Anomaly-Based Variable Models: Examples of Unusual Track and Extreme Precipitation of Tropical Cyclones
Abstract
:1. Introduction
2. Datasets/Methods and Theory/Models
2.1. Datasets
2.2. Physical Decomposition of Atmospheric Variables
2.3. Orthogonal Convergence of Airflows
2.4. Anomaly-Based Variable Single-Level Model
2.5. Anomaly-Based Variable Multiple-Level Model
3. Binary Interaction of Two Cyclones
4. Model Results and Forecast Bottleneck
4.1. Single-Level Model Result
4.2. Multiple-Level Model Result
4.3. Bottleneck of Conventional Model
5. Extreme Precipitation and Conventional Model Prediction
5.1. Hourly Precipitation and Rainfall Indicator
5.2. Coventional Model Prediction
6. Discussion and Conclusions
6.1. Discussion
6.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maxwell, J.T.; Bregy, J.C.; Robeson, S.M.; Knapp, P.A.; Soule, P.T.; Trouet, V. Recent increases in tropical cyclone precipitation extremes over the US east coast. Proc. Natl. Acad. Sci. USA 2021, 118, e2105636118. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, D.J. Climatology of tropical cyclone extreme rainfall over China from 1960 to 2019. Adv. Atmos. Sci. 2022, 39, 320–332. [Google Scholar] [CrossRef]
- Marchok, T. Important factors in the tracking of tropical cyclones in operational models. J. Appl. Meteorol. Climatol. 2021, 60, 1265–1284. [Google Scholar] [CrossRef]
- Conroy, A.; Titley, H.; Rivett, R.; Feng, X.; Methven, J.; Hodges, K.; Brammer, A.; Burton, A.; Chakraborty, P.; Chen, G.; et al. Track forecast: Operational capability and new techniques—Summary from the Tenth International Workshop on Tropical Cyclones (IWTC-10). Trop. Cyclone Res. Rev. 2023, 12, 64–80. [Google Scholar] [CrossRef]
- Qian, C.H.; Zhang, F.Q.; Green, B.; Zhang, J.; Zhou, X.Q. Probabilistic Evaluation of the Dynamics and Prediction of Supertyphoon Megi (2010). Weather Forecast. 2013, 28, 1562–1577. [Google Scholar] [CrossRef]
- Yu, H.; Chen, G.; Zhou, C.; Wong, W.K.; Yang, M.; Xu, Y.; Chen, P.; Wan, R.; Hu, X. Are we reaching the limit of tropical cyclone track predictability in the western North Pacific? Bull. Amer. Meteorol. Soc. 2021, 103, E410–E428. [Google Scholar] [CrossRef]
- Chen, T.C.; Wu, C.C. The remote effect of Typhoon Megi (2010) on the heavy rainfall over northeastern Taiwan. Mon. Weather Rev. 2016, 144, 3109–3131. [Google Scholar] [CrossRef]
- Shen, F.F.; Min, J.Z. Assimilating AMSU-A radiance data with the WRF hybrid En3DVAR system for track predictions of Typhoon Megi (2010). Adv. Atmos. Sci. 2015, 32, 1231–1243. [Google Scholar] [CrossRef]
- Kieu, C.Q.; Truong, N.M.; Mai, H.T.; Ngo-Duc, T. Sensitivity of the track and intensity forecasts of Typhoon Megi (2010) to satellite-derived atmospheric motion vectors with the ensemble Kalman filter. J. Atmos. Ocean Technol. 2012, 29, 1794–1810. [Google Scholar] [CrossRef]
- Li, X.F.; Zhao, K.; Wang, M.; Ming, J. Short-term forecasting of super typhoon Megi at landfall through cycling assimilation of China coastal radar data. J. Meteorol. Sci. 2013, 33, 3. [Google Scholar]
- Xu, D.; Liu, Z.; Huang, X.-Y.; Min, J.; Wang, H. Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones. Meteorol. Atmos. Phys. 2013, 122, 1–18. [Google Scholar] [CrossRef]
- Chang, Y.-P.; Yang, S.-C.; Lin, K.-J.; Lien, G.-Y.; Wu, C.-M. Impact of tropical cyclone Initialization on its convection development and intensity: A case study of Typhoon Megi (2010). J. Atmos. Sci. 2020, 77, 443–464. [Google Scholar] [CrossRef]
- Huang, Q.J.; Ge, X.Y.; Peng, M. Impacts of an upper-level easterly wave on the sudden track change of Typhoon Megi (2010). J. Meteorol. Soc. Jpn. 2020, 98, 1335–1352. [Google Scholar] [CrossRef]
- Wu, C.C.; Tu, W.; Pun, I.; Lin, I.; Peng, M.S. Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. J. Geophys. Res.-Atmos. 2016, 121, 153–167. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.Q.; Xu, H.M. Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging: A case study of Typhoon Megi (2010). Acta Meteorol. Sin. 2013, 27, 455–475. [Google Scholar] [CrossRef]
- Lai, Z.J.; Hao, S.; Peng, S.; Liu, B.; Gu, X.; Qian, Y.-K. On improving tropical cyclone track forecasts using a scale-selective data assimilation approach: A case study. Nat. Hazards 2014, 73, 1353–1368. [Google Scholar] [CrossRef]
- Hong, J.-S.; Fong, C.-T.; Hsiao, L.-F.; Yu, Y.-C.; Tzeng, C.-Y. Ensemble Typhoon Quantitative Precipitation Forecasts Model in Taiwan. Weather Forecast. 2015, 30, 217–237. [Google Scholar] [CrossRef]
- Qian, W.; Shan, X.; Liang, H.; Huang, J.; Leung, C.H. A generalized beta advection model to improve unusual typhoon track prediction by decomposing total flow into climatic and anomalous flows. J. Geophys. Res. Atmos. 2014, 119, 1097–1117. [Google Scholar] [CrossRef]
- Huang, J.; Du, J.; Qian, W. A comparison between generalized beta-advection model and classical beta-advection model in predicting and understanding unusual typhoon tracks in eastern China seas. Weather Forecast. 2015, 30, 771–792. [Google Scholar] [CrossRef]
- Qian, W.; Huang, J.; Du, J. Examination of Hurricane Sandy’s (2012) structure and intensity evolution from full-field and anomaly-field analyses. Tellus A Dyn. Meteorol. Oceanogr. 2016, 68, 29029. [Google Scholar] [CrossRef]
- Hall, T.M.; Sobe, A.H. On the impact angle of Hurricane Sandy’s New Jersy landfall. Geophys. Res. Lett. 2013, 40, 2312–2315. [Google Scholar] [CrossRef]
- Gvozdíková, B.; Müller, M. Predictability of moisture flux anomalies indicating central European extreme precipitation events. Q. J. R. Meteorol. Soc. 2021, 147, 3335–3348. [Google Scholar] [CrossRef]
- Qian, W.; Du, J.; Ai, Y. A review: Anomaly-based versus full-field-based weather analysis and forecasting. Bull. Am. Meteorol. Soc. 2021, 102, E849–E870. [Google Scholar] [CrossRef]
- Qian, W.; Du, J.; Leung, J.C.; Li, W.; Wu, F.; Zhang, B. Why are severe weather and anomalous climate events mostly associated with the orthogonal convergence of airflows? Weather Clim. Extrem. 2023, 42, 100633. [Google Scholar] [CrossRef]
- Particl Data Group; Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, A.; Aielli, G.; Allanach, B.C.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar]
- Chen, D.H.; Xue, J.; Yang, X.; Zhang, H.; Shen, X.; Hu, J.; Wang, Y.; Ji, L.; Chen, J. New generation of multi-scale NWP system (GRAPES): General scientific design. Chin. Sci. Bull. 2008, 53, 3433–3445. [Google Scholar] [CrossRef]
- Qian, W.; Du, J. Anomaly format of atmospheric governing equations with climate as a reference atmosphere. Meteorology 2022, 1, 127–141. [Google Scholar] [CrossRef]
- Fujiwhara, S. The natural tendency towards symmetry of motion and its application as a principle in meteorology. Q. J. R. Meteorol. Soc. 1921, 47, 287–293. [Google Scholar] [CrossRef]
- Lu, B.; Qian, W. Seasonal lock of rapidly intensifying typhoons over the South China offshore in early fall. Chin. J. Geophys. 2012, 55, 1523–1531. [Google Scholar]
- Qian, W.; Huang, J.; Zhang, G.W. Reexamining the binary interaction of four pairs of tropical cyclones in the Northwest Pacific. J. Meteorol. Soc. Jpn. 2016, 94, 303–322. [Google Scholar] [CrossRef]
- Galarneau, T.J.; Davis, C.A.; Shapiro, M.A. Intensification of Hurricane Sandy (2012) through extratropical warm core seclusion. Mon. Weather Rev. 2013, 141, 4296–4321. [Google Scholar] [CrossRef]
- Bassill, N.P. Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cululus parameterization. Geophys. Res. Lett. 2014, 41, 3274–3281. [Google Scholar] [CrossRef]
- Qian, W.; Li, J.; Shan, X. Application of synoptic-scale anomalous winds predicted by medium-range weather forecast models on the regional heavy rainfall in China in 2010. Sci. China (Earth Sci.) 2013, 56, 1059–1070. [Google Scholar] [CrossRef]
- Qian, W.; Leung, J.; Ren, J.; Du, J.; Feng, Y.; Zhang, B. Anomaly based synoptic analysis and model prediction of six dust storms moving from Mongolia to northern China in Spring 2021. J. Geophys. Res.-Atmos. 2022, 127, e2021JD036272. [Google Scholar] [CrossRef]
- Sillmann, J.; Thorarinsdottir, T.; Keenlyside, N.; Schaller, N.; Alexander, L.V.; Hegerl, G.; Seneviratne, S.I.; Vautard, R.; Zhang, X.; Zwiers, F.W. Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather Clim. Extrem. 2017, 18, 65–74. [Google Scholar] [CrossRef]
- Qian, W. Temporal Climatology and Anomalous Weather Analysis; Springer Atmospheric Sciences; Springer: Singapore, 2017; 687p, ISSN 2194-5225. [Google Scholar] [CrossRef]
- Shan, X.L.; Jiang, N.; Qian, W. Regional heavy rain locations associated with anomalous convergence lines in eastern China. Nat Hazards 2015, 77, 1731–1750. [Google Scholar] [CrossRef]
- Qian, W.; Ai, Y.; Leung, J.; Zhang, B.L. Anomaly-based synoptic analysis and model product application for 2020 summer southern China rainfall events. Atmos. Res. 2021, 258, 105631. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Q.; Yang, Y.M.; Qian, W. Anomaly-based analysis of extreme heat waves in Eastern China during 1981–2013. Inter. J. Climatol. 2016, 37, 509–523. [Google Scholar] [CrossRef]
- Shi, J.; Wu, K.J.; Qian, W.; Huang, F.; Li, C.; Tang, C. Characteristics, trend, and precursors of extreme cold events in northwestern North America. Atmos. Res. 2021, 249, 105338. [Google Scholar] [CrossRef]
- Qian, W.; Yu, T.; Du, J. A unified approach to trace surface heat and cold events by using height anomaly. Clim. Dyn. 2016, 46, 1647–1664. [Google Scholar] [CrossRef]
- Qian, W.; Huang, J. Applying the anomaly-based weather analysis on Beijing severe haze episodes. Sci. Total Environ. 2019, 647, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Xu, M.; Ai, Y. Anomaly-based synoptic analysis to identify and predict meteorological conditions of strong ozone events in North China. Air Qual. Atmos. Health 2022, 15, 1699–1711. [Google Scholar] [CrossRef]
- Qian, W.; Leung, J.; Luo, W.; Du, J.; Gao, J.D. An index of anomalous convective instability to detect tornadic and hail storms. Meteorol. Atmos. Phys. 2017, 131, 351–373. [Google Scholar] [CrossRef]
- Qian, W.; Ai, Y.; Yu, J.Y.; Du, J. Opposite anomalous synoptic patterns for potential California large wildfire spread and extinguishing in 2018 cases. Atmos. Res. 2021, 262, 105804. [Google Scholar] [CrossRef]
- Qian, W. Identifying the spatial structure of black hole and tropical cyclone based on a theoretical analysis of orthogonal interaction. J. Mod. Phys. 2023, 14, 933–952. [Google Scholar] [CrossRef]
- Qian, W. A physical explanation for the formation of auroras. J. Mod. Phys. 2023, 14, 271–286. [Google Scholar] [CrossRef]
- Qian, W. On the physical nature of einstein’s gravitational lensing effect. J. High Energy Phys. Gravit. Cosmol. 2023, 9, 383–399. [Google Scholar] [CrossRef]
- Qian, W. On the attribution of Mercury’s perihelion precession. J. Appl. Math. Phys. 2023, 11, 1359–1373. [Google Scholar] [CrossRef]
- Qian, W. The essence of gravity is the expansion tendency of the universe after the Big Bang. J. Mod. Phys. 2024, 15, 804–849. [Google Scholar] [CrossRef]
- Qian, W. Orthogonal collision of particles produces new physical state. J. Mod. Phys. 2022, 13, 1440–1451. [Google Scholar] [CrossRef]
- Qian, W.; Leung, J.; Zhang, B. An orthogonal collision dynamic mechanism of wave-like uplift plateaus in southern Asia. Open J. Geol. 2023, 13, 828–846. [Google Scholar] [CrossRef]
- Qian, W.; Du, J.; Shan, X.; Jiang, N. Incorporating the effects of moisture into a dynamical parameter: Moist vorticity and moist divergence. Weather Forecast. 2015, 30, 1411–1428. [Google Scholar] [CrossRef]
- Du, J.; Deng, G. How should a numerical weather prediction be used: Full field or anomaly? A conceptual demonstration with a Lorenz model. Atmosphere 2022, 13, 1487. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, W.; Du, J.; Ai, Y.; Leung, J.; Liu, Y.; Xu, J. Anomaly-Based Variable Models: Examples of Unusual Track and Extreme Precipitation of Tropical Cyclones. Meteorology 2024, 3, 243-261. https://doi.org/10.3390/meteorology3020013
Qian W, Du J, Ai Y, Leung J, Liu Y, Xu J. Anomaly-Based Variable Models: Examples of Unusual Track and Extreme Precipitation of Tropical Cyclones. Meteorology. 2024; 3(2):243-261. https://doi.org/10.3390/meteorology3020013
Chicago/Turabian StyleQian, Weihong, Jun Du, Yang Ai, Jeremy Leung, Yongzhu Liu, and Jianjun Xu. 2024. "Anomaly-Based Variable Models: Examples of Unusual Track and Extreme Precipitation of Tropical Cyclones" Meteorology 3, no. 2: 243-261. https://doi.org/10.3390/meteorology3020013
APA StyleQian, W., Du, J., Ai, Y., Leung, J., Liu, Y., & Xu, J. (2024). Anomaly-Based Variable Models: Examples of Unusual Track and Extreme Precipitation of Tropical Cyclones. Meteorology, 3(2), 243-261. https://doi.org/10.3390/meteorology3020013