Application of Electric Field Technologies in the Manufacture of Food Powders and the Retention of Bioactive Compounds
Abstract
:1. Introduction
2. Electrohydrodynamic Atomization
2.1. Principles of EHDA
2.2. Application of EHDA in the Preparation of Food Powders
2.3. Potential of EHDA in Retaining Bioactive Compounds in the Preparation Food Powders
3. Electrohydrodynamic Drying
3.1. Principles of EHDD
3.2. Application of EHDD in the Preparation of Food Powders
3.3. Potential of EHDD in Retaining Bioactive Compounds in the Preparation of Food Powders
4. Pulsed Electric Field Technology
4.1. Principles of PEF Technology
4.2. Application of PEF in the Preparation of Food Powders
4.3. Potential of PEF Technology in Retaining Bioactive Compounds in the Preparation Food Powders
5. Electrostatic Spray Drying
5.1. Principles of ESD
5.2. Application of ESD in the Preparation of Food Powders
5.3. Potential of ESD in Retaining Bioactive Compounds in the Preparation of Food Powders
6. Factors Influencing Electric Field Technologies and Their Effects on the Retention of Bioactive Compounds
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ratti, C. Freeze drying for food powder production. In Handbook of Food Powders: Processes and Properties; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 57–84. [Google Scholar] [CrossRef]
- Fang, Y.; Rogers, S.; Selomulya, C.; Chen, X.D. Functionality of milk protein concentrate: Effect of spray drying temperature. Biochem. Eng. J. 2012, 62, 101–105. [Google Scholar] [CrossRef]
- Zhou, Z.; Langrish, T. Color formation and Maillard reactions during the spray drying process of skim milk and model systems. J. Food Process Eng. 2022, 45, e13936. [Google Scholar] [CrossRef]
- de Oliveira Alencar, D.D.; de Souza, E.L.; da Cruz Almeida, E.T.; da Silva, A.L.; Oliveira, H.M.; Cavalcanti, M.T. Microencapsulation of Cymbopogon citratus D.C. Stapf essential oil with spray drying: Development, characterization, and antioxidant and antibacterial activities. Foods 2022, 11, 1111. [Google Scholar] [CrossRef]
- İlter, I.; Koç, M.; Demirel, Z.; Conk Dalay, M.; Kaymak Ertekin, F. Microencapsulation of phycocyanin by spray-drying method: Effect of process parameters and wall materials. J. Food Process. Preserv. 2022, 46, e16434. [Google Scholar] [CrossRef]
- Mishra, P.; Mishra, S.; Mahanta, C.L. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food Bioprod. Process. 2014, 92, 252–258. [Google Scholar] [CrossRef]
- Suhag, Y.; Nayik, G.A.; Nanda, V. Effect of gum arabic concentration and inlet temperature during spray drying on physical and antioxidant properties of honey powder. J. Food Meas. Charact. 2016, 10, 350–356. [Google Scholar] [CrossRef]
- Kim, E.H.J.; Chen, X.D.; Pearce, D. Surface composition of industrial spray-dried milk powders. 2. Effects of spray drying conditions on the surface composition. J. Food Eng. 2009, 94, 169–181. [Google Scholar] [CrossRef]
- Masum, A.K.M.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Influence of drying temperatures and storage parameters on the physicochemical properties of spray-dried infant milk formula powders. Int. Dairy J. 2020, 105, 104696. [Google Scholar] [CrossRef]
- Feguš, U.; Žigon, U.; Petermann, M.; Knez, Ž. Effect of drying parameters on physiochemical and sensory properties of fruit powders processed by PGSS-, vacuum- and spray-drying. Acta Chim. Slov. 2015, 62, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Wilkowska, A.; Ambroziak, W.; Czyzowska, A.; Adamiec, J. Effect of Microencapsulation by Spray-Drying and Freeze-Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus) Juice Polyphenolic Compounds. Pol. J. Food Nutr. Sci. 2016, 66, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chi, Y.-J.; Xu, W. Comparisons on the functional properties and antioxidant activity of spray-dried and freeze-dried egg white protein hydrolysate. Food Bioprocess Technol. 2011, 5, 2342–2352. [Google Scholar] [CrossRef]
- Khaire, R.A.; Gogate, P.R. Novel approaches based on ultrasound for spray drying of food and bioactive compounds. Dry. Technol. 2021, 39, 1832–1853. [Google Scholar] [CrossRef]
- Menshutina, N.V.; Gordienko, M.G.; Voinovskiy, A.A.; Zbicinski, I. Spray drying of probiotics: Process development and scale-up. Dry. Technol. 2010, 28, 1170–1177. [Google Scholar] [CrossRef]
- Mestry, A.P.; Mujumdar, A.S.; Thorat, B.N. Optimization of spray drying of an innovative functional food: Fermented mixed juice of carrot and watermelon. Dry. Technol. 2011, 29, 1121–1131. [Google Scholar] [CrossRef]
- Gomez, A.; Bingham, D.; de Juan, L.; Tang, K. Production of protein nanoparticles by electrospray drying. J. Aerosol Sci. 1998, 29, 561–574. [Google Scholar] [CrossRef]
- Jayaprakash, P.; Maudhuit, A.; Gaiani, C.; Desobry, S. Encapsulation of bioactive compounds using competitive emerging techniques: Electrospraying, nano spray drying, and electrostatic spray drying. J. Food Eng. 2023, 339, 111260. [Google Scholar] [CrossRef]
- Anukiruthika, T.; Moses, J.A.; Anandharamakrishnan, C. Electrohydrodynamic drying of foods: Principle, applications, and prospects. J. Food Eng. 2021, 295, 110449. [Google Scholar] [CrossRef]
- Jeyamkondan, S.; Jayas, D.S.; Holley, R.A. Pulsed electric field processing of foods: A review. J. Food Prot. 1999, 62, 1088–1096. [Google Scholar] [CrossRef]
- Anu Bhushani, J.; Anandharamakrishnan, C. Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci. Technol. 2014, 38, 21–33. [Google Scholar] [CrossRef]
- Saallah, S.; Lenggoro, I.W. Nanoparticles carrying biological molecules: Recent advances and applications. KONA Powder Part. J. 2018, 35, 89–111. [Google Scholar] [CrossRef] [Green Version]
- Lim, L.-T.; Mendes, A.C.; Chronakis, I.S. Electrospinning and electrospraying technologies for food applications. Adv. Food Nutr. Res. 2019, 88, 167–234. [Google Scholar] [CrossRef]
- Boda, S.K.; Li, X.; Xie, J. Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review. J. Aerosol Sci. 2018, 125, 164–181. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Lopez-Rubio, A. Production of food bioactive-loaded nanoparticles by electrospraying. In Nanoencapsulation of Food Ingredients by Specialized Equipment; Academic Press: Cambridge, MA, USA, 2019; Volume 3, pp. 107–149. [Google Scholar] [CrossRef]
- Jaworek, A.; Sobczyk, A.T.; Krupa, A. Electrospray application to powder production and surface coating. J. Aerosol Sci. 2018, 125, 57–92. [Google Scholar] [CrossRef]
- Chakraborty, S.; Liao, I.C.; Adler, A.; Leong, K.W. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv. Drug Deliv. Rev. 2009, 61, 1043–1054. [Google Scholar] [CrossRef] [Green Version]
- Perez-Masia, R.; Lagaron, J.M.; Lopez-Rubio, A. Surfactant-aided electrospraying of low molecular weight carbohydrate polymers from aqueous solutions. Carbohydr. Polym. 2014, 101, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Nagarajan, R.; Drew, C.; Mello, C.M. Polymer−Micelle complex as an aid to electrospinning nanofibers from Aqueous Solutions. J. Phys. Chem. C 2007, 111, 16105–16108. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; López-Rubio, A. Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives. J. Colloid Interface Sci. 2016, 465, 259–270. [Google Scholar] [CrossRef] [Green Version]
- López-Rubio, A.; Lagaron, J.M. Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innov. Food Sci. Emerg. Technol. 2012, 13, 200–206. [Google Scholar] [CrossRef]
- López-Rubio, A.; Sanchez, E.; Wilkanowicz, S.; Sanz, Y.; Lagaron, J.M. Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocoll. 2012, 28, 159–167. [Google Scholar] [CrossRef]
- Khosroshahi, E.D.; Razavi, S.H.; Kiani, H.; Aghakhani, A. Mixed fermentation and electrospray drying for the development of a novel stabilized wheat germ powder containing highly viable probiotic cultures. Food Sci. Nutr. 2023, 1–10. [Google Scholar] [CrossRef]
- Jacobsen, C.; García-Moreno, P.J.; Mendes, A.C.; Mateiu, R.V.; Chronakis, I.S. Use of electrohydrodynamic processing for encapsulation of sensitive bioactive compounds and applications in food. Annu. Rev. Food Sci. Technol. 2018, 9, 525–549. [Google Scholar] [CrossRef]
- Elda, G.-C.M.; Isaac, A.-G.; Cristina, P.; José, L.M.; Montserrat, C.-S.; Juan, R.-S.A. Nanoencapsulation of polyphenolic-rich extract from Biloxi blueberries (Vaccinium corymbosum L.) by electrospraying using Zein as encapsulating material. Biointerface Res. Appl. Chem. 2022, 13, 78. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Martinez-Abad, A.; Ocio, M.J.; Lagaron, J.M. Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J. Food Sci. 2010, 75, N69–N79. [Google Scholar] [CrossRef]
- Jeyakumari, A.; Zynudheen, A.A.; Parvathy, U. Microencapsulation of bioactive food ingredients and controlled release-a review. MOJ Food Process. Technol. 2016, 2, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Atay, E.; Fabra, M.J.; Martínez-Sanz, M.; Gomez-Mascaraque, L.G.; Altan, A.; Lopez-Rubio, A. Development and characterization of chitosan/gelatin electrosprayed microparticles as food grade delivery vehicles for anthocyanin extracts. Food Hydrocoll. 2018, 77, 699–710. [Google Scholar] [CrossRef]
- Li, T.; Liu, Y.; Qin, Q.; Zhao, L.; Wang, Y.; Wu, X.; Liao, X. Development of electrospun films enriched with ethyl lauroyl arginate as novel antimicrobial food packaging materials for fresh strawberry preservation. Food Control 2021, 130, 108371. [Google Scholar] [CrossRef]
- Min, T.; Sun, X.; Yuan, Z.; Zhou, L.; Jiao, X.; Zha, J.; Zhu, Z.; Wen, Y. Novel antimicrobial packaging film based on porous poly(lactic acid) nanofiber and polymeric coating for humidity-controlled release of thyme essential oil. LWT 2021, 135, 110034. [Google Scholar] [CrossRef]
- Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A.; Xanthakis, E. The principles of high voltage electric field and its application in food processing: A review. Food Res. Int. 2016, 89, 48–62. [Google Scholar] [CrossRef]
- Rouaud, O.; Havet, M. Novel drying technologies using electric and electromagnetic fields. In Food Engineering Innovations across the Food Supply Chain; Elsevier: Amsterdam, The Netherlands, 2022; pp. 229–236. [Google Scholar] [CrossRef]
- Singh, A.; Orsat, V.; Raghavan, V. A Comprehensive Review on Electrohydrodynamic Drying and High-Voltage Electric Field in the Context of Food and Bioprocessing. Dry. Technol. 2012, 30, 1812–1820. [Google Scholar] [CrossRef]
- Allen, P.H.G.; Karayiannis, T.G. Electrohydrodynamic enhancement of heat transfer and Fluid Flow. Heat Recovery Syst. CHP 1995, 15, 389–423. [Google Scholar] [CrossRef]
- Ahmedou, S.A.O.; Rouaud, O.; Havet, M. Assessment of the electrohydrodynamic drying process. Food Bioprocess Technol. 2009, 2, 240–247. [Google Scholar] [CrossRef]
- Lai, F.C.; Wong, D.S. EHD-enhanced drying with needle electrode. Dry. Technol. 2003, 21, 1291–1306. [Google Scholar] [CrossRef]
- Martynenko, A.; Astatkie, T.; Riaud, N.; Wells, P.; Kudra, T. Driving forces for mass transfer in electrohydrodynamic (EHD) drying. Innov. Food Sci. Emerg. Technol. 2017, 43, 18–25. [Google Scholar] [CrossRef]
- Taghian Dinani, S.; Havet, M.; Hamdami, N.; Shahedi, M. Drying of Mushroom Slices Using Hot Air Combined with an Electrohydrodynamic (EHD) Drying System. Dry. Technol. 2014, 32, 597–605. [Google Scholar] [CrossRef]
- Nicholas; Abuzairi, T. Electrohydrodynamic drying process of the amoxicillin powder using a high direct current (DC) voltage. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2193. [Google Scholar] [CrossRef]
- Chen, Y.H.; Barthakur, N.N. Potato slab dehydration by air ions from corona discharge. Int. J. Biometeorol. 1991, 35, 67–70. [Google Scholar] [CrossRef]
- Chen, Y.; Barthakur, N.N.; Arnold, N.P. Electrohydrodynamic (EHD) drying of potato slabs. J. Food Eng. 1994, 23, 107–119. [Google Scholar] [CrossRef]
- Dalvand, M.J.; Mohtasebi, S.S.; Rafiee, S. Effect of needle number on drying rate of kiwi fruit in EHD drying process. Agric. Sci. 2013, 4, 27400. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Hu, Y.; Li, X.; Li, J. Experiment study of electrohydrodynamic (EHD) drying scallop. In Proceedings of the 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 28–30 March 2009. [Google Scholar] [CrossRef]
- Polat, A.; Izli, N. Determination of drying kinetics and quality parameters for drying apricot cubes with electrohydrodynamic, hot air and combined electrohydrodynamic-hot air drying methods. Dry. Technol. 2022, 40, 527–542. [Google Scholar] [CrossRef]
- Paul, A.; Martynenko, A. The Effect of Material Thickness, Load Density, External Airflow, and Relative Humidity on the Drying Efficiency and Quality of EHD-Dried Apples. Foods 2022, 11, 2765. [Google Scholar] [CrossRef]
- Martynenko, A.; Kudra, T. Electrohydrodynamic (EHD) drying of grape pomace. Jpn. J. Food Eng. 2016, 17, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.; Liao, M.; Li, X.; Chen, S.; Gao, P.; Sheng, P. Electric field-induced giant columns of polarized water molecules. Phys. Rev. Res. 2022, 4, 033164. [Google Scholar] [CrossRef]
- Das, S.; Rai, R.; Singh, S.K. Ohmic Heating in Food Processing: A Futuristic Technology. In Food Processing and Preservation Technology; Apple Academic Press: Palm Bay, FL, USA, 2022; pp. 37–68. [Google Scholar]
- Iranshahi, K.; Onwude, D.I.; Martynenko, A.; Defraeye, T. Dehydration mechanisms in electrohydrodynamic drying of plant-based foods. Food Bioprod. Process. 2022, 131, 202–216. [Google Scholar] [CrossRef]
- Dima, P.; Gulbinas, G.; Stubbe, P.R.; Mendes, A.C.; Chronakis, I.S. Electrohydrodynamic drying of probiotics. Innov. Food Sci. Emerg. Technol. 2022, 82, 103201. [Google Scholar] [CrossRef]
- Esehaghbeygi, A.; Karimi, Z. Electrohydrodynamic, oven and natural drying of mint leaves and effects on the physiochemical indices of the leaves. Res. Agric. Eng. 2020, 66, 81–88. [Google Scholar] [CrossRef]
- Wu, W.J.; Chang, J. Inactivation of vegetative cells, germinated spores, and dormant spores of Bacillus atrophaeus by pulsed electric field with fixed energy input. J. Food Process Eng. 2022, 45, e13959. [Google Scholar] [CrossRef]
- Weaver, J.C.; Chizmadzhev, Y.A. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 1996, 41, 135–160. [Google Scholar] [CrossRef]
- Nowosad, K.; Sujka, M.; Pankiewicz, U.; Kowalski, R. The application of PEF technology in food processing and human nutrition. J. Food Sci. Technol. 2020, 58, 397–411. [Google Scholar] [CrossRef]
- Taha, A.; Casanova, F.; Šimonis, P.; Stankevič, V.; Gomaa, M.A.E.; Stirkė, A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022, 11, 1556. [Google Scholar] [CrossRef]
- Alam, M.R.; Lyng, J.G.; Frontuto, D.; Marra, F.; Cinquanta, L. Effect of Pulsed Electric Field Pretreatment on Drying Kinetics, Color, and Texture of Parsnip and Carrot. J. Food Sci. 2018, 83, 2159–2166. [Google Scholar] [CrossRef]
- Ostermeier, R.; Parniakov, O.; Töpfl, S.; Jäger, H. Applicability of pulsed electric field (PEF) pre-treatment for a convective two-step drying process. Foods 2020, 9, 512. [Google Scholar] [CrossRef] [Green Version]
- Adedeji, A.A.; Gachovska, T.K.; Ngadi, M.O.; Raghavan, G.S.V. Effect of pretreatments on drying characteristics of okra. Dry. Technol. 2008, 26, 1251–1256. [Google Scholar] [CrossRef]
- Shynkaryk, M.V.; Lebovka, N.I.; Vorobiev, E. Pulsed electric fields and temperature effects on drying and rehydration of red beetroots. Dry. Technol. 2008, 26, 695–704. [Google Scholar] [CrossRef]
- Rybak, K.; Samborska, K.; Jedlinska, A.; Parniakov, O.; Nowacka, M.; Witrowa-Rajchert, D.; Wiktor, A. The impact of pulsed electric field pretreatment of bell pepper on the selected properties of spray dried juice. Innov. Food Sci. Emerg. Technol. 2020, 65, 102446. [Google Scholar] [CrossRef]
- Lammerskitten, A.; Shorstkii, I.; Parniakov, O.; Mykhailyk, V.; Toepfl, S.; Rybak, K.; Dadan, M.; Nowacka, M.; Wiktor, A. The effect of different methods of mango drying assisted by a pulsed electric field on chemical and physical properties. J. Food Process. Preserv. 2020, 44, e14973. [Google Scholar] [CrossRef]
- Masum, A.K.M.; Saxena, J.; Zisu, B. Electrostatic spray drying of high oil load emulsions, milk and heat sensitive biomaterials. In Food Engineering Innovations across the Food Supply Chain; Academic Press: Cambridge, MA, USA, 2022; pp. 237–246. [Google Scholar] [CrossRef]
- Mutukuri, T.T.; Maa, Y.F.; Gikanga, B.; Sakhnovsky, R.; Zhou, Q.T. Electrostatic spray drying for monoclonal antibody formulation. Int. J. Pharm. 2021, 607, 120942. [Google Scholar] [CrossRef]
- Ali, M.; Mahmud, T.; Heggs, P.J.; Ghadiri, M.; Djurdjevic, D.; Ahmadian, H.; Juan, L.M.; de Amador, C.; Bayly, A. A one-dimensional plug-flow model of a counter-current spray drying tower. Chem. Eng. Res. Des. 2014, 92, 826–841. [Google Scholar] [CrossRef]
- Santos, D.; Maurício, A.C.; Sencadas, V.; Santos, J.D.; Fernandes, M.H.; Gomes, P.S. Spray Drying: An Overview. In Biomaterials—Physics and Chemistry—New Edition; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Anandharamakrishnan, C.; Ishwarya, S.P. Spray Drying Techniques for Food Ingredient Encapsulation; IFT Press: Hoboken, NJ, USA, 2015. [Google Scholar]
- Wang, C.; Li, J.; Zhang, Y.; He, Z.; Zhang, Y.; Zhang, X.; Guo, Z.; Huang, J.; Liu, Z. Effects of electrostatic spray drying on the sensory qualities, aroma profile and microstructural features of instant Pu-erh tea. Food Chem. 2022, 373, 131546. [Google Scholar] [CrossRef]
- Ozturk, S.; Kong, F.; Trabelsi, S.; Singh, R.K. Dielectric properties of dried vegetable powders and their temperature profile during radio frequency heating. J. Food Eng. 2016, 169, 91–100. [Google Scholar] [CrossRef]
- Dag, D.; Singh, R.K.; Kong, F. Dielectric properties, effect of geometry, and quality changes of whole, nonfat milk powder and their mixtures associated with radio frequency heating. J. Food Eng. 2019, 261, 40–50. [Google Scholar] [CrossRef]
- Peart, J. Powder Electrostatics: Theory, techniques and applications. KONA Powder Part. J. 2001, 19, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Sözeri Atik, D.; Bölük, E.; Bildik, F.; Altay, F.; Torlak, E.; Kaplan, A.A.; Kopuk, B.; Palabıyık, İ. Particle morphology and antimicrobial properties of electrosprayed propolis. Food Packag. Shelf Life 2022, 33, 100881. [Google Scholar] [CrossRef]
- Ergin, F. Effect of freeze drying, spray drying and electrospraying on the morphological, thermal, and structural properties of powders containing phage Felix O1 and activity of phage Felix O1 during storage. Powder Technol. 2022, 404, 117516. [Google Scholar] [CrossRef]
- Xiao, A.; Ding, C. Effect of electrohydrodynamic (EHD) on drying kinetics and quality characteristics of Shiitake Mushroom. Foods 2022, 11, 1303. [Google Scholar] [CrossRef]
- Li, B.; Li, X.; Zhao, Y.; Xiong, X.; Ding, X. Characteristics and mathematical modeling of apple slice drying in an electrohydrodynamic system with a needle-plate electrode. J. Food Process Eng. 2022, 45, e14049. [Google Scholar] [CrossRef]
- Almeida, R.L.J.; Santos, N.C.; Feitoza, J.V.F.; de Alcântara Ribeiro, V.H.; de Alcântara Silva, V.M.; de Figueiredo, M.J.; Ribeiro, C.A.C.; Galdino, P.O.; Queiroga, A.H.F.; de Sousa Muniz, C.E. The impact of the pulsed electric field on the structural, morphological, functional, textural, and rheological properties of red rice starch (Oryza sativa). J. Food Process Eng. 2022, 45, e14145. [Google Scholar] [CrossRef]
- Mello, R.E.; Fontana, A.; Mulet, A.; Corrêa, J.L.G.; Cárcel, J.A. PEF as pretreatment to ultrasound-assisted convective drying: Influence on quality parameters of orange peel. Innov. Food Sci. Emerg. Technol. 2021, 72, 102753. [Google Scholar] [CrossRef]
- Ahmed, S.; Saleck, A.; Rouaud, O.; Havet, M. Electrohydrodynamic enhancement of heat and mass transfer in food processes. In Proceedings of the 3rd CIGR Section VI International Symposium on Food and Agricultural Products: Processing and Innovations, Naples, Italy, 24–26 September 2007. [Google Scholar]
Operation | Working Voltage | Mode of Voltage Application | Main Effects | References |
---|---|---|---|---|
Electrohydrodynamic Atomization | 5, 12.5 and 20 kV | Needle to Collector plate system | -An increase in applied voltage changed the morphology from spherical particles to elongated particles. -Higher retention of antimicrobial activity -Formation of small particle sized powders | [80] |
16 kV | Needle to Collector plate system | -More stable powders in retaining bioactivity compared to the powders undergone freezing and drying stresses. | [81] | |
Electrohydrodynamic Drying | 0, 18, 22, 26, 30, 34 kV | Needle to plate electrode system | -Higher drying rates -With the increase in voltage, drying rate increases -Higher retention of nutrients than in control (0 kV) | [82] |
30, 40 and 50 kV | Needle-plate electrode system | -Drying rate, effective water diffusion coefficient, and rehydration ratio ↑ specific energy consumption of drying ↑ with increasing voltage. | [83] | |
Pulsed Electric Field coupled with convective drying | 10 and 30 kV/cm, pulse duration of 6 µs | Parallel electrodes system | -Higher water absorption values indicating good stability during storage -Reduced viscosity of starch paste and reduced retrogradation rate | [84] |
Pulsed Electric Field coupled with Ultrasound assisted drying | 1.2 kV/cm, pulse duration of 200 and 600 µs | Parallel electrodes system | -Shortening of drying time -No damage to colour after drying -Retention of phenolic compounds | [85] |
Electrostatic Spray Drying | 1 and 8 kV | Electrostatic nozzle | -Sensory qualities were effectively preserved -Retention of most odour active compounds | [76] |
5 kV (For preliminary studies: 0, 5, 10, 15 and 20 kV) | Electrostatic nozzle | -Satisfactory moisture contents of powders at just 70 °C -Enhanced physical stability -Higher drying efficiencies | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chutani, D.; Huppertz, T.; Murphy, E. Application of Electric Field Technologies in the Manufacture of Food Powders and the Retention of Bioactive Compounds. Powders 2023, 2, 135-150. https://doi.org/10.3390/powders2010010
Chutani D, Huppertz T, Murphy E. Application of Electric Field Technologies in the Manufacture of Food Powders and the Retention of Bioactive Compounds. Powders. 2023; 2(1):135-150. https://doi.org/10.3390/powders2010010
Chicago/Turabian StyleChutani, Doll, Thom Huppertz, and Eoin Murphy. 2023. "Application of Electric Field Technologies in the Manufacture of Food Powders and the Retention of Bioactive Compounds" Powders 2, no. 1: 135-150. https://doi.org/10.3390/powders2010010
APA StyleChutani, D., Huppertz, T., & Murphy, E. (2023). Application of Electric Field Technologies in the Manufacture of Food Powders and the Retention of Bioactive Compounds. Powders, 2(1), 135-150. https://doi.org/10.3390/powders2010010