Highly Permeable, Electrically Switchable Filter for Multidimensional Sorting of Suspended Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Particle System
- Material variation
- Shape variation
- Size variation
2.2. Experimental Setup and Procedure
2.2.1. Microchannels
- DC-iEK
- AC-iDEP
2.2.2. Mesh-Based Macrochannel
2.3. Concept of Multidimensional Separation
3. Results and Discussion
3.1. Material-Selective Separation
3.2. Shape-Selective Separation
3.3. Upscaling of AC-iDEP While Maintaining High Selectivity
3.4. Multidimensional Sorting
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Alternating current |
CM | Clausius–Mossotti |
DC | Direct current |
DEP | Dielectrophoresis |
EK | Electrokinetic |
EO | Electro-osmosis |
EP | Electrophoresis |
iDEP | Insulator-based dielectrophoresis |
ITO | Indium tin oxide |
nDEP | Negative dielectrophoresis |
pDEP | Positive dielectrophoresis |
PDMS | Polydimethylsiloxane |
pp | Peak-to-peak |
PP | Polypropylene |
PS | Polystyrene |
PVA | Polyvinyl alcohol |
SEM | Scanning electron microscope |
Appendix A
Appendix A.1. Equations Used for the Calculation of Separation Parameters
Appendix A.2. Additional Figures
References
- Presser, V.; Dennison, C.R.; Campos, J.; Knehr, K.W.; Kumbur, E.C.; Gogotsi, Y. The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery. Adv. Energy Mater. 2012, 2, 895–902. [Google Scholar] [CrossRef]
- Rabbani, M.T.; Schmidt, C.F.; Ros, A. Single-Walled Carbon Nanotubes Probed with Insulator-Based Dielectrophoresis. Anal. Chem. 2017, 89, 13235–13244. [Google Scholar] [CrossRef] [PubMed]
- Behdani, B.; Monjezi, S.; Carey, M.J.; Weldon, C.G.; Zhang, J.; Wang, C.; Park, J. Shape-Based Separation of Micro-/Nanoparticles in Liquid Phases. Biomicrofluidics 2018, 12, 051503. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, T.; Ditscherlein, R.; Peuker, U.A. Beschreibung von Trennoperationen mit mehrdimensionalen Partikeleigenschaftsverteilungen. Chem. Ing. Tech. 2023, 95, 199–209. [Google Scholar] [CrossRef]
- Wu, Y.; Chattaraj, R.; Ren, Y.; Jiang, H.; Lee, D. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces. Anal. Chem. 2021, 93, 7635–7646. [Google Scholar] [CrossRef]
- Pohl, H.A.; Pollock, K.; Crane, J.S. Dielectrophoretic Force: A Comparison of Theory and Experiment. J. Biol. Phys. 1978, 6, 133–160. [Google Scholar] [CrossRef]
- Kirby, B.J. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Pethig, R. Dielectrophoresis: Theory, Methodology, and Biological Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- O’Konski, C.T. ELECTRIC PROPERTIES OF MACROMOLECULES. V. THEORY OF IONIC POLARIZATION IN POLYELECTROLYTES. J. Phys. Chem. 1960, 64, 605–619. [Google Scholar] [CrossRef]
- Green, N.G.; Morgan, H. Dielectrophoresis of Submicrometer Latex Spheres. 1. Experimental Results. J. Phys. Chem. B 1999, 103, 41–50. [Google Scholar] [CrossRef]
- Ermolina, I.; Morgan, H. The Electrokinetic Properties of Latex Particles: Comparison of Electrophoresis and Dielectrophoresis. J. Colloid Interface Sci. 2005, 285, 419–428. [Google Scholar] [CrossRef]
- Jen, C.P.; Chen, T.W. Selective Trapping of Live and Dead Mammalian Cells Using Insulator-Based Dielectrophoresis within Open-Top Microstructures. Biomed. Microdevices 2009, 11, 597–607. [Google Scholar] [CrossRef]
- Suehiro, J.; Zhou, G.; Imamura, M.; Hara, M. Dielectrophoretic Filter for Separation and Recovery of Biological Cells in Water. IEEE Trans. Ind. Appl. 2003, 39, 1514–1521. [Google Scholar] [CrossRef]
- Kepper, M.; Rother, A.; Thöming, J.; Pesch, G.R. Polarisability-Dependent Separation of Lithium Iron Phosphate (LFP) and Graphite in Dielectrophoretic Filtration. Results Eng. 2024, 21, 101854. [Google Scholar] [CrossRef]
- Lapizco-Encinas, B.H.; Simmons, B.A.; Cummings, E.B.; Fintschenko, Y. Insulator-Based Dielectrophoresis for the Selective Concentration and Separation of Live Bacteria in Water. Electrophoresis 2004, 25, 1695–1704. [Google Scholar] [CrossRef] [PubMed]
- Moncada-Hernández, H.; Lapizco-Encinas, B.H. Simultaneous Concentration and Separation of Microorganisms: Insulator-Based Dielectrophoretic Approach. Anal. Bioanal. Chem. 2010, 396, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Weirauch, L.; Lorenz, M.; Hill, N.; Lapizco-Encinas, B.H.; Baune, M.; Pesch, G.R.; Thöming, J. Material-Selective Separation of Mixed Microparticles via Insulator-Based Dielectrophoresis. Biomicrofluidics 2019, 13, 064112. [Google Scholar] [CrossRef]
- Pethig, R. Review Article—Dielectrophoresis: Status of the Theory, Technology, and Applications. Biomicrofluidics 2010, 4, 022811. [Google Scholar] [CrossRef]
- Martinez-Duarte, R. A Critical Review on the Fabrication Techniques That Can Enable Higher Throughput in Dielectrophoresis Devices. Electrophoresis 2022, 43, 232–248. [Google Scholar] [CrossRef]
- Oberton, S.B. Electrofiltration Process for Purifying Organic Liquids. U.S. Patent 4040926, 9 August 1977. [Google Scholar]
- Crissman, J.H.; Fritsche, R.G.; Hamel, F.B.; Hilty, L.W. Radial Flow Electrostatic Filter. U.S. Patent 4059498, 22 November 1977. [Google Scholar]
- Pesch, G.R.; Lorenz, M.; Sachdev, S.; Salameh, S.; Du, F.; Baune, M.; Boukany, P.E.; Thöming, J. Bridging the Scales in High-Throughput Dielectrophoretic (Bio-)Particle Separation in Porous Media. Sci. Rep. 2018, 8, 10480. [Google Scholar] [CrossRef]
- Lorenz, M.; Malangré, D.; Du, F.; Baune, M.; Thöming, J.; Pesch, G.R. High-Throughput Dielectrophoretic Filtration of Sub-Micron and Micro Particles in Macroscopic Porous Materials. Anal. Bioanal. Chem. 2020, 412, 3903–3914. [Google Scholar] [CrossRef]
- Pesch, G.R.; Du, F. A Review of Dielectrophoretic Separation and Classification of Non-biological Particles. Electrophoresis 2021, 42, 134–152. [Google Scholar] [CrossRef]
- Weirauch, L.; Giesler, J.; Baune, M.; Pesch, G.R.; Thöming, J. Shape-Selective Remobilization of Microparticles in a Mesh-Based DEP Filter at High Throughput. Sep. Purif. Technol. 2022, 300, 121792. [Google Scholar] [CrossRef]
- Weirauch, L.; Giesler, J.; Pesch, G.R.; Baune, M.; Thöming, J. Sorting Microparticle Mixtures by Multiple Properties in a Single Dielectrophoretic Filter. Results Eng. 2024, 23, 102641. [Google Scholar] [CrossRef]
- Barua, S.; Yoo, J.W.; Kolhar, P.; Wakankar, A.; Gokarn, Y.R.; Mitragotri, S. Particle Shape Enhances Specificity of Antibody-Displaying Nanoparticles. Proc. Natl. Acad. Sci. USA 2013, 110, 3270–3275. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.K.; Eggeman, A.; Lanni, F.; Tilton, R.D.; Majetich, S.A. Synthesis and Single-Particle Optical Detection of Low-Polydispersity Plasmonic-Superparamagnetic Nanoparticles. Adv. Mater. 2008, 20, 1721–1726. [Google Scholar] [CrossRef]
- Ren, Y.K.; Morganti, D.; Jiang, H.Y.; Ramos, A.; Morgan, H. Electrorotation of Metallic Microspheres. Langmuir ACS J. Surfaces Colloids 2011, 27, 2128–2131. [Google Scholar] [CrossRef]
- García-Sánchez, P.; Ren, Y.; Arcenegui, J.J.; Morgan, H.; Ramos, A. Alternating Current Electrokinetic Properties of Gold-Coated Microspheres. Langmuir 2012, 28, 13861–13870. [Google Scholar] [CrossRef]
- Ho, C.C.; Keller, A.; Odell, J.A.; Ottewill, R.H. Preparation of Monodisperse Ellipsoidal Polystyrene Particles. Colloid Polym. Sci. 1993, 271, 469–479. [Google Scholar] [CrossRef]
- Moncada-Hernandez, H.; Baylon-Cardiel, J.L.; Pérez-González, V.H.; Lapizco-Encinas, B.H. Insulator-Based Dielectrophoresis of Microorganisms: Theoretical and Experimental Results. Electrophoresis 2011, 32, 2502–2511. [Google Scholar] [CrossRef]
- Saucedo-Espinosa, M.A.; Lapizco-Encinas, B.H. Experimental and Theoretical Study of Dielectrophoretic Particle Trapping in Arrays of Insulating Structures: Effect of Particle Size and Shape: Microfluidics and Miniaturization. Electrophoresis 2015, 36, 1086–1097. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Gencoglu, A.; Minerick, A.R. DC Insulator Dielectrophoretic Applications in Microdevice Technology: A Review. Anal. Bioanal. Chem. 2011, 399, 301–321. [Google Scholar] [CrossRef]
- Lapizco-Encinas, B.H. The Latest Advances on Nonlinear Insulator-Based Electrokinetic Microsystems under Direct Current and Low-Frequency Alternating Current Fields: A Review. Anal. Bioanal. Chem. 2022, 414, 885–905. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M. Dielectrophoretic Filtration of Particles in Porous Media: Concept, Design, and Selectivity. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2021. [Google Scholar] [CrossRef]
- Weirauch, L. Multidimensional Sorting of Microparticles in Electrically Switchable Dielectrophoretic Filters. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2023. [Google Scholar] [CrossRef]
- Sachs, S.; Schmidt, H.; Cierpka, C.; König, J. On the Behavior of Prolate Spheroids in a Standing Surface Acoustic Wave Field. Microfluid. Nanofluid. 2023, 27, 81. [Google Scholar] [CrossRef]
- Giesler, J.; Weirauch, L.; Pesch, G.R.; Baune, M.; Thöming, J. Semi-Continuous Dielectrophoretic Separation at High Throughput Using Printed Circuit Boards. Sci. Rep. 2023, 13, 20696. [Google Scholar] [CrossRef] [PubMed]
- Giesler, J.; Weirauch, L.; Thöming, J.; Baune, M. Compensation of Capacitive Currents in High-Throughput Dielectrophoretic Separators. Sci. Rep. 2024, 14, 16491. [Google Scholar] [CrossRef]
- Weirauch, L. Repository for ‘Shape-selective Remobilization of Microparticles in a Mesh-Based DEP Filter at High Throughput’. 2022. Available online: https://zenodo.org/records/6534451 (accessed on 28 August 2024).
- Weirauch, L. Online Repository for: “Sorting Microparticle Mixtures by Multiple Properties in a Single Dielectrophoretic Filter”. 2023. Available online: https://zenodo.org/records/10303592 (accessed on 28 August 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weirauch, L.; Giesler, J.; Pesch, G.R.; Baune, M.; Thöming, J. Highly Permeable, Electrically Switchable Filter for Multidimensional Sorting of Suspended Particles. Powders 2024, 3, 574-593. https://doi.org/10.3390/powders3040030
Weirauch L, Giesler J, Pesch GR, Baune M, Thöming J. Highly Permeable, Electrically Switchable Filter for Multidimensional Sorting of Suspended Particles. Powders. 2024; 3(4):574-593. https://doi.org/10.3390/powders3040030
Chicago/Turabian StyleWeirauch, Laura, Jasper Giesler, Georg R. Pesch, Michael Baune, and Jorg Thöming. 2024. "Highly Permeable, Electrically Switchable Filter for Multidimensional Sorting of Suspended Particles" Powders 3, no. 4: 574-593. https://doi.org/10.3390/powders3040030
APA StyleWeirauch, L., Giesler, J., Pesch, G. R., Baune, M., & Thöming, J. (2024). Highly Permeable, Electrically Switchable Filter for Multidimensional Sorting of Suspended Particles. Powders, 3(4), 574-593. https://doi.org/10.3390/powders3040030