Regular and Long-Term Effects of a Commercial Diet on Bone Mineral Density
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Dietary Assessment and Physical Activity
2.3. Body Composition
2.4. Blood Analysis
2.5. Statistical Analysis
3. Results
3.1. Demographic Data and Body Composition (incl. Bone Mineral Density)
3.2. Effects of Micronutrients and Vitamins (B12 and D) in Food and as Food Additives on Blood Parameters
3.3. Factors Influencing Bone Mineral Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berg, C.; Larsson, C. Dieting, body weight concerns and health: Trends and associations in Swedish school children. BMC Public Health 2020, 20, 187. [Google Scholar]
- Clifton, P. Assessing the evidence for weight loss strategies in people with and without type 2 diabetes. World J. Diabetes 2017, 8, 440–454. [Google Scholar]
- Fitlap. Available online: https://bit.ly/2ZiFbbQ (accessed on 21 January 2022).
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; De Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar]
- Guralnik, J.; Eisenstaedt, R.S.; Ferrucci, L.; Klein, H.; Woodman, R. Prevalence of anemia in persons 65 years and older in the United States: Evidence for a high rate of unexplained anemia. Blood 2004, 104, 2263–2268. [Google Scholar]
- National Dietary Survey among 11–74 Years Old Individuals in Estonia. Available online: https://bit.ly/366BcCa (accessed on 29 January 2022).
- Lauk, J.; Nurk, E.; Robertson, A.; Parlesak, A. Culturally Optimised Nutritionally Adequate Food Baskets for Dietary Guidelines for Minimum Wage Estonian Families. Nutrients 2020, 12, 2613. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Barrile, G.C.; Cavioni, A.; Mansueto, F.; Mazzola, G.; Oberto, L.; Patelli, Z.; Pirola, M.; Tartara, A.; et al. Nutrition, physical activity, and dietary supplementation to prevent bone mineral density loss: A food pyramid. Nutrients 2022, 14, 74. [Google Scholar]
- Thompson, P.W.; Taylor, J.; Dawson, A. The annual incidence and seasonal variation of fractures of the distal radius in men and women over 25 years in Dorset, UK. Injury 2004, 35, 462–466. [Google Scholar]
- Tamm, A.-L.; Jürimäe, J.; Orav, A.; Mäestu, E.; Vesterinen, P.M.; Parm, Ü. Bone mineral density, vegetarianism, vitamin D, calcium, and adipokines: A cross-sectional investigation. EJPMR 2021, 8, 60–67. [Google Scholar]
- Kyvernitakis, I.; Kostev, K.; Nassour, T.; Thomasius, F.; Hadji, P. The impact of depot medroxyprogesterone acetate on fracture risk: A case-control study from the UK. Osteoporos. Int. 2017, 28, 291–297. [Google Scholar]
- Fabiani, R.; Naldini, G.; Chiavarini, M. Dietary Patterns in Relation to Low Bone Mineral Density and Fracture Risk: A Systematic Review and Meta-Analysis. Adv Nutr. 2019, 10, 219–236. [Google Scholar]
- Singh, M.; Arora, S.; Kaur, A.; Ghildiyal, S.; Kumar, R. Patterns of age- and sex-related variations in bone mineral density of lumbar spine and total femur: A retrospective diagnostic laboratory-based study. J. Midlife Health 2018, 9, 155–161. [Google Scholar]
- Segev, D.; Hellerstein, D.; Dunsky, A. Physical activity-Does it really increase bone density in postmenopausal women? A Review of articles published between 2001–2016. Curr. Aging Sci. 2018, 11, 4–9. [Google Scholar]
- Song, T.-H.; Shim, J.-C.; Jung, D.-U.; Moon, J.-J.; Jeon, D.-W.; Kim, S.-J.; Oh, M.-K. Increased bone mineral density after abstinence in male patients with alcohol dependence. Clin. Psychopharmacol. Neurosci. 2018, 16, 282–289. [Google Scholar]
- Mattia, C.; Coluzzi, F.; Celidonio, L.; Vellucci, R. Bone pain mechanism in osteoporosis: A narrative review. Clin. Cases Miner. Bone Metab. 2016, 13, 97–100. [Google Scholar]
- Nguyen, N.D.; Pongchaiyakul, C.; Center, J.R.; Eisman, J.A.; Nguyen, T.V. Identification of high-risk individuals for hip fracture: A 14-year prospective study. J. Bone Miner. Res. 2005, 20, 1921–1928. [Google Scholar]
- Kanis, J.A.; McCloskey, E.V.; Johannson, H.; Leslie, W.D. Intervention thresholds and the diagnosis of osteoporosis. J. Bone Miner. Res. 2015, 30, 1747–1753. [Google Scholar]
- Van der Vlegel, M.; Haagsma, J.A.; Geraerds, A.J.L.M.; De Munter, L.; De Jongh, M.A.C.; Polinder, S. Health care costs of injury in the older population: A prospective multicenter cohort study in the Netherlands. BMC Geriatr. 2020, 20, 417. [Google Scholar]
- Remmel, L.; Jürimäe, J.; Tamm, A.-L.; Purge, P.; Tillmann, V. The associations of body image perception with serum resistin levels in highly trained adolescent Estonian rhythmic gymnasts. Nutrients 2021, 13, 3147. [Google Scholar]
- The Nutridata System for Research. Available online: www.nutridata.ee (accessed on 12 October 2021).
- International Physical Activity Questionnaire Web Site. Available online: http://www.ipaq.ki.se (accessed on 29 January 2022).
- Ferrari, S.; Bianchi, M.L.; Eisman, J.A.; Foldes, A.J.; Adami, S.; Wahl, D.A.; Stepan, J.J.; De Vernejoul, M.-C.; Kaufman, J.-M. IOF Committee of Scientific Advisors Working Group on Osteoporosis Pathophysiology. Osteoporosis in young adults: Pathophysiology, diagnosis, and management. Osteoporos. Int. 2012, 23, 2735–2748. [Google Scholar]
- The R Project for Statistical Computing. Available online: http://www.r-project.org (accessed on 5 January 2022).
- World Health Organization. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis; WHO: Geneva, Switzerland, 1994; Available online: https://bit.ly/3tPQLXj (accessed on 5 January 2022).
- Synlab. Available online: https://bit.ly/3HTY9pz (accessed on 10 March 2022).
- Knell, G.; Durand, C.P.; Kohl, H.W., 3rd; Wu, I.H.C.; Gabriel, K.P. Prevalence and likelihood of meeting sleep, physical activity, and screen-time guidelines among US Youth. JAMA Pediatr. 2019, 173, 387–389. [Google Scholar]
- Brettschneider, A.-K.; Barbosa, C.L.; Haftenberger, M.; Lehmann, F.; Mensink, G.B.M. Adherence to food-based dietary guidelines among adolescents in Germany according to socio-economic status and region: Results from Eating Study as a KiGGS Module (EsKiMo) II. Public Health Nutr. 2021, 24, 1216–1228. [Google Scholar]
- Fintini, D.; Cianfarani, S.; Cofini, M.; Andreoletti, A.; Ubertini, G.M.; Cappa, M.; Manco, M. The bones of children with obesity. Front. Endocrinol. 2020, 11, 200. [Google Scholar] [CrossRef]
- Kelley, J.; Crabtree, N.; Zemel, B.S. Bone density in the obese child: Clinical considerations and diagnostic challenges. Calcif. Tissue Int. 2017, 100, 514–527. [Google Scholar]
- Villareal, D.T.; Fontana, L.; Weiss, E.P.; Racette, S.B.; Steger-May, K.; Schechtman, K.B.; Klein, S.; Holloszy, J.O. Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: A randomized controlled trial. Arch. Intern. Med. 2006, 166, 2502–2510. [Google Scholar]
- Schoenau, E. From mechanostat theory to development of the “Functional Muscle-Bone-Unit”. J. Musculoskelet. Neuronal. Interact. 2005, 5, 232–238. [Google Scholar]
- Janz, K.F.; Letuchy, E.M.; Burns, T.L.; Gilmore, J.M.E.; Torner, J.C.; Levy, S.M. Objectively measured physical activity trajectories predict adolescent bone strength: Iowa Bone Development Study. Br. J. Sports Med. 2014, 48, 1032–1036. [Google Scholar]
- Raistenskis, J.; Sidlauskiene, A.; Strukcinskiene, B.; Ugur Baysal, S.; Buckus, R. Physical activity and physical fitness in obese, overweight, and normal-weight children. Turk. J. Med. Sci. 2016, 46, 443–450. [Google Scholar]
- Rowlands, A.V. Physical activity, inactivity, and health during youth. Pediatr. Exerc. Sci. 2016, 28, 19–22. [Google Scholar]
- Wyshak, G. Teenaged girls, carbonated beverage consumption, and bone fractures. Arch. Pediatr. Adolesc. Med. 2000, 154, 610–613. [Google Scholar]
- Wosje, K.S.; Khoury, P.; Claytor, R.; Copeland, K.; Hornung, R.; Daniels, S.R.; Kalkwarf, H. Dietary patterns associated with fat and bone mass in young children. Am. J. Clin. Nutr. 2010, 92, 294–303. [Google Scholar]
- Lips, P.; van Schoor, N.M. The effect of vitamin D on bone and osteoporosis. Best Pract. Res. Clin. Endocr. Metab. 2011, 25, 585–591. [Google Scholar]
- Berger, C.; Goltzman, D.; Langsetmo, L.; Joseph, L.; Jackson, S.; Kreiger, N.; Tenenhouse, A.; Shawn Davison, K.; Josse, R.G.; Prior, J.C.; et al. Peak bone mass from longitudinal data: Implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. J. Bone Miner. Res. 2010, 25, 1948–1957. [Google Scholar]
- Mapping the Health System Response to Childhood Obesity in the WHO. European Region, an Overview and Country Perspectives. Available online: https://bit.ly/3CKksgx (accessed on 6 January 2019).
- Daly, R.M.; Dalla Via, J.; Duckham, R.L.; Fraser, S.F.; Wulff Helge, E. Exercise for the prevention of osteoporosis in postmenopausal women: An evidence-based guide to the optimal prescription. Braz. J. Phys. Ther. 2019, 23, 170–180. [Google Scholar]
- Wang, M.C.; Bachrach, L.K.; Van Loan, M.; Hudes, M.; Flegal, K.M.; Crawford, P.B. The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 2005, 37, 474–481. [Google Scholar]
- Reid, I.R.; Bristow, S.M.; Bolland, M.J. Calcium supplements: Benefits and risks. J. Intern. Med. 2015, 278, 354–368. [Google Scholar]
- Sharpses, S.A.; Sukumar, D.; Schneider, S.H.; Schlussel, Y.; Brolin, R.E.; Taich, L. Hormonal and dietary influences on true fractional calcium absorption in women: Role of obesity. Osteoporos. Int. 2012, 23, 2607–2614. [Google Scholar]
- Kerstetter, J.E.; O’Brien, K.O.; Insogna, K.L. Dietary protein, calcium metabolism, and skeletal homeostasis revisited. Am. J. Clin. Nutr. 2003, 78, 584S–592S. [Google Scholar]
- Conigrave, A.D.; Brown, E.M.; Rizzoli, R. Dietary Protein and Bone Health: Roles of Amino Acid–Sensing Receptors in the Control of Calcium Metabolism and Bone Homeostasis. Annu. Rev. Nutr. 2008, 28, 131–155. [Google Scholar]
- Workinger, J.L.; Doyle, R.P.; Bortz, J. Challenges in the Diagnosis of Magnesium Status. Nutrients 2018, 10, 1202. [Google Scholar]
- Vannucci, L.; Masi, L.; Gronchi, G.; Fossi, C.; Carossino, A.M.; Brandi, M.L. Calcium intake, bone mineral density, and fragility fractures: Evidence from an Italian outpatient population. Arch. Osteoporos. 2017, 12, 40. [Google Scholar]
- Bischoff-Ferrari, H.A.; Dawson-Hughes, B.; Baron, J.A.; Burckhardt, P.; Li, R.; Spiegelman, D.; Specker, B.; Orav, J.E.; Wong, J.B.; Staehelin, H.B.; et al. Calcium intake and hip fracture risk in men and women: A meta-analysis of prospective cohort studies and randomized controlled trials. Am. J. Clin. Nutr. 2007, 86, 1780–1790. [Google Scholar]
- Spiegel, D.M.; Brady, K. Calcium balance in normal individualsand in patients with chronic kidney disease on low- and high-calcium diets. Kidney Int. 2012, 81, 1116–1122. [Google Scholar]
- Tankeu, A.T.; Ndip Agbor, V.; Noubiap, J.J. Calcium supplementation and cardiovascular risk: A rising concern. J. Clin. Hypertens. 2017, 19, 640–646. [Google Scholar]
- Manson, J.E.; Bassuk, S.S. Calcium supplements: Do they help or harm? Menopause 2014, 21, 106–108. [Google Scholar]
- Holick, M.F. Vitamin D deficiency. New Engl. J. Med. 2007, 357, 266–281. [Google Scholar]
- Kull, M.; Kallikorm, R.; Tamm, A.; Lember, M. Seasonal variance of 25-(OH) vitamin D in the general population of Estonia, a Northern European country. BMC Public Health 2009, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, H.M.; Wood, A.D.; Aucott, L.S.; Black, A.J.; Fraser, W.D.; Mavroeidi, A.; Reid, D.M.; Secombes, K.R.; Simpson, W.G.; Thies, F. Hip bone loss is attenuated with 1000 IU but not 400 IU daily vitamin D3: A 1 year double-blind RCT in postmenopausal women. J. Bone Miner. Res. 2013, 28, 2202–2213. [Google Scholar]
- Jackson, R.D.; LaCroix, A.Z.; Gass, M.; Wallace, R.B.; Robbins, J.; Lewis, C.E.; Bassford, T.; Beresford, S.A.A.; Black, H.R.; Blanchette, P.; et al. Calcium plus vitamin D supplementation and the risk of fractures. New Engl. J. Med. 2006, 354, 669–683. [Google Scholar]
- Burt, L.A.; Billington, E.O.; Rose, M.S.; Raymond, D.A.; Hanley, D.A.; Boyd, S.K. Effect of high-dose vitamin D supplementation on volumetric bone density and bone strength. JAMA 2019, 322, 736–745. [Google Scholar]
- Bendik, I.; Friedel, A.; Roos, F.F.; Weber, P.; Eggersdorfer, M. Vitamin D: A critical and essential micronutrient for human health. Front. Physiol. 2014, 5, 248. [Google Scholar]
- Movassagh, E.Z.; Baxter-Jones, A.D.G.; Kontulainen, S.; Whiting, S.J.; Vatanparast, H. Tracking dietary patterns over 20 years from childhood through adolescence into young adulthood: The Saskatchewan Pediatric Bone Mineral Accrual Study. Nutrients 2017, 9, 990. [Google Scholar]
All Participants | FDF | Controls | p = | |
---|---|---|---|---|
n = | 68 | 34 | 34 | |
Age (year) | 37; 31.5–42.5 | 36.5; 31–43 | 37; 32–42 | NS |
Body mass (kg) | 70; 62.8–85.3 | 73.4; 68.0–84.0 | 66; 59.0–87.0 | 0.048 |
Body mass index (kg/m2) | 25.2; 22.3–28.2 | 26.4; 23.7–28.3 | 23.2; 20.5–28.1 | NS (0.053) |
Height (cm) | 169.3; 165–172 | 170.0; 165–172 | 169.0; 165–173 | NS |
Fat mass (kg) | 24.0; 18.8–33.9 | 27.2; 20.0–31.5 | 22.0; 18.4–35.5 | NS |
Fat-free mass (kg) | 43.5; 40.1–48.0 | 46.0; 42.9–48.2 | 41.3; 38.5–46.2 | 0.008 |
Fat mass% | 35.3; 31.0–40.6 | 35.6; 30.6–40.5 | 35.0; 31.8–40.6 | NS |
All Participants | Fitlap | Controls | ||
---|---|---|---|---|
n = | 68 | 34 | 34 | p = |
Energy and macro-nutrients in diet | ||||
Calories (kcal) | 1821.4; 1579.4–1944.6 | 1840.5; 1627.6–2034.0 | 1741.0; 1507.5–1940.7 | NS |
Carbohydrates (g) | 203.0; 170.7–242.0 | 215.1; 175.6–247.8 | 198.6; 158.1–216.5 | NS |
Fiber (g) | 20.1; 16.6–25.6 | 23.9; 18.5–28.9 | 18.2; 14.3–21.9 | 0.001 |
Fat (g) | 74.6; 63.5–86.9 | 71.6; 63.5–83.1 | 77.6; 64.1–91.5 | NS |
Protein (g) | 78.7; 64.9–92.7 | 85.0; 78.6–96.8 | 65.9; 55.4–80.1 | 0.001 |
Alcohol (g) | 0.0; 0.0–6.0 | 0.0; 0.0–9.5 | 0.0; 0.0–5.0 | NS |
Micronutrients in diet | ||||
Calcium (mg) | 799.0; 261.5–971.4 | 916.8; 674.4–1089.5 | 668.2; 518.6–820.7 | <0.001 |
Magnesium (mg) | 319.2; 269.5–380.8 | 335.5; 306.0–394.2 | 291.2; 227.2–375.6 | 0.007 |
Vitamin D (µg) | 3.3; 1.8–5.1 | 3.4; 1.9–5.4 | 2.9; 1.7–4.8 | NS |
Vitamin B12 (µg) | 4.5; 3.7–5.5 | 4.5; 3.9–5.4 | 4.6; 3.3–5.8 | NS |
Micronutrients in blood | ||||
Calcium (mmol/L) | 2.33; 2.28–2.38 | 2.33; 2.28–2.38 | 2.33; 2.27–2.38 | NS |
Magnesium (mmol/L) | 0.82; 0.78–0.84 | 0.82; 0.79–0.84 | 0.82; 0.77–0.84 | NS |
Vitamin D (nmol/L) | 73.7; 58.5–94.0 | 75.2; 61.6–93.5 | 73.3; 55.4–98.5 | NS |
Vitamin B12 (pg/mL) | 446.1; 370.8–572.8 | 538.2; 428.7–683.3 | 396.0; 359.1–451.3 | 0.00 |
Physical activity | ||||
Vigorous (%) | 2; 2.9 | 0; 0.00 | 2; 5.9 | NS |
Optimal (%) | 35; 51.5 | 14; 41.2 | 21; 61.8 | NS |
Very active (%) | 31; 45.6 | 21; 61.8 | 11; 32.4 | 0.028 |
Food additives consumption * | ||||
Vitamin D (n; %) | 38; 55.9 | 21; 61.8 | 20; 58.8 | NS |
Complex vitamin B (n; %) | 6; 8.8 | 3; 8.8 | 3; 8.8 | NS |
Calcium (n; %) | 1; 1.5 | 0; 0.0 | 1; 2.9 | NS |
Magnesium (n; %) | 10; 14.7 | 7; 20.6 | 3; 8.8 | NS |
Parameter | Influencing Factor | Coef. | p = |
---|---|---|---|
WB BMD | Fitlap diet | 0.073 | 0.005 |
Height | 0.005 | 0.05 | |
Body mass | 0.003 | <0.001 | |
Body mass index | 0.009 | <0.001 | |
Fat mass | 3.416 | 0.005 | |
Fat-free mass | 1.062 | <0.001 | |
Calcium supplement | −0.243 | 0.026 | |
Calcium in diet | 1.114 | 0.015 | |
Magnesium in blood | −0.381 | 0.05 | |
L1–L4 aBMD | Fitlap diet | 0.094 | 0.007 |
Height | 0.010 | 0.005 | |
Body mass | 0.006 | <0.001 | |
Body mass index | 0.017 | <0.001 | |
Fat mass | 6.508 | <0.001 | |
Fat % | 0.008 | 0.003 | |
Fat-free mass | 1.812 | <0.001 | |
Vitamin D supplement | −0.070 | 0.05 | |
Calcium supplement | −0.315 | 0.033 | |
Calcium in diet | 1.585 | 0.010 | |
Magnesium in blood | −0.514 | 0.05 | |
Femoral neck aBMD | Fitlap diet | 0.062 | 0.038 |
Height | 0.007 | 0.018 | |
Body mass | 0.005 | <0.001 | |
Body mass index | 0.012 | <0.001 | |
Fat mass | 4.559 | <0.001 | |
Fat % | 0.006 | 0.008 | |
Fat-free mass | 1.279 | <0.001 | |
Calcium supplement | −0.248 | 0.044 | |
Calcium in diet | 1.450 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parm, Ü.; Tamm, A.-L.; Aasmäe, T.; Liiv, K.; Orav, A.; Jaansoo, E.; Lohu, K.; Tamme, I. Regular and Long-Term Effects of a Commercial Diet on Bone Mineral Density. Dietetics 2022, 1, 78-87. https://doi.org/10.3390/dietetics1020009
Parm Ü, Tamm A-L, Aasmäe T, Liiv K, Orav A, Jaansoo E, Lohu K, Tamme I. Regular and Long-Term Effects of a Commercial Diet on Bone Mineral Density. Dietetics. 2022; 1(2):78-87. https://doi.org/10.3390/dietetics1020009
Chicago/Turabian StyleParm, Ülle, Anna-Liisa Tamm, Triin Aasmäe, Kaido Liiv, Aivar Orav, Ester Jaansoo, Kaisa Lohu, and Irina Tamme. 2022. "Regular and Long-Term Effects of a Commercial Diet on Bone Mineral Density" Dietetics 1, no. 2: 78-87. https://doi.org/10.3390/dietetics1020009
APA StyleParm, Ü., Tamm, A. -L., Aasmäe, T., Liiv, K., Orav, A., Jaansoo, E., Lohu, K., & Tamme, I. (2022). Regular and Long-Term Effects of a Commercial Diet on Bone Mineral Density. Dietetics, 1(2), 78-87. https://doi.org/10.3390/dietetics1020009