Tracing the Evolution of the Emission Properties of Carbon-Rich AGB, Post-AGB, and PN Sources
Abstract
:1. Introduction
2. Characterizing the Sample: How to Determine the Stars’ Progenitors
2.1. Selection of the Sample and of the Observational Data
2.2. Input and Methodology Description
3. Tracing the SED Evolution from the AGB to the PN Phase
3.1. An Overall View of the CSs’ Dust and Gas Spectral Emission
3.2. Dust Features
4. AGB to PN Transition in IR Observational Diagrams
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Source ID | Sample | RAJ2000 | DEJ2000 | L/L⊙ | Teff [K] | Td [K] | Ref. | |
---|---|---|---|---|---|---|---|---|
AGB | ||||||||
SSID 18 | LMC | 73.4345 | − 66.1961 | 7400 | 2100 | 1.7000 | 900 | 1 |
SSID 167 | LMC | 85.3363 | −69.0789 | 10000 | 2000 | 2.0500 | 900 | 1 |
SSID 4197 | LMC | 76.2703 | −68.9636 | 11700 | 2100 | 1.4500 | 900 | 1 |
SSID 4812 | LMC | 90.6882 | −67.3785 | 12000 | 2100 | 1.1000 | 900 | 1 |
SSID 4519 | LMC | 83.014 | −69.2918 | 6700 | 2400 | 0.5200 | 1080 | 1 |
SSID 4401 | LMC | 81.161 | −70.3992 | 6400 | 2600 | 1.1400 | 1000 | 1 |
SSID 4556 | LMC | 83.5668 | −70.3813 | 11600 | 2100 | 1.0000 | 1000 | 1 |
SSID 4722 | LMC | 85.1503 | −69.8805 | 12000 | 2100 | 0.9000 | 1080 | 1 |
SSID 4391 | LMC | 80.9098 | −66.8902 | 10000 | 2200 | 0.5600 | 1080 | 1 |
SSID 4411 | LMC | 81.3313 | −71.0673 | 11000 | 2500 | 0.1900 | 1080 | 1 |
SSID 145 | LMC | 83.6727 | −69.4419 | 6000 | 2700 | 0.1880 | 1080 | 1 |
SSID 181 | LMC | 86.158 | −67.6161 | 7400 | 2600 | 0.1900 | 1080 | 1 |
SSID 4589 | LMC | 83.9156 | −65.3323 | 8500 | 2500 | 0.3000 | 1080 | 1 |
SSID 4491 | LMC | 82.5162 | −66.8234 | 7900 | 2200 | 0.9800 | 1000 | 1 |
SSID 4435 | LMC | 81.5965 | −69.189 | 6600 | 2600 | 0.9500 | 1000 | 1 |
SSID 4252 | LMC | 78.2131 | −69.6306 | 6650 | 2200 | 1.0000 | 1000 | 1 |
SSID 4003 | LMC | 68.8503 | −66.947 | 5700 | 2300 | 1.0000 | 1000 | 1 |
SSID 4240 | LMC | 77.8078 | −67.6045 | 9400 | 2200 | 1.0000 | 1000 | 1 |
SSID 4062 | LMC | 73.4433 | −68.2704 | 11000 | 2100 | 1.0500 | 1080 | 1 |
SSID 4402 | LMC | 81.1821 | −71.7907 | 7400 | 2200 | 1.0500 | 1000 | 1 |
SSID 4759 | LMC | 86.0569 | −69.7384 | 7100 | 2200 | 1.1000 | 900 | 1 |
SSID 4238 | LMC | 77.7936 | −67.8695 | 11700 | 2100 | 1.1500 | 1000 | 1 |
SSID 140 | LMC | 83.2786 | −70.5095 | 8500 | 2200 | 1.2000 | 900 | 1 |
SSID 4309 | LMC | 79.7344 | −67.7513 | 11500 | 2100 | 1.2000 | 900 | 1 |
SSID 4001 | LMC | 68.2391 | −69.4426 | 7850 | 2200 | 1.2500 | 1000 | 1 |
SSID 4228 | LMC | 77.582 | −69.8309 | 9500 | 2200 | 0.6500 | 1080 | 1 |
SSID 4155 | LMC | 75.2684 | −66.2112 | 11300 | 2200 | 0.8500 | 1080 | 1 |
SSID 4758 | LMC | 85.9002 | −70.1764 | 8000 | 2300 | 0.8500 | 1080 | 1 |
SSID 4150 | LMC | 75.1346 | −72.1506 | 6900 | 2300 | 0.7000 | 1080 | 1 |
SSID 4052 | LMC | 73.0841 | −68.7249 | 7000 | 2300 | 0.6500 | 1080 | 1 |
SSID 4251 | LMC | 78.1337 | −69.2611 | 11300 | 2200 | 0.6200 | 1080 | 1 |
SSID 80 | LMC | 79.5136 | −68.8307 | 8000 | 3000 | 0.0240 | 1080 | 1 |
SSID 4476 | LMC | 82.1856 | −66.2347 | 13000 | 2700 | 0.1010 | 1080 | 1 |
SSID 51 | LMC | 76.7895 | −68.9806 | 11000 | 2800 | 0.0410 | 1080 | 1 |
SSID 4432 | LMC | 81.5834 | −69.6936 | 8500 | 3300 | 0.0051 | 1080 | 1 |
SSID 55 | LMC | 77.1097 | −68.5208 | 7100 | 2600 | 0.0960 | 1080 | 1 |
SSID 4448 | LMC | 81.7698 | −69.6379 | 6500 | 2900 | 0.0310 | 1080 | 1 |
SSID 126 | LMC | 82.6875 | −68.3581 | 12000 | 2800 | 0.0610 | 1080 | 1 |
SSID 4717 | LMC | 85.086 | −66.2456 | 6100 | 2200 | 1.0000 | 1000 | 1 |
SSID 4562 | LMC | 83.7239 | −70.4902 | 9500 | 2200 | 0.9700 | 1000 | 1 |
SSID 4000 | LMC | 67.1257 | −69.5139 | 7800 | 2300 | 0.7900 | 1080 | 1 |
SSID 4478 | LMC | 82.1942 | −71.3202 | 6700 | 2300 | 0.7900 | 1080 | 1 |
SSID 4421 | LMC | 81.4664 | −68.7762 | 10900 | 2200 | 0.6800 | 1080 | 1 |
SSID 4600 | LMC | 84.1005 | −72.6924 | 5700 | 2300 | 0.8500 | 1080 | 1 |
SSID 4225 | LMC | 77.5 | −69.936 | 9500 | 2400 | 0.2300 | 1080 | 1 |
SSID 4211 | LMC | 77.1068 | −68.9002 | 8700 | 2600 | 0.1800 | 1080 | 1 |
SSID 4016 | LMC | 71.8171 | −68.4072 | 9100 | 2200 | 0.7000 | 1080 | 1 |
SSID 4244 | LMC | 77.9111 | −66.8527 | 10500 | 2200 | 0.5100 | 1080 | 1 |
SSID 4256 | LMC | 78.3184 | −68.7361 | 9300 | 2300 | 0.4100 | 1080 | 1 |
SSID 4012 | LMC | 70.7389 | −70.2071 | 6500 | 2400 | 0.3800 | 1080 | 1 |
SSID 4469 | LMC | 82.1675 | −66.2317 | 5900 | 2500 | 0.2350 | 1080 | 1 |
SSID 4034 | LMC | 72.7957 | −69.3373 | 9900 | 2500 | 0.2350 | 1080 | 1 |
SSID 98 | LMC | 80.675 | −69.2572 | 5300 | 2500 | 0.3300 | 1080 | 1 |
SSID 4334 | LMC | 80.0808 | −66.5966 | 5500 | 2600 | 0.3800 | 1080 | 1 |
SSID 4463 | LMC | 82.0478 | −70.5663 | 6100 | 2700 | 0.2100 | 1080 | 1 |
SSID 7 | LMC | 72.669 | −68.9719 | 5600 | 2800 | 0.0500 | 1080 | 1 |
SSID 4604 | LMC | 84.1531 | −69.7895 | 9600 | 2500 | 0.2300 | 1080 | 1 |
SSID 4442 | LMC | 81.649 | −69.1397 | 6600 | 2500 | 0.2650 | 1080 | 1 |
SSID 4293 | LMC | 79.3624 | −68.9163 | 6750 | 2200 | 0.9500 | 1080 | 1 |
SSID 4510 | LMC | 82.8048 | −66.1614 | 9700 | 2500 | 0.2850 | 1080 | 1 |
SSID 4004 | LMC | 69.3448 | −68.4177 | 9700 | 2200 | 0.6700 | 1080 | 1 |
SSID 4447 | LMC | 81.712 | −69.5269 | 5500 | 2400 | 0.5140 | 1080 | 1 |
SSID 4481 | LMC | 82.2025 | −69.8004 | 6500 | 2300 | 0.7000 | 1080 | 1 |
SSID 4593 | LMC | 84.0054 | −66.7776 | 5700 | 2300 | 0.9500 | 1080 | 1 |
SSID 4241 | LMC | 77.8314 | −68.7076 | 10700 | 2100 | 0.9400 | 1080 | 1 |
SSID 4488 | LMC | 82.2818 | −66.9709 | 11000 | 2800 | 0.0350 | 1080 | 1 |
SSID 4206 | LMC | 76.6465 | −70.2806 | 8750 | 2100 | 1.0600 | 900 | 1 |
SSID 4783 | LMC | 87.7082 | −71.3933 | 9700 | 2100 | 1.0500 | 1080 | 1 |
SSID 4339 | LMC | 80.2518 | −69.3486 | 5600 | 2300 | 0.9000 | 1080 | 1 |
SSID 4736 | LMC | 85.2424 | −69.8869 | 7000 | 2500 | 0.2850 | 1080 | 1 |
SSID 4780 | LMC | 87.5281 | −71.7676 | 10500 | 2200 | 0.5200 | 1080 | 1 |
SSID 4408 | LMC | 81.2738 | −70.1697 | 8650 | 2200 | 0.6000 | 1080 | 1 |
SSID 4093 | LMC | 73.8286 | −68.7751 | 5400 | 2500 | 0.5800 | 1080 | 1 |
SSID 4067 | LMC | 73.5067 | −65.0811 | 9500 | 2500 | 0.2700 | 1080 | 1 |
SSID 156 | LMC | 84.8748 | −69.9656 | 5500 | 2700 | 0.1280 | 1080 | 1 |
SSID 66 | LMC | 78.2769 | −69.1629 | 5200 | 2500 | 0.3200 | 1080 | 1 |
SSID 141 | LMC | 83.3275 | −66.0111 | 3500 | NaN | 0.2910 | 1080 | 1 |
SSID 60 | LMC | 77.6182 | −68.7421 | 3900 | 2600 | 0.1700 | 1080 | 1 |
SSID 4385 | LMC | 80.7881 | −69.2964 | 5400 | 2600 | 0.2250 | 1080 | 1 |
SSID 4002 | LMC | 68.4322 | −70.1642 | 5300 | 2500 | 0.4500 | 1080 | 1 |
SSID 4479 | LMC | 82.1965 | −66.2373 | 5400 | 2400 | 0.7000 | 1080 | 1 |
SSID 4692 | LMC | 84.966 | −70.0214 | 5350 | 2400 | 1.2000 | 1000 | 1 |
SSID 4565 | LMC | 83.7647 | −69.8793 | 6000 | 2400 | 0.7500 | 1080 | 1 |
SSID 103 | LMC | 81.022 | −68.3006 | 3600 | 2800 | 0.0750 | 1080 | 1 |
SSID 3 | LMC | 71.6131 | −68.7963 | 5000 | 2700 | 0.1000 | 1080 | 1 |
SSID 4037 | LMC | 72.8146 | −68.6945 | 13300 | 2600 | 0.1800 | 1080 | 1 |
SSID 4154 | LMC | 75.2538 | −67.5899 | 14500 | 2200 | 0.5400 | 1080 | 1 |
SSID 4811 | LMC | 90.6293 | −67.213 | 13400 | 2100 | 1.1300 | 1000 | 1 |
SSID 4100 | LMC | 73.9123 | −67.8196 | 14600 | 2100 | 1.1000 | 1000 | 1 |
SSID 4779 | LMC | 87.4858 | −70.8867 | 16600 | 2100 | 1.2000 | 900 | 1 |
SSID 4246 | LMC | 78.0035 | −70.5399 | 14000 | 2000 | 1.7000 | 900 | 1 |
SSID 4794 | LMC | 89.1616 | −67.8928 | 17200 | 2000 | 2.0500 | 900 | 1 |
SSID 4776 | LMC | 87.287 | −71.5353 | 17400 | 2800 | 0.0880 | 1080 | 1 |
SSID 4513 | LMC | 82.9205 | −69.6555 | 15900 | 2200 | 0.6200 | 1080 | 1 |
SSID 4575 | LMC | 83.862 | −69.8744 | 11800 | 2500 | 0.3310 | 1080 | 1 |
SSID 4021 | LMC | 72.3269 | −69.8872 | 15500 | 2200 | 0.6010 | 1080 | 1 |
SSID 9 | LMC | 72.9192 | −68.793 | 5150 | 2400 | 3.4000 | 870 | 1 |
SSID 4308 | LMC | 79.7016 | −69.5596 | 6700 | 2400 | 5.6000 | 800 | 1 |
SSID 4489 | LMC | 82.4079 | −72.8314 | 5000 | 2400 | 4.3000 | 850 | 1 |
SSID 4781 | LMC | 87.6091 | −69.9342 | 10000 | 1900 | 5.2000 | 800 | 1 |
SSID 4185 | LMC | 76.0233 | −68.3945 | 5000 | 2400 | 6.2000 | 800 | 1 |
SSID 4171 | LMC | 75.6312 | −68.0934 | 8100 | 2100 | 6.3000 | 720 | 1 |
SSID 65 | LMC | 78.2576 | −69.5642 | 6500 | 2400 | 7.1000 | 680 | 1 |
SSID 4299 | LMC | 79.5488 | −70.5075 | 9400 | 1900 | 5.3000 | 650 | 1 |
SSID 4415 | LMC | 81.4193 | −70.1409 | 4000 | 2400 | 6.6000 | 750 | 1 |
SSID 190 | LMC | 87.2504 | −70.5562 | 11300 | 2000 | 3.4000 | 225 | 1 |
SSID 125 | LMC | 82.6853 | −71.7167 | 8200 | 2000 | 2.3000 | 225 | 1 |
SSID 4109 | LMC | 74.1339 | −68.8808 | 27000 | NaN | 0.3700 | 1080 | 1 |
SSID 4540 | LMC | 83.2344 | −68.2135 | 26000 | NaN | 0.0601 | 1080 | 1 |
SSID 4451 | LMC | 81.8506 | −69.6625 | 28800 | NaN | 0.9100 | 1000 | 1 |
Post-AGB | ||||||||
IRAS04296+3429 | MW | 68.23740141 | 34.60344627 | 6000 | 7272 | 0.007 | 280 | 2 |
IRAS06530 −0213 | MW | 36.67411843 | 62.35611398 | 6900 | 7809 | 0.0047 | 200 | 2 |
IRAS07134+1005 | MW | 109.04274454 | 9.99665253 | 5500 | 7485 | 0.006 | 210 | 2 |
IRAS08143−4406 | MW | 124.01257847 | −44.26794331 | 5400 | 7013 | 0.002 | 150 | 2 |
IRAS08281−4850 | MW | 127.41895483 | −49.00119212 | 7900 | 7462 | 0.007 | 280 | 2 |
IRAS12360−5740 | MW | 189.72126697 | −57.94218386 | 6300 | 7273 | 0.0035 | 180 | 2 |
IRAS13245−5036 | MW | 201.90386260 | −50.86837655 | 7100 | 9037 | 0.004 | 220 | 2 |
IRAS14325−6428 | MW | 219.14313660 | −64.69197718 | 7035 | 7256 | 0.007 | 190 | 2 |
IRAS14429−4539 | MW | 298.21959045 | −17.03065000 | 9000 | 9579 | 0.0085 | 360 | 2 |
IRAS19500−1709 | MW | 300.49794561 | 32.79242099 | 7100 | 8239 | 0.0052 | 220 | 2 |
IRAS22272+5435 | MW | 353.18657229 | 62.06362764 | 6000 | 5325 | 0.0087 | 250 | 2 |
IRAS23304+6147 | MW | 221.55738007 | −45.86812587 | 6400 | 6276 | 0.0085 | 200 | 2 |
J050632.10−714229.8 | LMC | 076.633750 | −71.708278 | 6000 | 7600 | 0.003 | 240 | 3 |
J051848.84−700247.0 | LMC | 079.703500 | −70.046389 | 6700 | 6000 | 0.008 | 240 | 3 |
J053250.69−713925.8 | LMC | 083.211208 | −71.657167 | 5200 | 6000 | 0.006 | 250 | 3 |
J052220.98−692001.5 | LMC | 080.587417 | −69.333750 | 4500 | 5750 | 0.015 | 220 | 3 |
J003643.94−723722.1 | SMC | 009.183083 | −72.622806 | 6500 | 7500 | 0.002 | 250 | 3 |
J004114.10−741130.1 | SMC | 010.308750 | −74.191694 | 5800 | 5750 | 0.007 | 280 | 3 |
J004441.03−732136.0 | SMC | 011.170958 | −73.360000 | 8500 | 6000 | 0.002 | 320 | 3 |
J005803.08−732245.1 | SMC | 014.512833 | −73.379194 | 12000 | 6500 | 0.025 | 280 | 3 |
PN | ||||||||
SMP LMC 4 | LMC | 070.84117 | −71.5024 | 6400 | 105000 | − | 98 | 4, 5 |
SMP LMC 25 | LMC | 076.59962 | −69.0552 | 4700 | 60000 | − | 137 | 4, 5 |
SMP LMC 34 | LMC | 077.57108 | −68.8062 | 3000 | 107000 | − | 120 | 4, 5 |
SMP LMC 66 | LMC | 082.17083 | −67.5609 | 3900 | 46000 | − | 135 | 4, 5 |
SMP LMC 71 | LMC | 082.63825 | −70.7437 | 5300 | 164000 | − | 130 | 4, 5 |
SMP LMC 102 | LMC | 097.38717 | −68.0591 | 2800 | 140000 | − | 106 | 4, 5 |
SMP LMC 18 | LMC | 075.92762 | −70.1131 | 1500 | 50000 | − | 123 | 4, 5 |
References
- Matsuura, M.; Woods, P.M.; Owen, P.J. The global gas and dust budget of the Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 2013, 429, 2527–2536. [Google Scholar] [CrossRef]
- Schneider, R.; Maiolino, R. The formation and cosmic evolution of dust in the early Universe: I. Dust sources. Astron. Astrophys. Rev. 2024, 32, 2. [Google Scholar] [CrossRef]
- Kobayashi, C.; Karakas, A.I.; Lugaro, M. The Origin of Elements from Carbon to Uranium. Astrophys. J. 2020, 900, 179. [Google Scholar] [CrossRef]
- Höfner, S.; Olofsson, H. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements. Astron. Astrophys. Rev. 2018, 26, 1. [Google Scholar] [CrossRef]
- Gail, H.P.; Sedlmayr, E. Mineral formation in stellar winds. I. Condensation sequence of silicate and iron grains in stationary oxygen rich outflows. Astron. Astrophys. 1999, 347, 594–616. [Google Scholar]
- Schneider, R.; Valiante, R.; Ventura, P.; dell’Agli, F.; Di Criscienzo, M.; Hirashita, H.; Kemper, F. Dust production rate of asymptotic giant branch stars in the Magellanic Clouds. Mon. Not. R. Astron. Soc. 2014, 442, 1440–1450. [Google Scholar] [CrossRef]
- Tielens, A.G.G.M.; Waters, L.B.F.M.; Bernatowicz, T.J. Origin and Evolution of Dust in Circumstellar and Interstellar Environments. In Chondrites and the Protoplanetary Disk; Krot, A.N., Scott, E.R.D., Reipurth, B., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2005; Volume 341, p. 605. [Google Scholar]
- Zhukovska, S.; Gail, H.P.; Trieloff, M. Evolution of interstellar dust and stardust in the solar neighbourhood. Astron. Astrophys. 2008, 479, 453–480. [Google Scholar] [CrossRef]
- Karakas, A.I.; Lattanzio, J.C. The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars. Publ. Astron. Soc. Aust. 2014, 31, e030. [Google Scholar] [CrossRef]
- Ventura, P.; Dell’Agli, F.; Tailo, M.; Castellani, M.; Marini, E.; Tosi, S.; Di Criscienzo, M. Nucleosynthesis, Mixing Processes, and Gas Pollution from AGB Stars. Universe 2022, 8, 45. [Google Scholar] [CrossRef]
- Iben, I., Jr. Post main sequence evolution of single stars. Annu. Rev. Astron. Astrophys 1974, 12, 215–256. [Google Scholar] [CrossRef]
- Sackmann, I.J.; Boothroyd, A.I. The Creation of Superrich Lithium Giants. Astrophys. J. Lett. 1992, 392, L71. [Google Scholar] [CrossRef]
- Dell’Agli, F.; Ventura, P.; Schneider, R.; Di Criscienzo, M.; García-Hernández, D.A.; Rossi, C.; Brocato, E. Asymptotic giant branch stars in the Large Magellanic Cloud: Evolution of dust in circumstellar envelopes. Mon. Not. R. Astron. Soc. 2015, 447, 2992–3015. [Google Scholar] [CrossRef]
- Marini, E.; Dell’Agli, F.; Groenewegen, M.A.T.; García-Hernández, D.A.; Mattsson, L.; Kamath, D.; Ventura, P.; D’Antona, F.; Tailo, M. Understanding the evolution and dust formation of carbon stars in the Large Magellanic Cloud via the JWST. Astron. Astrophys. 2021, 647, A69. [Google Scholar] [CrossRef]
- Marini, E.; Dell’Agli, F.; Kamath, D.; Ventura, P.; Mattsson, L.; Marchetti, T.; García-Hernández, D.A.; Carini, R.; Fabrizio, M.; Tosi, S. The intense production of silicates during the final AGB phases of intermediate mass stars. Astron. Astrophys. 2023, 670, A97. [Google Scholar] [CrossRef]
- Kamath, D.; Wood, P.R.; Van Winckel, H. Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2015, 454, 1468–1502. [Google Scholar] [CrossRef]
- Kamath, D.; Van Winckel, H.; Ventura, P.; Mohorian, M.; Hrivnak, B.J.; Dell’Agli, F.; Karakas, A. Luminosities and Masses of Single Galactic Post-asymptotic Giant Branch Stars with Distances from Gaia EDR3: The Revelation of an s-process Diversity. Astrophys. J. Lett. 2022, 927, L13. [Google Scholar] [CrossRef]
- Stanghellini, L.; García-Hernández, D.A.; García-Lario, P.; Davies, J.E.; Shaw, R.A.; Villaver, E.; Manchado, A.; Perea-Calderón, J.V. The Nature of Dust in Compact Galactic Planetary Nebulae from Spitzer Spectra. Astrophys. J. 2012, 753, 172. [Google Scholar] [CrossRef]
- Tosi, S.; Dell’Agli, F.; Kamath, D.; Stanghellini, L.; Ventura, P.; Bianchi, S.; Gómez-Muñoz, M.A.; García-Hernández, D.A. Planetary nebulae of the Large Magellanic Cloud. I. A multiwavelength analysis. Astron. Astrophys. 2024, 688, A36. [Google Scholar] [CrossRef]
- Tosi, S.; Kamath, D.; Dell’Agli, F.; Van Winckel, H.; Ventura, P.; Marchetti, T.; Marini, E.; Tailo, M. A study of carbon-rich post-AGB stars in the Milky Way to understand the production of carbonaceous dust from evolved stars. Astron. Astrophys. 2023, 673, A41. [Google Scholar] [CrossRef]
- Tosi, S.; Dell’Agli, F.; Kamath, D.; Ventura, P.; Van Winckel, H.; Marini, E. Understanding dust production and mass loss in the AGB phase using post-AGB stars in the Magellanic Clouds. Astron. Astrophys. 2022, 668, A22. [Google Scholar] [CrossRef]
- Dell’Agli, F.; Tosi, S.; Kamath, D.; Stanghellini, L.; Bianchi, S.; Ventura, P.; Marini, E.; García-Hernández, D.A. Dust from evolved stars: A pilot analysis of the AGB to PN transition. Mon. Not. R. Astron. Soc. 2023, 526, 5386–5392. [Google Scholar] [CrossRef]
- Dell’Agli, F.; Tosi, S.; Kamath, D.; Ventura, P.; Van Winckel, H.; Marini, E.; Marchetti, T. Study of oxygen-rich post-AGB stars in the Milky Way as a means to explain the production of silicates among evolved stars. Astron. Astrophys. 2023, 671, A86. [Google Scholar] [CrossRef]
- Ferrarotti, A.S.; Gail, H.P. Composition and quantities of dust produced by AGB-stars and returned to the interstellar medium. Astron. Astrophys. 2006, 447, 553–576. [Google Scholar] [CrossRef]
- Ventura, P.; di Criscienzo, M.; Schneider, R.; Carini, R.; Valiante, R.; D’Antona, F.; Gallerani, S.; Maiolino, R.; Tornambé, A. The transition from carbon dust to silicate production in low-metallicity asymptotic giant branch and super-asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2012, 420, 1442–1456. [Google Scholar] [CrossRef]
- Meixner, M.; Gordon, K.D.; Indebetouw, R.; Hora, J.L.; Whitney, B.; Blum, R.; Reach, W.; Bernard, J.P.; Meade, M.; Babler, B.; et al. Spitzer Survey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy’s Evolution (SAGE). I. Overview and Initial Results. Astron. J. 2006, 132, 2268–2288. [Google Scholar] [CrossRef]
- Gordon, K.D.; Meixner, M.; Meade, M.R.; Whitney, B.; Engelbracht, C.; Bot, C.; Boyer, M.L.; Lawton, B.; Sewiło, M.; Babler, B.; et al. Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC). I. Overview. Astron. J. 2011, 142, 102. [Google Scholar] [CrossRef]
- Boyer, M.L.; McQuinn, K.B.W.; Barmby, P.; Bonanos, A.Z.; Gehrz, R.D.; Gordon, K.D.; Groenewegen, M.A.T.; Lagadec, E.; Lennon, D.; Marengo, M.; et al. An Infrared Census of Dust in nearby Galaxies with Spitzer (DUSTiNGS). I. Overview. Astrophys. J. Suppl. Ser. 2015, 216, 10. [Google Scholar] [CrossRef]
- Srinivasan, S.; Meixner, M.; Leitherer, C.; Vijh, U.; Volk, K.; Blum, R.D.; Babler, B.L.; Block, M.; Bracker, S.; Cohen, M.; et al. The Mass Loss Return from Evolved Stars to the Large Magellanic Cloud: Empirical Relations for Excess Emission at 8 and 24 μm. Astron. J. 2009, 137, 4810–4823. [Google Scholar] [CrossRef]
- Riebel, D.; Srinivasan, S.; Sargent, B.; Meixner, M. The Mass-loss Return from Evolved Stars to the Large Magellanic Cloud. VI. Luminosities and Mass-loss Rates on Population Scales. Astrophys. J. 2012, 753, 71. [Google Scholar] [CrossRef]
- Ventura, P.; Karakas, A.I.; Dell’Agli, F.; García-Hernández, D.A.; Boyer, M.L.; Di Criscienzo, M. On the nature of the most obscured C-rich AGB stars in the Magellanic Clouds. Mon. Not. R. Astron. Soc. 2016, 457, 1456–1467. [Google Scholar] [CrossRef]
- Groenewegen, M.A.T.; Sloan, G.C. Luminosities and mass-loss rates of Local Group AGB stars and red supergiants. Astron. Astrophys. 2018, 609, A114. [Google Scholar] [CrossRef]
- Dell’Agli, F.; Ventura, P.; Garcia Hernandez, D.A.; Schneider, R.; di Criscienzo, M.; Brocato, E.; D’Antona, F.; Rossi, C. Dissecting the Spitzer colour-magnitude diagrams of extreme Large Magellanic Cloud asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2014, 442, L38–L42. [Google Scholar] [CrossRef]
- Dell’Agli, F.; Di Criscienzo, M.; Ventura, P.; Limongi, M.; García-Hernández, D.A.; Marini, E.; Rossi, C. Evolved stars in the Local Group galaxies—II. AGB, RSG stars, and dust production in IC10. Mon. Not. R. Astron. Soc. 2018, 479, 5035–5048. [Google Scholar] [CrossRef]
- Nanni, A.; Marigo, P.; Girardi, L.; Rubele, S.; Bressan, A.; Groenewegen, M.A.T.; Pastorelli, G.; Aringer, B. Estimating the dust production rate of carbon stars in the Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 2018, 473, 5492–5513. [Google Scholar] [CrossRef]
- Reid, W.A. A multiwavelength analysis of planetary nebulae in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2014, 438, 2642–2663. [Google Scholar] [CrossRef]
- Lasker, B.M.; Lattanzi, M.G.; McLean, B.J.; Bucciarelli, B.; Drimmel, R.; Garcia, J.; Greene, G.; Guglielmetti, F.; Hanley, C.; Hawkins, G.; et al. The Second-Generation Guide Star Catalog: Description and Properties. Astron. J. 2008, 136, 735–766. [Google Scholar] [CrossRef]
- Cutri, R.M.; Wright, E.L.; Conrow, T.; Bauer, J.; Benford, D.; Brandenburg, H.; Dailey, J.; Eisenhardt, P.R.M.; Evans, T.; Fajardo-Acosta, S.; et al. Explanatory Supplement to the WISE All-Sky Data Release Products. Explanatory Supplement to the WISE All-Sky Data Release Products, 2012. Available online: https://ui.adsabs.harvard.edu/abs/2012wise.rept....1C (accessed on 17 January 2024).
- Stanghellini, L.; Shaw, R.A.; Gilmore, D. Space Telescope Imaging Spectrograph Ultraviolet Spectra of Large Magellanic Cloud Planetary Nebulae: A Study of Carbon Abundances and Stellar Evolution. Astrophys. J. 2005, 622, 294–318. [Google Scholar] [CrossRef]
- Volk, K.; Hrivnak, B.J.; Matsuura, M.; Bernard-Salas, J.; Szczerba, R.; Sloan, G.C.; Kraemer, K.E.; van Loon, J.T.; Kemper, F.; Woods, P.M.; et al. Discovery and Analysis of 21 μm Feature Sources in the Magellanic Clouds. Astrophys. J. 2011, 735, 127. [Google Scholar] [CrossRef]
- Sloan, G.C.; Kraemer, K.E.; Price, S.D.; Shipman, R.F. A Uniform Database of 2.4-45.4 Micron Spectra from the Infrared Space Observatory Short Wavelength Spectrometer. Astrophys. J. Suppl. Ser. 2003, 147, 379–401. [Google Scholar] [CrossRef]
- Massey, P. A UBVR CCD Survey of the Magellanic Clouds. Astrophys. J. Suppl. Ser. 2002, 141, 81–122. [Google Scholar] [CrossRef]
- Zaritsky, D.; Harris, J.; Thompson, I.B.; Grebel, E.K. The Magellanic Clouds Photometric Survey: The Large Magellanic Cloud Stellar Catalog and Extinction Map. Astron. J. 2004, 128, 1606–1614. [Google Scholar] [CrossRef]
- Skrutskie, M.F.; Cutri, R.M.; Stiening, R.; Weinberg, M.D.; Schneider, S.; Carpenter, J.M.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The Two Micron All Sky Survey (2MASS). Astron. J. 2006, 131, 1163–1183. [Google Scholar] [CrossRef]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
- Kemper, F.; Woods, P.M.; Antoniou, V.; Bernard, J.P.; Blum, R.D.; Boyer, M.L.; Chan, J.; Chen, C.H.R.; Cohen, M.; Dijkstra, C.; et al. The SAGE-Spec Spitzer Legacy Program: The Life Cycle of Dust and Gas in the Large Magellanic Cloud. Publ. Astron. Soc. Pac. 2010, 122, 683. [Google Scholar] [CrossRef]
- Jones, O.C.; Woods, P.M.; Kemper, F.; Kraemer, K.E.; Sloan, G.C.; Srinivasan, S.; Oliveira, J.M.; van Loon, J.T.; Boyer, M.L.; Sargent, B.A.; et al. The SAGE-Spec Spitzer Legacy program: The life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification-III. Mon. Not. R. Astron. Soc. 2017, 470, 3250–3282. [Google Scholar] [CrossRef]
- van Aarle, E.; Van Winckel, H.; De Smedt, K.; Kamath, D.; Wood, P.R. Detailed abundance study of four s-process enriched post-AGB stars in the Large Magellanic Cloud. Astron. Astrophys. 2013, 554, A106. [Google Scholar] [CrossRef]
- De Smedt, K.; Van Winckel, H.; Kamath, D.; Wood, P.R. Chemical abundance study of two strongly s-process enriched post-AGB stars in the LMC: J051213.81-693537.1 and J051848.86-700246.9. Astron. Astrophys. 2015, 583, A56. [Google Scholar] [CrossRef]
- Leisy, P.; Dennefeld, M. Planetary nebulae in the Magellanic Clouds. II. Abundances and element production. Astron. Astrophys. 2006, 456, 451–466. [Google Scholar] [CrossRef]
- Henry, R.B.C.; Liebert, J.; Boroson, T.A. Faint Planetary Nebulae in the Magellanic Clouds: Central Star Properties and Nebular Abundances for the Jacoby Sample. Astrophys. J. 1989, 339, 872. [Google Scholar] [CrossRef]
- Woods, P.M.; Oliveira, J.M.; Kemper, F.; van Loon, J.T.; Sargent, B.A.; Matsuura, M.; Szczerba, R.; Volk, K.; Zijlstra, A.A.; Sloan, G.C.; et al. The SAGE-Spec Spitzer Legacy programme: The life-cycle of dust and gas in the Large Magellanic Cloud-Point source classification I. Mon. Not. R. Astron. Soc. 2011, 411, 1597–1627. [Google Scholar] [CrossRef]
- Hrivnak, B.J.; Van de Steene, G.; Van Winckel, H.; Sperauskas, J.; Bohlender, D.; Lu, W. Where are the Binaries? Results of a Long-term Search for Radial Velocity Binaries in Proto-planetary Nebulae. Astrophys. J. 2017, 846, 96. [Google Scholar] [CrossRef]
- Kamath, D.; Wood, P.R.; Van Winckel, H. Optically visible post-AGB/RGB stars and young stellar objects in the Small Magellanic Cloud: Candidate selection, spectral energy distributions and spectroscopic examination. Mon. Not. R. Astron. Soc. 2014, 439, 2211–2270. [Google Scholar] [CrossRef]
- Kamath, D.; Dell’Agli, F.; Ventura, P.; Van Winckel, H.; Tosi, S.; Karakas, A.I. Modelling of the post-asymptotic giant branch phase as a tool to understand asymptotic giant branch evolution and nucleosynthesis. Mon. Not. R. Astron. Soc. 2023, 519, 2169–2185. [Google Scholar] [CrossRef]
- Shaw, R.A.; Stanghellini, L.; Mutchler, M.; Balick, B.; Blades, J.C. Morphology and Evolution of the Large Magellanic Cloud Planetary Nebulae. Astrophys. J. 2001, 548, 727–748. [Google Scholar] [CrossRef]
- Shaw, R.A.; Stanghellini, L.; Villaver, E.; Mutchler, M. Hubble Space Telescope Images of Magellanic Cloud Planetary Nebulae. Astrophys. J. Suppl. Ser. 2006, 167, 201–229. [Google Scholar] [CrossRef]
- Stanghellini, L.; Blades, J.C.; Osmer, S.J.; Barlow, M.J.; Liu, X.W. Hubble Space Telescope Images of Magellanic Cloud Planetary Nebulae: Data and Correlations across Morphological Classes. Astrophys. J. 1999, 510, 687–702. [Google Scholar] [CrossRef]
- Stanghellini, L.; Shaw, R.A.; Mutchler, M.; Palen, S.; Balick, B.; Blades, J.C. Optical Slitless Spectroscopy of Large Magellanic Cloud Planetary Nebulae: A Study of the Emission Lines and Morphology. Astrophys. J. 2002, 575, 178–193. [Google Scholar] [CrossRef]
- Balick, B.; Frank, A. Shapes and Shaping of Planetary Nebulae. Annu. Rev. Astron. Astrophys. 2002, 40, 439–486. [Google Scholar] [CrossRef]
- Stanghellini, L.; Villaver, E.; Manchado, A.; Guerrero, M.A. The Correlations between Planetary Nebula Morphology and Central Star Evolution: Analysis of the Northern Galactic Sample. Astrophys. J. 2002, 576, 285–293. [Google Scholar] [CrossRef]
- Ventura, P.; Stanghellini, L.; Dell’Agli, F.; García-Hernández, D.A.; Di Criscienzo, M. A test for asymptotic giant branch evolution theories: Planetary nebulae in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2015, 452, 3679–3688. [Google Scholar] [CrossRef]
- Dell’Agli, F.; Marini, E.; D’Antona, F.; Ventura, P.; Groenewegen, M.A.T.; Mattsson, L.; Kamath, D.; García-Hernández, D.A.; Tailo, M. Are extreme asymptotic giant branch stars post-common envelope binaries? Mon. Not. R. Astron. Soc. 2021, 502, L35–L39. [Google Scholar] [CrossRef]
- Nenkova, M.; Ivezić, Ž.; Elitzur, M. DUSTY: A Publicly Available Code for Modeling Dust Emission. In Thermal Emission Spectroscopy and Analysis of Dust, Disks, and Regoliths; Astronomical Society of the Pacific Conference Series; Sitko, M.L., Sprague, A.L., Lynch, D.K., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2000; Volume 196, pp. 77–82. [Google Scholar]
- Ferland, G.J.; Chatzikos, M.; Guzmán, F.; Lykins, M.L.; van Hoof, P.A.M.; Williams, R.J.R.; Abel, N.P.; Badnell, N.R.; Keenan, F.P.; Porter, R.L.; et al. The 2017 Release Cloudy. Rev. Mex. Astron. Astrofísica 2017, 53, 385–438. [Google Scholar] [CrossRef]
- Aringer, B.; Girardi, L.; Nowotny, W.; Marigo, P.; Lederer, M.T. Synthetic photometry for carbon rich giants. I. Hydrostatic dust-free models. Astron. Astrophys. 2009, 503, 913–928. [Google Scholar] [CrossRef]
- Castelli, F.; Kurucz, R.L. New Grids of ATLAS9 Model Atmospheres. arXiv 2003, arXiv:astro-ph/0405087. [Google Scholar] [CrossRef]
- Rauch, T. A grid of synthetic ionizing spectra for very hot compact stars from NLTE model atmospheres. Astron. Astrophys. 2003, 403, 709–714. [Google Scholar] [CrossRef]
- Pauldrach, A.W.A.; Hoffmann, T.L.; Lennon, M. Radiation-driven winds of hot luminous stars. XIII. A description of NLTE line blocking and blanketing towards realistic models for expanding atmospheres. Astron. Astrophys. 2001, 375, 161–195. [Google Scholar] [CrossRef]
- Aller, L.H.; Czyzak, S.J. Chemical compositions of planetary nebulae. Astrophys. J. Suppl. Ser. 1983, 51, 211–248. [Google Scholar] [CrossRef]
- Khromov, G.S. Planetary Nebulae. Space Sci. Rev. 1989, 51, 339–423. [Google Scholar] [CrossRef]
- Zubko, V.G.; Mennella, V.; Colangeli, L.; Bussoletti, E. Optical constants of cosmic carbon analogue grains—I. Simulation of clustering by a modified continuous distribution of ellipsoids. Mon. Not. R. Astron. Soc. 1996, 282, 1321–1329. [Google Scholar] [CrossRef]
- Pegourie, B. Optical properties of alpha silicon carbide. Astron. Astrophys. 1988, 194, 335–339. [Google Scholar]
- Rouleau, F.; Martin, P.G. Shape and Clustering Effects on the Optical Properties of Amorphous Carbon. Astrophys. J. 1991, 377, 526. [Google Scholar] [CrossRef]
- Laor, A.; Draine, B.T. Spectroscopic Constraints on the Properties of Dust in Active Galactic Nuclei. Astrophys. J. 1993, 402, 441. [Google Scholar] [CrossRef]
- Ventura, P.; Di Criscienzo, M.; Carini, R.; D’Antona, F. Yields of AGB and SAGB models with chemistry of low- and high-metallicity globular clusters. Mon. Not. R. Astron. Soc. 2013, 431, 3642–3653. [Google Scholar] [CrossRef]
- van Winckel, H. Post-AGB Stars. Annu. Rev. Astron. Astrophys 2003, 41, 391–427. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Kwok, S. Spectral energy distribution of compact planetary nebulae. Astron. Astrophys. 1991, 250, 179. [Google Scholar]
- Brown, R.L.; Mathews, W.G. Theoretical Continuous Spectra of Gaseous Nebulae. Astrophys. J. 1970, 160, 939. [Google Scholar] [CrossRef]
- Lombaert, R.; de Vries, B.L.; de Koter, A.; Decin, L.; Min, M.; Smolders, K.; Mutschke, H.; Waters, L.B.F.M. Observational evidence for composite grains in an AGB outflow. MgS in the extreme carbon star LL Pegasi. Astron. Astrophys. 2012, 544, L18. [Google Scholar] [CrossRef]
- Messenger, S.J.; Speck, A.; Volk, K. Probing the “30 μm” Feature: Lessons from Extreme Carbon Stars. Astrophys. J. 2013, 764, 142. [Google Scholar] [CrossRef]
- Sloan, G.C.; Kraemer, K.E.; McDonald, I.; Groenewegen, M.A.T.; Wood, P.R.; Zijlstra, A.A.; Lagadec, E.; Boyer, M.L.; Kemper, F.; Matsuura, M.; et al. The Infrared Spectral Properties of Magellanic Carbon Stars. Astrophys. J. 2016, 826, 44. [Google Scholar] [CrossRef]
- Kwok, S.; Zhang, Y. Unidentified Infrared Emission Bands: PAHs or MAONs? Astrophys. J. 2013, 771, 5. [Google Scholar] [CrossRef]
- Volk, K.; Sloan, G.C.; Kraemer, K.E. The 21 μm and 30 μm emission features in carbon-rich objects. Astrophys. Space Sci. 2020, 365, 88. [Google Scholar] [CrossRef]
- Goebel, J.H.; Moseley, S.H. MgS grain component in circumstellar shells. Astrophys. J. 1985, 290, L35–L39. [Google Scholar] [CrossRef]
- Sloan, G.C.; Lagadec, E.; Zijlstra, A.A.; Kraemer, K.E.; Weis, A.P.; Matsuura, M.; Volk, K.; Peeters, E.; Duley, W.W.; Cami, J.; et al. Carbon-rich Dust Past the Asymptotic Giant Branch: Aliphatics, Aromatics, and Fullerenes in the Magellanic Clouds. Astrophys. J. 2014, 791, 28. [Google Scholar] [CrossRef]
- Buss, R.H., Jr.; Tielens, A.G.G.M.; Cohen, M.; Werner, M.W.; Bregman, J.D.; Witteborn, F.C. Infrared Spectra of Transition Objects and the Composition and Evolution of Carbon Dust. Astrophys. J. 1993, 415, 250. [Google Scholar] [CrossRef]
- Cami, J.; Bernard-Salas, J.; Peeters, E.; Malek, S.E. Detection of C60 and C70 in a Young Planetary Nebula. Science 2010, 329, 1180. [Google Scholar] [CrossRef] [PubMed]
- Stanghellini, L.; García-Lario, P.; García-Hernández, D.A.; Perea-Calderón, J.V.; Davies, J.E.; Manchado, A.; Villaver, E.; Shaw, R.A. Spitzer Infrared Spectrograph Observations of Magellanic Cloud Planetary Nebulae: The Nature of Dust in Low-Metallicity Circumstellar Ejecta. Astrophys. J. 2007, 671, 1669–1684. [Google Scholar] [CrossRef]
- García-Hernández, D.A.; Villaver, E.; García-Lario, P.; Acosta-Pulido, J.A.; Manchado, A.; Stanghellini, L.; Shaw, R.A.; Cataldo, F. Infrared Study of Fullerene Planetary Nebulae. Astrophys. J. 2012, 760, 107. [Google Scholar] [CrossRef]
- McQuinn, K.B.W.; Woodward, C.E.; Willner, S.P.; Polomski, E.F.; Gehrz, R.D.; Humphreys, R.M.; van Loon, J.T.; Ashby, M.L.N.; Eicher, K.; Fazio, G.G. The M33 Variable Star Population Revealed by Spitzer. Astrophys. J. 2007, 664, 850–861. [Google Scholar] [CrossRef]
- Marigo, P.; Girardi, L.; Bressan, A.; Groenewegen, M.A.T.; Silva, L.; Granato, G.L. Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP-AGB models. Astron. Astrophys. 2008, 482, 883–905. [Google Scholar] [CrossRef]
- Karakas, A.I. Updated stellar yields from asymptotic giant branch models. Mon. Not. R. Astron. Soc. 2010, 403, 1413–1425. [Google Scholar] [CrossRef]
- Karakas, A.I.; Lugaro, M.; Carlos, M.; Cseh, B.; Kamath, D.; García-Hernández, D.A. Heavy-element yields and abundances of asymptotic giant branch models with a Small Magellanic Cloud metallicity. Mon. Not. R. Astron. Soc. 2018, 477, 421–437. [Google Scholar] [CrossRef]
- Ventura, P.; Karakas, A.; Dell’Agli, F.; García-Hernández, D.A.; Guzman-Ramirez, L. Gas and dust from solar metallicity AGB stars. Mon. Not. R. Astron. Soc. 2018, 475, 2282–2305. [Google Scholar] [CrossRef]
- Suh, K.W. Infrared Two-Color Diagrams for AGB Stars, Post-AGB Stars, and Planetary Nebulae. Astrophys. J. 2015, 808, 165. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosi, S.; Marini, E. Tracing the Evolution of the Emission Properties of Carbon-Rich AGB, Post-AGB, and PN Sources. Astronomy 2025, 4, 2. https://doi.org/10.3390/astronomy4010002
Tosi S, Marini E. Tracing the Evolution of the Emission Properties of Carbon-Rich AGB, Post-AGB, and PN Sources. Astronomy. 2025; 4(1):2. https://doi.org/10.3390/astronomy4010002
Chicago/Turabian StyleTosi, Silvia, and Ester Marini. 2025. "Tracing the Evolution of the Emission Properties of Carbon-Rich AGB, Post-AGB, and PN Sources" Astronomy 4, no. 1: 2. https://doi.org/10.3390/astronomy4010002
APA StyleTosi, S., & Marini, E. (2025). Tracing the Evolution of the Emission Properties of Carbon-Rich AGB, Post-AGB, and PN Sources. Astronomy, 4(1), 2. https://doi.org/10.3390/astronomy4010002