The Crosstalk Between HIV-TB Co-Infection and Associated Resistance in the Indian Population
Abstract
:1. Introduction
2. Methodology
3. Epidemiological Landscape in India
4. Impact of Co-Infection on Disease Progression
5. Challenges in Diagnosis and Treatment of Co-Infection
6. Impact of TB Supplements on Disease Improvement
7. Drug Resistance and Clinical Practices
8. Behavioral and Adherence Issues
9. IRIS-Immune Responses in Recovery from Immunosuppression
10. Therapeutic Vaccines with ART and ATT
11. Public Health Strategies and Future Directions
12. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Goldfeld, A.; Ellner, J.J. Pathogenesis and Management of HIV/TB Co-Infection in Asia. Tuberculosis 2007, 87 (Suppl. S1), S26–S30. [Google Scholar] [CrossRef] [PubMed]
- Bagcchi, S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe 2023, 4, E20. [Google Scholar] [CrossRef] [PubMed]
- Jilani, T.N.; Avula, A.; Zafar Gondal, A.; Siddiqui, A.H. Active Tuberculosis; StatPearls Publising: Treasure Island, FL, USA, 2023. [Google Scholar]
- Rao, S. Tuberculosis and Patient Gender: An Analysis and Its Implications in Tuberculosis Control. Lung India 2009, 26, 46–47. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, V.K. Latent TB Infection in Children and Adolescents: Scientific Rationale and Programmatic Management. Indian J. Tuberc. 2023, 70 (Suppl. S1), S35–S38. [Google Scholar] [CrossRef] [PubMed]
- Spooner, E.; Reddy, S.; Ntoyanto, S.; Sakadavan, Y.; Reddy, T.; Mahomed, S.; Mlisana, K.; Dlamini, M.; Daniels, B.; Luthuli, N.; et al. TB Testing in HIV-Positive Patients Prior to Antiretroviral Treatment. Int. J. Tuberc. Lung Dis. 2022, 26, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Rao, R.; Joshi, R. Estimating the Burden of Tuberculosis in India: A Modelling Study. Indian J. Community Med. 2023, 48, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Selvaraju, S.; Velayutham, B.; Rao, R.; Rade, K.; Thiruvengadam, K.; Asthana, S.; Balachandar, R.; Bangar, S.D.; Bansal, A.K.; Bhat, J.; et al. Prevalence and Factors Associated with Tuberculosis Infection in India. J. Infect. Public Health 2023, 16, 2058–2065. [Google Scholar] [CrossRef]
- Peloquin, C.A.; Davies, G.R. The Treatment of Tuberculosis. Clin. Pharmacol. Ther. 2021, 110, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Lai, R.P.J.; Meintjes, G.; Wilkinson, R.J. HIV-1 Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome. Semin. Immunopathol. 2016, 38, 185–198. [Google Scholar] [CrossRef]
- Gao, J.; Zheng, P.; Fu, H. Prevalence of TB/HIV Co-Infection in Countries except China: A Systematic Review and Meta-Analysis. PLoS ONE 2013, 8, E64915. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Getahun, H.; Tadesse, B.T.; Ford, N. HIV-Associated Tuberculosis. Int. J. STD AIDS 2021, 32, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Makubi, A.; Drain, P.; Spiegelman, D.; Sando, D.; Li, N.; Chalamilla, G.; Sudfeld, C.R.; Hertzmark, E.; Fawzi, W.W. Tuberculosis Incidence Rate and Risk Factors among HIV-Infected Adults with Access to Antiretroviral Therapy. AIDS 2015, 29, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.G.; Granich, R.; Chauhan, L.S.; Dharmshaktu, N.S.; Dye, C. The Impact of HIV/AIDS on the Control of Tuberculosis in India. Proc. Natl. Acad. Sci. USA 2005, 102, 9619–9624. [Google Scholar] [CrossRef] [PubMed]
- National AIDS Control Organization. India HIV Estimation 2017-Technical Report; NACO, Ministry of Health and Family Welfare, Government of India: New Delhi, India, 2017. Available online: https://naco.gov.in/sites/default/files/HIV%20Estimations%202017%20Report_1.pdf (accessed on 25 September 2024).
- Geldmacher, C.; Koup, R.A. Pathogen-Specific T Cell Depletion and Reactivation of Opportunistic Pathogens in HIV Infection. Trends Immunol. 2012, 33, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, R.; Shah, A.; Sachdeva, K.S.; Sreenivas, A.N.; Gupta, R.S.; Khaparde, S.D. Scaling up of HIV-TB Collaborative Activities: Achievements and Challenges in India. Indian J. Tuberc. 2016, 63, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Torpey, K.; Agyei-Nkansah, A.; Ogyiri, L.; Forson, A.; Lartey, M.; Ampofo, W.; Akamah, J.; Puplampu, P. Management of TB/HIV Co-Infection: The State of the Evidence. Ghana Med. J. 2020, 54, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Shaik, J.; Pillay, M.; Jeena, P. A Review of Host-Specific Diagnostic and Surrogate Biomarkers in Children with Pulmonary Tuberculosis. Paediatr. Respir. Rev. 2024. epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Kwok, A.J.; Mentzer, A.; Knight, J.C. Host Genetics and Infectious Disease: New Tools, Insights and Translational Opportunities. Nat. Rev. Genet. 2021, 22, 137–153. [Google Scholar] [CrossRef]
- Rewari, B.B.; Kumar, A.; Mandal, P.P.; Puri, A.K. HIV TB Coinfection—Perspectives from India. Expert Rev. Respir. Med. 2021, 15, 911–930. [Google Scholar] [CrossRef]
- Bruchfeld, J.; Correia-Neves, M.; Källenius, G. Tuberculosis and HIV Coinfection: Table 1. Cold Spring Harb. Perspect. Med. 2015, 5, a017871. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, Y.; Hoshino, S.; Gold, J.A.; Raju, B.; Prabhakar, S.; Pine, R.; Rom, W.N.; Nakata, K.; Weiden, M. Mechanisms of Polymorphonuclear Neutrophil–Mediated Induction of HIV-1 Replication in Macrophages during Pulmonary Tuberculosis. J. Infect. Dis. 2007, 195, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Husain, A.A.; Kupz, A.; Kashyap, R.S. Controlling the Drug-Resistant Tuberculosis Epidemic in India: Challenges and Implications. Epidemiol. Health 2021, 43, e2021022. [Google Scholar] [CrossRef] [PubMed]
- Aliyu, A.Y.; Adeleke, O.A. Latest Progress on Tuberculosis and HIV Co-Infection: A Closer Look at People of Different Ages. Adv. Ther. 2024, 2400033. [Google Scholar] [CrossRef]
- Updated List of HIV Medicines; 2024. Available online: https://hivinfo.nih.gov/understanding-hiv/fact-sheets/fda-approved-hiv-medicines (accessed on 25 September 2024).
- Tseng, A.; Seet, J.; Phillips, E.J. The Evolution of Three Decades of Antiretroviral Therapy: Challenges, Triumphs and the Promise of the Future. Br. J. Clin. Pharmacol. 2015, 79, 182–194. [Google Scholar] [CrossRef]
- Moreno, S.; Perno, C.; Mallon, P.; Behrens, G.; Corbeau, P.; Routy, J.; Darcis, G. Two-drug vs. Three-drug Combinations for HIV-1: Do We Have Enough Data to Make the Switch? HIV Med. 2019, 20, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Prasad, R.; Balasubramanian, V.; Gupta, N. Drug-Resistant Tuberculosis and HIV Infection: Current Perspectives. HIVAIDS Res. Palliat. Care 2020, 12, 9–31. [Google Scholar] [CrossRef]
- Ling-Hu, T.; Rios-Guzman, E.; Lorenzo-Redondo, R.; Ozer, E.A.; Hultquist, J.F. Challenges and Opportunities for Global Genomic Surveillance Strategies in the COVID-19 Era. Viruses 2022, 14, 2532. [Google Scholar] [CrossRef]
- Li, T.; Yang, Y.; Qi, H.; Cui, W.; Zhang, L.; Fu, X.; He, X.; Liu, M.; Li, P.; Yu, T. CRISPR/Cas9 Therapeutics: Progress and Prospects. Signal Transduct. Target. Ther. 2023, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Farhat, M.; Cox, H.; Ghanem, M.; Denkinger, C.M.; Rodrigues, C.; Abd El Aziz, M.S.; Enkh-Amgalan, H.; Vambe, D.; Ugarte-Gil, C.; Furin, J.; et al. Drug-Resistant Tuberculosis: A Persistent Global Health Concern. Nat. Rev. Microbiol. 2024. [Google Scholar] [CrossRef]
- Islam, M.S.; Chughtai, A.A.; Seale, H. Reflecting on the Updates to the World Health Organisation 2019 Tuberculosis Infection Control Guidelines through the Lens of a Low-Income/High TB Burden Country. J. Infect. Public Health 2020, 13, 1057–1060. [Google Scholar] [CrossRef]
- Sterling, T.R.; Njie, G.; Zenner, D.; Cohn, D.L.; Reves, R.; Ahmed, A.; Menzies, D.; Horsburgh, C.R.; Crane, C.M.; Burgos, M.; et al. Guidelines for the Treatment of Latent Tuberculosis Infection: Recommendations from the National Tuberculosis Controllers Association and CDC, 2020. MMWR Recomm. Rep. 2020, 69, 1–11. [Google Scholar] [CrossRef]
- Uplekar, M.; Weil, D.; Lonnroth, K.; Jaramillo, E.; Lienhardt, C.; Dias, H.M.; Falzon, D.; Floyd, K.; Gargioni, G.; Getahun, H.; et al. WHO’s Global TB Programme. WHO’s New End TB Strategy. Lancet 2015, 385, 1799–1801. [Google Scholar] [CrossRef] [PubMed]
- Solanki, S.; Kumar Das, H. Antimicrobial Resistance: Molecular Drivers and Underlying Mechanisms. J. Med. Surg. Public Health 2024, 3, 100122. [Google Scholar] [CrossRef]
- Lan, Z.; Ahmad, N.; Baghaei, P.; Barkane, L.; Benedetti, A.; Brode, S.K.; Brust, J.C.M.; Campbell, J.R.; Chang, V.W.L.; Falzon, D.; et al. Drug-Associated Adverse Events in the Treatment of Multidrug-Resistant Tuberculosis: An Individual Patient Data Meta-Analysis. Lancet Respir. Med. 2020, 8, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Global Tuberculosis Report 2019; World Health Organization: Geneva, Switzerland, 2019.
- Migliori, G.B.; Tiberi, S.; Zumla, A.; Petersen, E.; Chakaya, J.M.; Wejse, C.; Muñoz Torrico, M.; Duarte, R.; Alffenaar, J.W.; Schaaf, H.S.; et al. MDR/XDR-TB Management of Patients and Contacts: Challenges Facing the New Decade. The 2020 Clinical Update by the Global Tuberculosis Network. Int. J. Infect. Dis. 2020, 92, S15–S25. [Google Scholar] [CrossRef] [PubMed]
- Nema, V.; Jadhav, S. Significance of Upcoming Technologies and Their Potential Applications in Understanding Microbial Diversity. In Microbial Diversity in the Genomic Era; Elsevier: Amsterdam, The Netherlands, 2024; pp. 697–712. ISBN 978-0-443-13320-6. [Google Scholar]
- Tuberculosis Chemotherapy Centre. A Concurrent Comparison of Home and Sanatorium Treatment of Pulmonary Tuberculosis in South India. Bull World Health Organ. 1959, 21, 51–144. [Google Scholar]
- Sazali, M.F.; Rahim, S.S.S.A.; Mohammad, A.H.; Kadir, F.; Payus, A.O.; Avoi, R.; Jeffree, M.S.; Omar, A.; Ibrahim, M.Y.; Atil, A.; et al. Improving Tuberculosis Medication Adherence: The Potential of Integrating Digital Technology and Health Belief Model. Tuberc. Respir. Dis. 2023, 86, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Subbaraman, R.; Nathavitharana, R.R.; Mayer, K.H.; Satyanarayana, S.; Chadha, V.K.; Arinaminpathy, N.; Pai, M. Constructing Care Cascades for Active Tuberculosis: A Strategy for Program Monitoring and Identifying Gaps in Quality of Care. PLoS Med. 2019, 16, E1002754. [Google Scholar] [CrossRef] [PubMed]
- Pradipta, I.S.; Houtsma, D.; van Boven, J.F.; Alffenaar, J.C.; Hak, E. Interventions to Improve Medication Adherence in Tuberculosis Patients: A Systematic Review of Randomized Controlled Studies. NPJ Prim. Care Respir. Med. 2020, 30, 21. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Parthasarathy, M.; Palkar, A.; Keskar, P.; Setia, M.S. Barriers for Antiretroviral Therapy Adherence and Viral Suppression in Members of the Key Population in Mumbai, India: Implications for Interventions. Indian J. Dermatol. 2021, 66, 378–385. [Google Scholar] [CrossRef]
- Manosuthi, W.; Wiboonchutikul, S.; Sungkanuparph, S. Integrated Therapy for HIV and Tuberculosis. AIDS Res. Ther. 2016, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Schiffman, J.; Raghunath, A.; Ng Tang, D.; Chen, H.; Sharma, P. Concurrent Decrease in IL-10 with Development of Immune-Related Adverse Events in a Patient Treated with Anti-CTLA-4 Therapy. Cancer Immun. 2008, 8, 9. [Google Scholar] [PubMed]
- Sereti, I.; Rodger, A.J.; French, M.A. Biomarkers in Immune Reconstitution Inflammatory Syndrome: Signals from Pathogenesis. Curr. Opin. HIV AIDS 2010, 5, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Tadokera, R.; Wilkinson, K.A.; Meintjes, G.A. Role of the Interleukin 10 Family of Cytokines in Patients with Immune Reconstitution Inflammatory Syndrome Associated with HIV Infection and Tuberculosis. J. Infect. Dis. 2013, 207, 1148–1156. [Google Scholar] [CrossRef]
- Cevaal, P.M.; Bekker, L.G.; Hermans, S. TB-IRIS Pathogenesis and New Strategies for Intervention: Insights from Related Inflammatory Disorders. Tuberculosis 2019, 18, 101863. [Google Scholar] [CrossRef]
- World Health Organisation. WHO Global Tuberculosis Report 2022. Available online: https://www.iom.int/sites/g/files/tmzbdl486/files/documents/2023-03/Global-TB-Report-2022.pdf (accessed on 25 September 2024).
- Breen, R.A.; Smith, C.J.; Bettinson, H.; Dart, S.; Bannister, B.; Johnson, M.A.; Lipman, M.C. Paradoxical Reactions during Tuberculosis Treatment in Patients with and without HIV Co-Infection. Thorax 2004, 59, 704–707. [Google Scholar] [CrossRef] [PubMed]
- Lawn, S.D.; Wilkinson, R.J.; Lipman, M.C.; Wood, R. Immune Reconstitution and “Unmasking” of Tuberculosis during Antiretroviral Therapy. Am. J. Respir. Crit. Care Med. 2008, 177, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Breen, R.A.; Smith, C.J.; Cropley, I.; Johnson, M.A.; Lipman, M.C. Does immune reconstitution syndrome promote active tuberculosis in patients receiving highly active antiretroviral therapy? AIDS 2005, 19, 1201–1206. [Google Scholar] [CrossRef]
- Meintjes, G.; Lawn, S.D.; Scano, F.; Maartens, G.; French, M.A.; Worodria, W.; Elliott, J.H.; Murdoch, D.; Wilkinson, R.J.; Seyler, C.; et al. Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome: Case Definitions for Use in Resource-Limited Settings. Lancet Infect. Dis. 2008, 8, 516–523. [Google Scholar] [CrossRef]
- A Report from NIH-National Cancer Institute “The First AIDS Drug”. Available online: https://Ccr.Cancer.Gov/News/Landmarks/Article/First-Aids-Drugs#:~:text=Azidothymidine%20(AZT)%2C%20a%20compound,immune%20function%20of%20AIDS%20patients (accessed on 25 September 2024).
- CDC’s HIV/AIDs Timeline; CDC: Atlanta, GA, USA, 2020. Available online: https://npin.cdc.gov/pages/cdcs-hivaids-timeline#:~:text=September%2024%3A%20CDC%20uses%20the,first%20case%20definition%20for%20AIDS.&text=December%2010%3A%20Report%20of%20AIDS%20likely%20from%20blood%20transfusion.&text=December%2017%3A%20Reports%20of%20AIDS%20hinting%20of%20perinatal%20transmission (accessed on 25 September 2024).
- Yarchoan, R.; Mitsuya, H.; Pluda, J.M.; Marczyk, K.S.; Thomas, R.V.; Hartman, N.R.; Brouwers, P.; Perno, C.F.; Allain, J.P.; Johns, D.G.; et al. The National Cancer Institute Phase I Study of 2’,3’-Dideoxyinosine Administration in Adults with AIDS or AIDS-Related Complex: Analysis of Activity and Toxicity Profiles. Rev. Infect. Dis. 1990, 12 (Suppl. S5), S522–S533. [Google Scholar] [CrossRef]
- Antiretroviral Drug Discovery and Development. Available online: https://www.Niaid.Nih.Gov/Diseases-Conditions/Antiretroviral-Drug-Development (accessed on 25 September 2024).
- Zumla, A.; Nahid, P.; Cole, S.T. Advances in the Development of New Tuberculosis Drugs and Treatment Regimens. Nat. Rev. Drug Discov. 2013, 12, 388–404. [Google Scholar] [CrossRef] [PubMed]
- Vilchèze, C.; Jacobs, W.R., Jr. The Mechanism of Isoniazid Killing: Clarity through the Scope of Genetics. Annu. Rev. Microbiol. 2007, 61, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Rhee, K.Y. Tuberculosis Drug Development: History and Evolution of the Mechanism-Based Paradigm. Cold Spring Harb Perspect Med. 2015, 5, A021147. [Google Scholar] [CrossRef] [PubMed]
- Chorine, V. Action de l’amide Nicotinique Sur Les Bacilles Du Genre Mycobcaterium. C R Hebd Seances Acad. Sci. 1945, 220, 150–151. [Google Scholar]
- Anthony, R.M.; Den Hertog, A.L.; van Soolingen, D. “Happy the Man, Who, Studying Nature’s Laws, Thro” Known Effects Can Trace the Secret Cause.’ Do We Have Enough Pieces to Solve the Pyrazinamide Puzzle? J. Antimicrob. Chemother. 2018, 73, 1750–1754. [Google Scholar] [CrossRef] [PubMed]
- Lamont, E.A.; Dillon, N.A.; Baughn, A.D. The Bewildering Antitubercular Action of Pyrazinamide. Microbiol. Mol. Biol. Rev. 2020, 84, E00070-19. [Google Scholar] [CrossRef] [PubMed]
- Vilchèze, C. Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. Appl. Sci. 2020, 10, 2278. [Google Scholar] [CrossRef]
- Thomas, J.P.; Baughn, C.O.; Wilkinson, R.G.; Shepherd, R.G. A New Synthetic Compound with Antituberculous Activity in Mice: Ethambutol (Dextro-2,2’-(Ethylenediimino)-Di-l-Butanol). Am. Rev. Respir. Dis. 1961, 83, 891–893. [Google Scholar] [PubMed]
- Telenti, A.; Imboden, P.; Marchesi, F.; Lowrie, D.; Cole, S.; Colston, M.J.; Matter, L.; Schopfer, K.; Bodmer, T. Detection of Rifampicin-Resistance Mutations in Mycobacterium tuberculosis. Lancet 1993, 341, 647–650. [Google Scholar] [CrossRef]
- Levin, M.E.; Hatfull, G.F. Mycobacterium Smegmatis RNA Polymerase: DNA Supercoiling, Action of Rifampicin and Mechanism of Rifampicin Resistance. Mol. Microbiol. 1993, 8, 277–285. [Google Scholar] [CrossRef]
- Cohen, J. Infectious Disease. Approval of Novel TB Drug Celebrated—With Restraint. Science 2013, 339, 130. [Google Scholar] [CrossRef] [PubMed]
- Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; et al. A Diarylquinoline DrugZActive on the ATP Synthase of Mycobacterium tuberculosis. Science 2005, 307, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Huitric, E.; Verhasselt, P.; Koul, A.; Andries, K.; Hoffner, S.; Andersson, D.I. Rates and Mechanisms of Resistance Development in Mycobacterium tuberculosis to a Novel Diarylquinoline ATP Synthase Inhibitor. Antimicrob. Agents Chemother. 2010, 54, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadhav, S.; Nair, A.; Mahajan, P.; Nema, V. The Crosstalk Between HIV-TB Co-Infection and Associated Resistance in the Indian Population. Venereology 2024, 3, 183-198. https://doi.org/10.3390/venereology3040015
Jadhav S, Nair A, Mahajan P, Nema V. The Crosstalk Between HIV-TB Co-Infection and Associated Resistance in the Indian Population. Venereology. 2024; 3(4):183-198. https://doi.org/10.3390/venereology3040015
Chicago/Turabian StyleJadhav, Sushama, Aishwarya Nair, Pratik Mahajan, and Vijay Nema. 2024. "The Crosstalk Between HIV-TB Co-Infection and Associated Resistance in the Indian Population" Venereology 3, no. 4: 183-198. https://doi.org/10.3390/venereology3040015
APA StyleJadhav, S., Nair, A., Mahajan, P., & Nema, V. (2024). The Crosstalk Between HIV-TB Co-Infection and Associated Resistance in the Indian Population. Venereology, 3(4), 183-198. https://doi.org/10.3390/venereology3040015