R.O.; Chukwuma, I.F.; Ejembi, S.A.; Ugwuja, E.I.; et al. A Computational Approach to Elucidate the Interactions of Chemicals from Artemisia annua Targeted Toward SARS-CoV-2 Main Protease Inhibition for COVID-19 Treatment. Front. Med. 2022, 9, 907583. [Google Scholar] [CrossRef]
- Khan, S.A.; Al-Balushi, K. Combating COVID-19: The role of drug repurposing and medicinal plants. J. Infect. Public Health 2021, 14, 495–503. [Google Scholar] [CrossRef]
S/N | Biomarkers | Normal Range | The Expected Outcome in COVID-19 CS | References |
---|---|---|---|---|
1 | Acute-phase reactants | |||
C-reactive protein | 0.3 to 1.0 mg/dL | ≥20 mg/dL | [8] | |
Ferritin | 8–350 ng/mL | >400 ng/mL | [8] | |
Albumin | 35–50 g/L | <30 g/L | [12,13] | |
Erythrocyte sedimentation rate | 0 to 29 mm/h | >100 mm/h | [8] | |
Procalcitonin | <0.1 ng/mL | > 0.1 µg/L | [14,15] | |
2 | Biochemical indices | |||
Lactate dehydrogenase | 140–280 U/L | >320 U/L | [12] | |
Alanine transaminase | 19 to 33 IU/L | 67 (47–100) IU/L | [8] | |
Aspartate transaminase | 15–37 U/L | 37 U/liter | [14] | |
Creatinine | 45–100 µg/L | 47.66 µg/L | [13] | |
Urea | 2.5–7.5 mmol/L | >7.5 mmol/L | [13] | |
Glucose status; glycosylated hemoglobin; HbA1C | 4.8–6.0% | >6% | [14] | |
3 | Cardiac markers | |||
Troponin | 0–14 pg/mL | >60 ng/L | [13,14] | |
N-terminal of the prohormone brain natriuretic peptide | <125 pg/mL | >88.64 pg/mL | [15] | |
4 | Coagulation profile | |||
D-dimer | 50–500 ng/mL | >1000 ng/mL | [5,8] | |
Fibrinogen | 225–434 mg/dL | 740 mg/dL | [1] | |
Prothrombin time | 11.9–14.2 s | >14.8 s | [1] | |
International normalized ratio | <1.1 | >1.1 | [14] | |
Platelet count | 150–450 × 103/μL | 250 × 103/μL | [1,13] | |
5 | Cytokines and chemokines | |||
IL-1 | 0.10 pg/mL | 0.67 pg/mL | [8] | |
IL-6 | 0.5 to 5 pg/mL | <25 pg/mL | [8] | |
TNF-α | 0 to 8.1 pg/mL | <35 pg/mL | [8] | |
6 | Hematological parameters | |||
White blood cells | 4–11 × 109/L | >11 × 109/L | [13] | |
Hemoglobin | 11.5–16.5 g/dL | >16.5 g/dL | [13] | |
Lymphocytes | 1.5–4.5 per cmm | >4.5 per cmm | [13] | |
Neutrophils | 2–7.5 per cmm | >2–7.5 per cmm | [13] |
Targeted Inhibitors | Available Drugs | Mechanisms of Action |
---|---|---|
IL-1β | Anakinra, canakinumab | They bind at the same binding receptor for IL-1β, thereby preventing IL-1β binding to induce signaling transduction involved in the release of pro-inflammatory cytokines. |
IFNs | Emapalumab | They inhibit the immunomodulatory action of interferons. |
TNF-α | Entanercept, golimumab, adalimumab, infiximab | They block TNFRI receptors, thereby controlling the TNF-dependent cytokine cascade. |
IL-6 | Tocilizumab, clazakizumab, sarilumab, situximab, and levilimab | They inhibit binding of IL-6, which prevents transcriptional induction via JAK/STAT and increases pulmonary capillary permeability. |
GM-CSF | Mavrillmumab, lenzilumab, sargramostim, gimsilumab | They inhibit signaling pathways that produce macrophages and granulocytes. |
JAK | Baricitinib, tofacitinib, ruxolitinib | They limits amplification of the immune response via JAK/START, entry of virus and also inhibit cytokine signaling. |
Natural Product | Active Constituents | COVID-19 CS Targets |
---|---|---|
Salvia rosmarinus | Carnosic acid, carnosol | ↓ IL-1β, NF-kB, iNOS in alveolar macrophages |
Mentha balsamea | Ursolic acid, phenolic acid, flavones, flavonones, | ↓ IL-1β, IL-6, and TNF-α |
Sambucus nigra | Phenolic acids, flavonols, flavonoids, total phenol | ↓ IL-1β, IL-6, COX2, TNF-α |
Commiphora wightii | Guggulsteron, lignans, ketosterol, flavonnes, guggulipid | ↓ IL-1β, IL-6, and TNF-α |
Panx ginseng | Ginsenosides, panax notoginseng saponin (PNS) | ↓ IL-1β, IL-6, IL-8, TNF-α, and NF-kB |
Taraxacum officinale | Polysachharides | ↓ IL-1β, IL-6, IL-8, NF-kB, and STAT3 |
Tanacetum vulgare | Flavonoids | ↓ IL-1β, IL-6, IL-8, iNOS, and TNF-α |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chukwuma, I.F.; Apeh, V.O.; Nworah, F.N.; Madueke, C.A.; Nwanelo, V.O. The Impacts of Anti-Inflammatory Agents on COVID-19 Cytokine Storm. Med. Sci. Forum 2021, 7, 11. https://doi.org/10.3390/ECMS2021-10910
Chukwuma IF, Apeh VO, Nworah FN, Madueke CA, Nwanelo VO. The Impacts of Anti-Inflammatory Agents on COVID-19 Cytokine Storm. Medical Sciences Forum. 2021; 7(1):11. https://doi.org/10.3390/ECMS2021-10910
Chicago/Turabian StyleChukwuma, Ifeoma Felicia, Victor Onukwube Apeh, Florence Nkechi Nworah, Chidi Augustine Madueke, and Valentine Odirachukwumma Nwanelo. 2021. "The Impacts of Anti-Inflammatory Agents on COVID-19 Cytokine Storm" Medical Sciences Forum 7, no. 1: 11. https://doi.org/10.3390/ECMS2021-10910
APA StyleChukwuma, I. F., Apeh, V. O., Nworah, F. N., Madueke, C. A., & Nwanelo, V. O. (2021). The Impacts of Anti-Inflammatory Agents on COVID-19 Cytokine Storm. Medical Sciences Forum, 7(1), 11. https://doi.org/10.3390/ECMS2021-10910