Cloudiness Parameterization for Use in Atmospheric Models: A Review and New Perspectives
Abstract
:1. Introduction
2. Classification of Cloudiness Parameterizations
2.1. Diagnostic Approaches
2.2. Prognostic Approaches
2.3. Practical Issues
3. Uncertainties in Cloudiness
3.1. Parameterizations
3.2. Observation
3.3. Radiation Feedback
4. Alternative Approach
4.1. Methodology
4.2. 1-D Tests
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bechtold, P.; Pinty, J.P.; Mascart, P. The use of partial cloudiness in a warm-rain parameterization: A subgrid-scale precipitation scheme. Mon. Weather Rev. 1993, 121, 3301–3311. [Google Scholar] [CrossRef]
- Jakob, C.; Klein, S.A. A parameterization of the effects of cloud and precipitation overlap for use in general circulation models. Q. J. R. Meteor. Soc. 2000, 126, 2525–2544. [Google Scholar] [CrossRef]
- Rybka, H.; Tost, H. Uncertainties in future climate predictions due to convection parameterisations. Atmos. Chem. Phys. 2014, 14, 5561–5576. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.M.; Porson, A.N.; Bornemann, F.J.; Weeks, M.; Field, P.R.; Lock, A.P. Improved microphysical parametrization of drizzle and fog for operational forecasting using the met office unified model. Q. J. R. Meteorol. Soc. 2013, 139, 488–500. [Google Scholar] [CrossRef]
- Forbes, R.M.; Tompkins, A.M.; Untch, A. A New Prognostic Bulk Microphysics Scheme for the IFS. ECMWF Technical Memorandum, 649. 2011. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2011/9441-new-prognostic-bulk-microphysics-scheme-ifs.pdf (accessed on 29 March 2023).
- Kim, S.-Y.; Bae, S.Y.; Park, R.-S.; Hong, S.-Y. Effects of partial cloudiness in a cloud microphysics scheme on simulated precipitation processes during a boreal summer. J. Geophys. Res. Atmos. 2019, 124, 3476–3491. [Google Scholar] [CrossRef]
- Zhao, Q.; Carr, F.H. A prognostic cloud scheme for operational models. Mon. Weather Rev. 1997, 125, 1931–1953. [Google Scholar] [CrossRef]
- Yang, F. NCEP/EMC Update for WGNE-36. 2021. Available online: https://wgne.net/wp-content/uploads/2021/11/WGNE36_FanglinYang_NCEP_Update.pdf (accessed on 29 March 2023).
- Slingo, J.M. The development and verification of a cloud prediction scheme for the ECMWF model. Q. J. R. Meteor. Soc. 1987, 113, 899–927. [Google Scholar] [CrossRef]
- Sundqvist, H.; Berge, E.; Kristjansson, J.E. Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Weather Rev. 1989, 117, 1641–1657. [Google Scholar] [CrossRef]
- Xu, K.-M.; Randall, D.A. A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci. 1996, 53, 3084–3102. [Google Scholar] [CrossRef]
- Smith, R.N.B. A scheme for predicting layer clouds and their water-content in a general-circulation model. Q. J. R. Meteorol. Soc. 1990, 116, 435–460. [Google Scholar] [CrossRef]
- Tompkins, A.M. A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci. 2002, 59, 1917–1942. [Google Scholar] [CrossRef]
- Tiedtke, M. Representation of clouds in large-scale models. Mon. Weather Rev. 1993, 121, 3040–3061. [Google Scholar] [CrossRef]
- Bony, S.; Emanuel, K.A. A parameterization of the cloudiness associated with cumulus convection; Evaluation using TOGA COARE data. J. Atmos. Sci. 2001, 58, 3158–3183. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Mccaa, J.R.; Grenier, H. A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results. Mon. Weather Rev. 2004, 132, 864–882. [Google Scholar] [CrossRef]
- Tompkins, A.M. The Parameterization of Cloud Cover. ECMWF Technical Memorandum. 2005. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2005/16958-parametrization-cloud-cover.pdf (accessed on 29 March 2023).
- Slingo, J.M. A cloud parametrization scheme derived from GATE data for use with a numerical-model. Q. J. R. Meteorol. Soc. 1980, 106, 747–770. [Google Scholar] [CrossRef]
- Bechtold, P.; Cuijpers, J.W.M.; Mascart, P.; Trouilhet, P. Modeling of trade-wind cumuli with a low-order turbulence model—toward a unified description of Cu and Sc clouds in meteorological models. J. Atmos. Sci. 1995, 52, 455–463. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
- Fowler, L.D.; Randall, D.A.; Rutledge, S.A. Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated cloud microphysical processes. J. Climate 1996, 9, 489–529. [Google Scholar] [CrossRef]
- Park, R.-S.; Chae, J.-H.; Hong, S.-Y. A revised prognostic cloud fraction scheme in a global forecasting system. Mon. Weather Rev. 2016, 114, 1219–1229. [Google Scholar] [CrossRef]
- Muench, S.; Lohmann, U. Developing a cloud scheme with prognostic cloud fraction and two moment microphysics for ECHAM-HAM. J. Adv. Model Earth Syst. 2020, 12, e2019MS001824. [Google Scholar] [CrossRef]
- Hong, S.Y.; Kwon, Y.C.; Kim, T.H.; Esther Kim, J.E.; Choi, S.J.; Kwon, I.H.; Kim, I.; Lee, E.-H.; Park, R.-S.; Kim, D.-I. The Korean Integrated Model (KIM) System for Global Weather Forecasting. Asia-Pac. J. Atmos. Sci. 2018, 54, 267–292. [Google Scholar] [CrossRef]
- Teixeira, J. Cloud fraction and relative humidity in a prognostic cloud fraction scheme. Mon. Weather Rev. 2001, 129, 1750–1753. [Google Scholar] [CrossRef]
- Franklin, C.N.; Jakob, C.; Dix, M.; Protat, A.; Roff, G. Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP-ICE. Q. J. R. Meteor. Soc. 2012, 138, 734–754. [Google Scholar] [CrossRef]
- Delanoë, J.; Hogan, R.J.; Forbes, R.M.; Bodas-Salcedo, A.; Stein, T.H.M. Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data. Q. J. R. Meteor. Soc. 2011, 137, 2064–2078. [Google Scholar] [CrossRef]
- Bae, S.Y.; Park, R.-S. Consistency between the cloud and radiation processes in a numerical forecasting model. Meteorol. Atmos. Phys. 2018, 131, 1429–1436. [Google Scholar] [CrossRef]
- Lenderink, G.; Siebesma, A.P. Combining the massflux approach with a statistical cloud scheme. In 14th Symposium on Boundary Layer and Turbulence; American Meteor Society: Aspen, CO, USA, 2000; pp. 66–69. [Google Scholar]
- Larson, V.E. Prognostic equations for cloud fraction and liquid water, and their relation to filtered density functions. J. Atmos. Sci. 2004, 61, 338–351. [Google Scholar] [CrossRef]
- Wilson, D.R.; Bushell, A.C.; Kerr-Munslow, A.M.; Price, J.D.; Morcrette, C.J. PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Q. J. R. Meteorol. Soc. 2008, 134, 2093–2107. [Google Scholar] [CrossRef]
- Wilson, D.R.; Bushell, A.C.; Kerr-Munslow, A.M.; Price, J.D.; Morcrette, C.J.; Bodas-Salcedo, A. PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations. Q. J. R. Meteorol. Soc. 2008, 134, 2109–2125. [Google Scholar] [CrossRef]
- Stensrud, D. Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Chang, F.L.; Coakley, J.A. Estimating errors in fractional cloud cover obtained with infrared threshold methods. J. Geophys. Res. Atmos. 1993, 98, 8825–8839. [Google Scholar] [CrossRef]
- Shimpo, A.; Kanamitsu, M.; Iacobellis, S.F.; Hong, S.-Y. Comparison of four cloud schemes in simulating the seasonal mean field forced by the observed sea surface temperature. Mon. Weather Rev. 2008, 136, 2557–2575. [Google Scholar] [CrossRef]
- Gultepe, I.; Isaac, G.A. Cloud fraction parameterization as a function of mean cloud water content and its variance using in-situ observations. Geophys. Res. Lett. 2007, 34, L07801. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, R.-S.; Hong, S.-Y. Cloudiness Parameterization for Use in Atmospheric Models: A Review and New Perspectives. Meteorology 2023, 2, 295-306. https://doi.org/10.3390/meteorology2030018
Park R-S, Hong S-Y. Cloudiness Parameterization for Use in Atmospheric Models: A Review and New Perspectives. Meteorology. 2023; 2(3):295-306. https://doi.org/10.3390/meteorology2030018
Chicago/Turabian StylePark, Rae-Seol, and Song-You Hong. 2023. "Cloudiness Parameterization for Use in Atmospheric Models: A Review and New Perspectives" Meteorology 2, no. 3: 295-306. https://doi.org/10.3390/meteorology2030018
APA StylePark, R. -S., & Hong, S. -Y. (2023). Cloudiness Parameterization for Use in Atmospheric Models: A Review and New Perspectives. Meteorology, 2(3), 295-306. https://doi.org/10.3390/meteorology2030018