Unravelling the Biological Interplay Between Genital HPV Infection and Cervicovaginal Microbiota in Sub-Saharan Africa: Implications for Cervical (Pre)cancer Prevention
Abstract
:1. Introduction
1.1. Antagonistic Mechanisms Used by Lactobacilli to Interfere with Pathogens
- Production of L- and D-lactic acid, which maintains an acidic environment (pH ≤ 4) that inhibits the growth of uropathogens, including Escherichia coli, Neisseria gonorrhoeae, and Chlamydia trachomatis [19,39]. Lactic acid production in the cervicovaginal milieu is species-dependent, with most Lactobacillus spp. able to produce both isoforms. However, L. iners exclusively produces the L-isomer [39]. The biocidal action of lactic acid depends on its ability, or that of its released hydrogen ions [19,39], to modify surface proteins and penetrate membranes, leading to cytosol acidification or disruption of microbial metabolism. Lactic acid can regulate host immune responses and trigger autophagy. The D-lactate isoform plays a role in maintaining tissue integrity [39].
- Peroxidase system: Hydrogen peroxide (H2O2), produced by lactobacilli and released in the cervicovaginal environment, exerts biocidal effects by crossing microbial membranes and acting as an oxidant in the cytosol. In vivo, H2O2 reacts with ferrous ions to generate hydroxyl radicals, which oxidize nucleic acids, proteins, and lipids, causing mutagenic and cytotoxic effects in microorganisms lacking H2O2-degrading enzymes like peroxidase or catalase (e.g., Prevotella, Gardnerella) [39].
- Bacteriophages in Lactobacillus contribute to genome plasticity, modulate microbial interactions, and influence cervicovaginal microbiome homeostasis through lysogenic and lytic cycles, prophage integration, and mobile genetic elements [39].
- Production of biosurfactants, exopolysaccharides, and extracellular vesicles, which protect against pathogens by inhibiting biofilm formation, altering cell membrane permeability, and causing cell death. Biosurfactants modulate surface chemistry to prevent pathogen attachment [39].
- Lactobacilli interfere with microbial adhesion by displaying surface structures (adhesins), which mediate interactions with the host and other microorganisms. These multifunctional proteins enable co-aggregation with pathogens, masking their surface molecules and preventing receptor recognition on host epithelium [19,39].
- Many lactobacilli are thought to have a higher affinity for epithelial surface receptors compared to pathogenic microorganisms and can competitively exclude pathogens through steric hindrance. As a result, they prevent the attachment of pathogens to host epithelium, as well as colonization and invasion [39].
- Another competitive mechanism between lactobacilli and pathogens involves niche filtering and/or competition for growth nutrients. High glucose consumption and depletion by L. crispatus strains reduce C. trachomatis cellular infection. Glucose fermentation produces antimicrobial organic acids like lactic acid [39].
1.2. Link Between BV and Genital HPV Infections and CIN
1.3. Association of Cervicovaginal Bacteria and CSTs with Genital HPV Infections
1.4. Association of Cervicovaginal Bacteria and CSTs with HPV-Associated Cervical (Pre)cancer
1.5. Potential Mechanisms Protecting Against and Promoting HPV-Induced Cervical Carcinogenesis
2. Issues and Challenges in the Current Literature and Way Forward
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bruni, L.; Albero, G.; Serrano, B.; Mena, M.; Collado, J.; Gómez, D.; Muñoz, J.; Bosch, F.X.; de Sanjosé, S. Human Papillomavirus and Related Diseases in the World. Summary Report 10 March 2023. Available online: https://hpvcentre.net/statistics/reports/XWX.pdf (accessed on 1 June 2023).
- International Agency for Research on Cancer (IARC). Global Cancer Observatory; International Agency for Research on Cancer (IARC): Lyon, France, 2022; Volume 2022. [Google Scholar]
- Ryser, M.D.; Rositch, A.; Gravitt, P.E. Modeling of US human papillomavirus (HPV) seroprevalence by age and sexual behavior indicates an increasing trend of HPV infection following the sexual revolution. J. Infect. Dis. 2017, 216, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Trottier, H.; Ferreira, S.; Thomann, P.; Costa, M.C.; Sobrinho, J.S.; Prado, J.C.; Rohan, T.E.; Villa, L.L.; Franco, E.L. Human papillomavirus infection and reinfection in adult women: The role of sexual activity and natural immunity. Cancer Res. 2010, 70, 8569–8577. [Google Scholar] [CrossRef] [PubMed]
- Mbulawa, Z.Z.A.; Phohlo, K.; Garcia-Jardon, M.; Williamson, A.L.; Businge, C.B. High human papillomavirus (HPV)-35 prevalence among South African women with cervical intraepithelial neoplasia warrants attention. PLoS ONE 2022, 17, e0264498. [Google Scholar] [CrossRef]
- Happel, A.U.; Balle, C.; Havyarimana, E.; Brown, B.; Maust, B.S.; Feng, C.; Yi, B.H.; Gill, K.; Bekker, L.G.; Passmore, J.S.; et al. Cervicovaginal human papillomavirus genomes, microbiota composition and cytokine concentrations in South African adolescents. Viruses 2023, 15, 758. [Google Scholar] [CrossRef]
- Pinheiro, M.; Gage, J.C.; Clifford, G.M.; Demarco, M.; Cheung, L.C.; Chen, Z.; Yeager, M.; Cullen, M.; Boland, J.F.; Chen, X.; et al. Association of HPV35 with cervical carcinogenesis among women of African ancestry: Evidence of viral-host interaction with implications for disease intervention. Int. J. Cancer 2020, 147, 2677–2686. [Google Scholar] [CrossRef]
- Mantula, F.; Toefy, Y.; Sewram, V. Barriers to cervical cancer screening in Africa: A systematic review. BMC Public Health 2024, 24, 525. [Google Scholar] [CrossRef]
- Asgedom, Y.S.; Kebede, T.M.; Seifu, B.L.; Mare, K.U.; Asmare, Z.A.; Asebe, H.A.; Kase, B.F.; Shibeshi, A.H.; Tebeje, T.M.; Sabo, K.G.; et al. Human papillomavirus vaccination uptake and determinant factors among adolescent schoolgirls in sub-Saharan Africa: A systematic review and meta-analysis. Hum. Vaccines Immunother. 2024, 20, 2326295. [Google Scholar] [CrossRef]
- Asempah, E.; Ikpebe, E. Accelerating HPV vaccination in Africa for health equity. Glob. Health Res. Policy 2024, 9, 37. [Google Scholar] [CrossRef]
- Onywera, H.; Mabunda, S.A.; Williamson, A.-L.; Mbulawa, Z.Z.A. Microbiological and behavioral determinants of genital HPV infections among adolescent girls and young women warrant the need for targeted policy interventions to reduce HPV risk. Front. Reprod. Health 2022, 4, 887736. [Google Scholar] [CrossRef]
- Mbulawa, Z.Z.; Johnson, L.F.; Marais, D.J.; Coetzee, D.; Williamson, A.L. The impact of human immunodeficiency virus on human papillomavirus transmission in heterosexually active couples. J. Infect. 2013, 67, 51–58. [Google Scholar] [CrossRef]
- Olajide, N.; Robb, K.; Niedzwiedz, C.; Jani, B. Cervical cancer risk factors in eight west African countries: Cross-sectional analysis of the demographic and health survey 2017–2020. Lancet 2022, 400, S68. [Google Scholar] [CrossRef]
- Kamiza, A.B. Incidence and risk factors associated with cervical cancer in sub-Saharan Africa: A systematic review. ARCH Women Health Care 2020, 3, 7. [Google Scholar]
- Mcharo, R.; Lennemann, T.; France, J.; Torres, L.; Garí, M.; Mbuya, W.; Mwalongo, W.; Mahenge, A.; Bauer, A.; Mnkai, J.; et al. HPV type distribution in HIV positive and negative women with or without cervical dysplasia or cancer in East Africa. Front. Oncol. 2021, 11, 763717. [Google Scholar] [CrossRef] [PubMed]
- Musa, J.; Maiga, M.; Green, S.J.; Magaji, F.A.; Maryam, A.J.; Okolo, M.; Nyam, C.J.; Cosmas, N.T.; Silas, O.A.; Imade, G.E.; et al. Vaginal microbiome community state types and high-risk human papillomaviruses in cervical precancer and cancer in North-central Nigeria. BMC Cancer 2023, 23, 683. [Google Scholar] [CrossRef] [PubMed]
- Onywera, D.H. A Study of the Genital Microbiotas of Black South African Women and Men: Associations with Human Papillomavirus and HIV Infections. Ph.D. Thesis, Department of Pathology, University of Cape Town, Cape Town, South Africa, 2018. Available online: http://hdl.handle.net/11427/36399 (accessed on 21 May 2021).
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Ault, K.; Peralta, L.; Forney, L.J. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108, 4680–4687. [Google Scholar] [CrossRef] [PubMed]
- Petrova, M.I.; Lievens, E.; Malik, S.; Imholz, N.; Lebeer, S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front. Physiol. 2015, 6, 81. [Google Scholar] [CrossRef]
- Forney, L.J.; Foster, J.A.; Ledger, W. The vaginal flora of healthy women is not always dominated by Lactobacillus species. J. Infect. Dis. 2006, 194, 1468–1469. [Google Scholar] [CrossRef]
- Peebles, K.; Velloza, J.; Balkus, J.E.; McClelland, R.S.; Barnabas, R.V. High global burden and costs of bacterial vaginosis: A systematic review and meta-analysis. Sex. Transm. Dis. 2019, 46, 304–311. [Google Scholar] [CrossRef]
- Lebeer, S.; Ahannach, S.; Gehrmann, T.; Wittouck, S.; Eilers, T.; Oerlemans, E.; Condori, S.; Dillen, J.; Spacova, I.; Vander Donck, L.; et al. A citizen-science-enabled catalogue of the vaginal microbiome and associated factors. Nat. Microbiol. 2023, 8, 2183–2195. [Google Scholar] [CrossRef]
- Gajer, P.; Brotman, R.M.; Guoyun, B.; Sakamoto, J.; Schütte, U.M.E.; Zhong, X.; Koenig, S.S.K.; Fu, F.; Ma, Z.; Zhou, X.; et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 2012, 4, 132ra52. [Google Scholar] [CrossRef]
- Roachford, O.S.E.; Alleyne, A.T.; Nelson, K.E. Insights into the vaginal microbiome in a diverse group of women of African, Asian and European ancestries. PeerJ 2022, 10, e14449. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Wang, S.; Wang, X.; Xu, G.; Liu, Q.; Li, Z.; Lv, N.; Pan, Y.; Xiong, Q.; Liu, D.; et al. Characteristics of vaginal microbiota of women of reproductive age with infections. Microorganisms 2024, 12, 1030. [Google Scholar] [CrossRef] [PubMed]
- Juliana, N.C.A.; Peters, R.P.H.; Al-Nasiry, S.; Budding, A.E.; Morré, S.A.; Ambrosino, E. Composition of the vaginal microbiota during pregnancy in women living in sub-Saharan Africa: A PRISMA-compliant review. BMC Pregnancy Childbirth 2021, 21, 596. [Google Scholar] [CrossRef] [PubMed]
- Roachford, O.S.E.; Alleyne, A.T.; Kuelbs, C.; Torralba, M.G.; Nelson, K.E. The cervicovaginal microbiome and its resistome in a random selection of Afro-Caribbean women. Hum. Microbiome J. 2021, 20, 100079. [Google Scholar] [CrossRef]
- Taku, O.; Onywera, H.; Mbulawa, Z.Z.A.; Businge, C.B.; Meiring, T.L.; Williamson, A.-L. Molecular identification of cervical microbes in HIV-negative and HIV-positive women in an African setting using a customized bacterial vaginosis microbial DNA quantitative PCR (qPCR) array. Microbiol. Spectr. 2022, 10, e0222921. [Google Scholar] [CrossRef]
- Onywera, H.; Williamson, A.-L.; Mbulawa, Z.; Coetzee, D.; Meiring, T. Factors associated with the composition and diversity of the cervical microbiota of reproductive-age Black South African women: A retrospective cross-sectional study. PeerJ 2019, 7, e7488. [Google Scholar] [CrossRef]
- Onywera, H.; Williamson, A.L.; Mbulawa, Z.Z.A.; Coetzee, D.; Meiring, T.L. The cervical microbiota in reproductive-age South African women with and without human papillomavirus infection. Papillomavirus Res. 2019, 7, 154–163. [Google Scholar] [CrossRef]
- Anahtar, M.N.; Byrne, E.H.; Doherty, K.E.; Bowman, B.A.; Yamamoto, H.S.; Soumillon, M.; Padavattan, N.; Ismail, N.; Moodley, A.; Sabatini, M.E.; et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity 2015, 42, 965–976. [Google Scholar] [CrossRef]
- Balle, C.; Lennard, K.; Dabee, S.; Barnabas, S.L.; Jaumdally, S.Z.; Gasper, M.A.; Maseko, V.; Mbulawa, Z.Z.A.; Williamson, A.L.; Bekker, L.G.; et al. Endocervical and vaginal microbiota in South African adolescents with asymptomatic Chlamydia trachomatis infection. Sci. Rep. 2018, 8, 11109. [Google Scholar] [CrossRef]
- Fettweis, J.M.; Brooks, J.P.; Serrano, M.G.; Sheth, N.U.; Girerd, P.H.; Edwards, D.J.; Strauss, J.F.; Jefferson, K.K.; Buck, G.A. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology 2014, 160, 2272–2282. [Google Scholar] [CrossRef]
- Zhou, X.; Brown, C.J.; Abdo, Z.; Davis, C.C.; Hansmann, M.A.; Joyce, P.; Foster, J.A.; Forney, L.J. Differences in the composition of vaginal microbial communities found in healthy Caucasian and Black women. ISME J. 2007, 1, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Borgdorff, H.; Tsivtsivadze, E.; Verhelst, R.; Marzorati, M.; Jurriaans, S.; Ndayisaba, G.F.; Schuren, F.H.; van de Wijgert, J.H. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in African women. ISME J. 2014, 8, 1781–1793. [Google Scholar] [CrossRef] [PubMed]
- Lennard, K.; Smritee, D.; Havyarimana, E.; Blakney, A.; Barnabas, S.L.; Jaumdally, S.Z.; Botha, G.; Mkhize, N.N.; Bekker, L.-G.; Lewis, D.A.; et al. Vaginal microbiota varies by geographical location in South African women. S. Afr. J. Sci. Technol. 2019, 38, 1–9. [Google Scholar]
- Lehtoranta, L.; Ala-Jaakkola, R.; Laitila, A.; Maukonen, J. Healthy vaginal microbiota and influence of probiotics across the female life span. Front. Microbiol. 2022, 13, 819958. [Google Scholar] [CrossRef] [PubMed]
- Bayigga, L.; Kateete, D.P.; Anderson, D.J.; Sekikubo, M.; Nakanjako, D. Diversity of vaginal microbiota in sub-Saharan Africa and its effects on HIV transmission and prevention. Am. J. Obstet. Gynecol. 2019, 220, 155–166. [Google Scholar] [CrossRef]
- Avitabile, E.; Menotti, L.; Croatti, V.; Giordani, B.; Parolin, C.; Vitali, B. Protective mechanisms of vaginal lactobacilli against sexually transmitted viral infections. Int. J. Mol. Sci. 2024, 25, 9168. [Google Scholar] [CrossRef]
- Gillet, E.; Meys, J.F.A.; Verstraelen, H.; Bosire, C.; De Sutter, P.; Temmerman, M.; Broeck, D.V. Bacterial vaginosis is associated with uterine cervical human papillomavirus infection: A meta-analysis. BMC Infect. Dis. 2011, 11, 10. [Google Scholar] [CrossRef]
- Kero, K.; Rautava, J.; Syrjanen, K.; Grenman, S.; Syrjanen, S. Association of asymptomatic bacterial vaginosis with persistence of female genital human papillomavirus infection. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 2215–2219. [Google Scholar] [CrossRef]
- Guo, Y.L.; You, K.; Qiao, J.; Zhao, Y.M.; Geng, L. Bacterial vaginosis is conducive to the persistence of HPV infection. Int. J. STD AIDS 2012, 23, 581–584. [Google Scholar] [CrossRef]
- King, C.C.; Jamieson, D.J.; Wiener, J.; Cu-Uvin, S.; Klein, R.S.; Rompalo, A.M.; Shah, K.V.; Sobel, J.D. Bacterial vaginosis and the natural history of human papillomavirus. Infect. Dis. Obstet. Gynecol. 2011, 2011, 319460. [Google Scholar] [CrossRef]
- Mao, C.; Hughes, J.P.; Kiviat, N.; Kuypers, J.; Lee, S.-K.; Adam, D.E.; Koutsky, L.a. Clinical findings among young women with genital human papillomavirus infection. Am. J. Obstet. Gynecol. 2003, 188, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Broeck, D.V.; Rossi, R.; Ogbe, E.; Harmon, S.; Mabeya, H. Associations between vaginal infections and potential high-risk and high-risk human papillomavirus genotypes in female sex workers in western Kenya. Clin. Ther. 2016, 38, 2567–2577. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.H.; Kim, Y.T.; Kim, S.R.; Kim, S.W.; Kim, J.W.; Lee, M.K.; Nam, E.J.; Jung, Y.W. Association between bacterial vaginosis and cervical intraepithelial neoplasia. J. Gynecol. Oncol. 2009, 20, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Peters, N.; Van Leeuwen, A.M.; Pieters, W.J.; Hollema, H.; Quint, W.G.; Burger, M.P. Bacterial vaginosis is not important in the etiology of cervical neoplasia. Sex. Transm. Dis. 1995, 22, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Gillet, E.; Meys, J.F.A.; Verstraelen, H.; Verhelst, R.; De Sutter, P.; Temmerman, M.; Vanden Broeck, D. Association between bacterial vaginosis and cervical intraepithelial neoplasia: Systematic review and meta-analysis. PLoS ONE 2012, 7, e45201. [Google Scholar] [CrossRef]
- Fiscella, K.; Klebanoff, M.A. Are racial differences in vaginal pH explained by vaginal flora? Am. J. Obstet. Gynecol. 2004, 191, 747–750. [Google Scholar] [CrossRef]
- Stevens-Simon, C.; Jamison, J.; McGregor, J.A.; Douglas, J.M. Racial variation in vaginal pH among healthy sexually active adolescents. Sex. Transm. Dis. 1994, 21, 168–172. [Google Scholar] [CrossRef]
- Clarke, M.A.; Rodriguez, A.C.; Gage, J.C.; Herrero, R.; Hildesheim, A.; Wacholder, S.; Burk, R.; Schiffman, M. A large, population-based study of age-related associations between vaginal pH and human papillomavirus infection. BMC Infect. Dis. 2012, 12, 33. [Google Scholar] [CrossRef]
- Łaniewski, P.; Barnes, D.; Goulder, A.; Cui, H.; Roe, D.J.; Chase, D.M.; Herbst-Kralovetz, M.M. Linking cervicovaginal immune signatures, HPV and microbiota composition in cervical carcinogenesis in non-Hispanic and Hispanic women. Sci. Rep. 2018, 8, 7593. [Google Scholar] [CrossRef]
- Sousa, L.G.V.; Pereira, S.A.; Cerca, N. Fighting polymicrobial biofilms in bacterial vaginosis. Microb. Biotechnol. 2023, 16, 1423–1437. [Google Scholar] [CrossRef]
- Verstraelen, H.; Swidsinski, A. The biofilm in bacterial vaginosis: Implications for epidemiology, diagnosis and treatment. Curr. Opin. Infect. Dis. 2013, 26, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Donmez, H.G.; Sahal, G.; Akgor, U.; Cagan, M.; Ozgul, N.; Beksac, M.S. The relationship between the presence of HPV infection and biofilm formation in cervicovaginal smears. Infection 2020, 48, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Mendhe, S.; Badge, A.; Ugemuge, S.; Chandi, D. Impact of biofilms on chronic infections and medical challenges. Cureus 2023, 15, e48204. [Google Scholar] [CrossRef] [PubMed]
- Onywera, H.; Anejo-Okopi, J.; Mwapagha, L.M.; Okendo, J.; Williamson, A.-L. Predictive functional analysis reveals inferred features unique to cervicovaginal microbiota of African women with bacterial vaginosis and high-risk human papillomavirus infection. PLoS ONE 2021, 16, e0253218. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Morgan, M.T.; Fiedler, T.L.; Djukovic, D.; Hoffman, N.G.; Raftery, D.; Marrazzo, J.M.; Fredricks, D.N. Metabolic signatures of bacterial vaginosis. mBio 2015, 6, e00204-15. [Google Scholar] [CrossRef]
- Dareng, E.O.; Ma, B.; Famooto, A.O.; Akarolo-Anthony, S.N.; Offiong, R.A.; Olaniyan, O.; Dakum, P.S.; Wheeler, C.M.; Fadrosh, D.; Yang, H.; et al. Prevalent high-risk HPV infection and vaginal microbiota in Nigerian women. Epidemiol. Infect. 2016, 144, 123–137. [Google Scholar] [CrossRef]
- Konschuh, S.; Jayaprakash, T.; Dolatabadi, A.; Dayo, E.; Ramay, H.; Sycuro, L. O02.3 Reclassification of Atopobium vaginae as three novel Fannyhessea species: Implications for understanding their role in bacterial vaginosis. Sex. Transm. Infect. 2021, 97, A18. [Google Scholar] [CrossRef]
- Brotman, R.M.; Shardell, M.D.; Gajer, P.; Tracy, J.K.; Zenilman, J.M.; Ravel, J.; Gravitt, P.E. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J. Infect. Dis. 2014, 210, 1723–1733. [Google Scholar] [CrossRef]
- Reimers, L.L.; Mehta, S.D.; Massad, L.S.; Burk, R.D.; Xie, X.; Ravel, J.; Cohen, M.H.; Palefsky, J.M.; Weber, K.M.; Xue, X.; et al. The cervicovaginal microbiota and its associations with human papillomavirus detection in HIV-infected and HIV-uninfected women. J. Infect. Dis. 2016, 214, 1361–1369. [Google Scholar] [CrossRef]
- Lee, J.E.; Lee, S.; Lee, H.; Song, Y.-M.; Lee, K.; Han, M.J.; Sung, J.; Ko, G. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PLoS ONE 2013, 8, e63514. [Google Scholar] [CrossRef]
- Petrova, M.I.; Reid, G.; Vaneechoutte, M.; Lebeer, S. Lactobacillus iners: Friend or foe? Trends Microbiol. 2017, 25, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Trifanescu, O.G.; Trifanescu, R.A.; Mitrica, R.I.; Bran, D.M.; Serbanescu, G.L.; Valcauan, L.; Marinescu, S.A.; Gales, L.N.; Tanase, B.C.; Anghel, R.M. The female reproductive tract microbiome and cancerogenesis: A review story of bacteria, hormones, and disease. Diagnostics 2023, 13, 877. [Google Scholar] [CrossRef] [PubMed]
- Sims, T.T.; Biegert, G.W.G.; Ramogola-Masire, D.; Ngoni, K.; Solley, T.; Ning, M.S.; El Alam, M.B.; Mezzari, M.; Petrosino, J.; Zetola, N.M.; et al. Tumor microbial diversity and compositional differences among women in Botswana with high-grade cervical dysplasia and cervical cancer. Int. J. Gynecol. 2020, 30, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.; Gonzalez, D.; Samwel, K.; Kahesa, C.; Mwaiselage, J.; Aluthge, N.; Fernando, S.; West, J.T.; Wood, C.; Angeletti, P.C. Relationship between the cervical microbiome, HIV status, and precancerous lesions. mBio 2019, 10, e02785-18. [Google Scholar] [CrossRef] [PubMed]
- Teka, B.; Yoshida-Court, K.; Firdawoke, E.; Chanyalew, Z.; Gizaw, M.; Addissie, A.; Mihret, A.; Colbert, L.E.; Napravnik, T.C.; El Alam, M.B.; et al. Cervicovaginal microbiota profiles in precancerous lesions and cervical cancer among Ethiopian women. Microorganisms 2023, 11, 833. [Google Scholar] [CrossRef]
- Claesson, M.J.; Wang, Q.; O’Sullivan, O.; Greene-Diniz, R.; Cole, J.R.; Ross, R.P.; O’Toole, P.W. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 2010, 38, e200. [Google Scholar] [CrossRef]
- Fouhy, F.; Clooney, A.G.; Stanton, C.; Claesson, M.J.; Cotter, P.D. 16S rRNA gene sequencing of mock microbial populations- impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiol. 2016, 16, 123. [Google Scholar] [CrossRef]
- Onywera, H.; Meiring, T.L. Comparative analyses of Ion Torrent V4 and Illumina V3-V4 16S rRNA gene metabarcoding methods for characterization of cervical microbiota: Taxonomic and functional profiling. Sci. Afr. 2020, 7, e00278. [Google Scholar] [CrossRef]
- Smith, W.L.; Hedges, S.R.; Mordechai, E.; Adelson, M.E.; Trama, J.P.; Gygax, S.E.; Kaunitz, A.M.; Hilbert, D.W. Cervical and vaginal flora specimens are highly concordant with respect to bacterial vaginosis-associated organisms and commensal Lactobacillus species in women of reproductive age. J. Clin. Microbiol. 2014, 52, 3078–3081. [Google Scholar] [CrossRef]
- Huang, Y.E.; Wang, Y.; He, Y.; Ji, Y.; Wang, L.P.; Sheng, H.F.; Zhang, M.; Huang, Q.T.; Zhang, D.J.; Wu, J.J.; et al. Homogeneity of the vaginal microbiome at the cervix, posterior fornix, and vaginal canal in pregnant Chinese women. Microb. Ecol. 2015, 69, 407–414. [Google Scholar] [CrossRef]
- Kim, T.K.; Thomas, S.M.; Ho, M.; Sharma, S.; Reich, C.I.; Frank, J.A.; Yeater, K.M.; Biggs, D.R.; Nakamura, N.; Stumpf, R.; et al. Heterogeneity of vaginal microbial communities within individuals. J. Clin. Microbiol. 2009, 47, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Di Paola, M.; Sani, C.; Clemente, A.M.; Iossa, A.; Perissi, E.; Castronovo, G.; Tanturli, M.; Rivero, D.; Cozzolino, F.; Cavalieri, D.; et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk human papillomavirus infection. Sci. Rep. 2017, 7, 10200. [Google Scholar] [CrossRef] [PubMed]
- Chao, X.-P.; Sun, T.-T.; Wang, S.; Fan, Q.-B.; Shi, H.-H.; Zhu, L.; Lang, J.-H. Correlation between the diversity of vaginal microbiota and the risk of high-risk human papillomavirus infection. Int. J. Gynecol. Cancer 2019, 29, 28–34. [Google Scholar] [CrossRef]
- Shannon, B.; Yi, T.J.; Perusini, S.; Gajer, P.; Ma, B.; Humphrys, M.S.; Thomas-Pavanel, J.; Chieza, L.; Janakiram, P.; Saunders, M.; et al. Association of HPV infection and clearance with cervicovaginal immunology and the vaginal microbiota. Mucosal Immunol. 2017, 10, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.Y.; Kim, B.S.; Seo, S.S.; Kong, J.S.; Lee, J.K.; Park, S.Y.; Hong, K.M.; Kim, H.K.; Kim, M.K. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin. Microbiol. Infect. 2015, 21, 674.e1–674.e9. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Wei, X.; Zhu, J.; Wang, X.; Xie, X.; Lu, W. The alterations of vaginal microbiome in HPV16 infection as identified by shotgun metagenomic sequencing. Front. Cell. Infect. Microbiol. 2020, 10, 286. [Google Scholar] [CrossRef]
- Usyk, M.; Zolnik, C.P.; Castle, P.E.; Porras, C.; Herrero, R.; Gradissimo, A.; Gonzalez, P.; Safaeian, M.; Schiffman, M.; Burk, R.D.; et al. Cervicovaginal microbiome and natural history of HPV in a longitudinal study. PLoS Pathog. 2020, 16, e1008376. [Google Scholar] [CrossRef]
- Mitra, A.; MacIntyre, D.A.; Marchesi, J.R.; Lee, Y.S.; Bennett, P.R.; Kyrgiou, M. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: What do we know and where are we going next? Microbiome 2016, 4, 58. [Google Scholar] [CrossRef]
- Boskey, E.R.; Telsch, K.M.; Whaley, K.J.; Moench, T.R.; Cone, R.A. Acid production by vaginal flora in vitro is consistent with the rate and extent of vaginal acidification. Infect. Immun. 1999, 67, 5170–5175. [Google Scholar] [CrossRef]
- Straight, S.W.; Herman, B.; McCance, D.J. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J. Virol. 1995, 69, 3185–3192. [Google Scholar] [CrossRef]
- Antonio, M.A.; Rabe, L.K.; Hillier, S.L. Colonization of the rectum by Lactobacillus species and decreased risk of bacterial vaginosis. J. Infect. Dis. 2005, 192, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Pendharkar, S.; Magopane, T.; Larsson, P.-G.; de Bruyn, G.; Gray, G.E.; Hammarström, L.; Marcotte, H. Identification and characterisation of vaginal lactobacilli from South African women. BMC Infect. Dis. 2013, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-L.; Kato, N.; Matsumiya, Y.; Liu, C.-X.; Kato, H.; Watanabe, k. Identification of and hydrogen peroxide production by fecal and vaginal lactobacilli isolated from Japanese women and newborn infants. J. Clin. Microbiol. 1999, 37, 3062–3064. [Google Scholar] [CrossRef] [PubMed]
- Eschenbach, D.A.; Davick, P.R.; Williams, B.L.; Klebanoff, S.J.; Young-Smith, K.; Critchlow, C.M.; Holmes, K.K. Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. J. Clin. Microbiol. 1989, 27, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Klebanoff, S.J.; Coombs, R.W. Viricidal effect of Lactobacillus acidophilus on human immunodeficiency virus type 1: Possible role in heterosexual transmission. J. Exp. Med. 1991, 174, 289–292. [Google Scholar] [CrossRef]
- Clark, R.A.; Klebanoff, S.J. Role of the myeloperoxidase-H2O2-halide system in concanavalin A-induced tumor cell killing by human neutrophils. J. Immunol. 1979, 122, 2605–2610. [Google Scholar] [CrossRef]
- Miko, E.; Barakonyi, A. The role of hydrogen-peroxide (H2O2) produced by vaginal microbiota in female reproductive health. Antioxidants 2023, 12, 1055. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, K.M.; Kim, C.H.; Kim, S.M.; Oh, J.S. Hydrogen peroxide producing lactobacilli in women with cervical neoplasia. Cancer Res. Treat. 2006, 38, 108–111. [Google Scholar] [CrossRef]
- Nunn, K.L.; Wang, Y.Y.; Harit, D.; Humphrys, M.S.; Ma, B.; Cone, R.; Ravel, J.; Lai, S.K. Enhanced trapping of HIV-1 by human cervicovaginal mucus is associated with Lactobacillus crispatus-dominant microbiota. mBio 2015, 6, e01084-15. [Google Scholar] [CrossRef]
- Nahui Palomino, R.A.; Zicari, S.; Vanpouille, C.; Vitali, B.; Margolis, L. Vaginal Lactobacillus inhibits HIV-1 replication in human tissues ex vivo. Front. Microbiol. 2017, 8, 906. [Google Scholar] [CrossRef]
- Witkin, S.S.; Mendes-Soares, H.; Linhares, I.M.; Jayaram, A.; Ledger, W.J.; Forney, L.J. Influence of vaginal bacteria and D- and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: Implications for protection against upper genital tract infections. mBio 2013, 4, e00460-13. [Google Scholar] [CrossRef] [PubMed]
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The biology and life-cycle of human papillomaviruses. Vaccine 2012, 30 (Suppl. S5), F55–F70. [Google Scholar] [CrossRef] [PubMed]
- Olukomogbon, T.; Akpobome, B.; Omole, A.; Adebamowo, C.A.; Adebamowo, S.N. Association between cervical inflammatory mediators and prevalent cervical human papillomavirus infection. JCO Glob. Oncol. 2024, 10, e2300380. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; MacIntyre, D.A.; Lee, Y.S.; Smith, A.; Marchesi, J.R.; Lehne, B.; Bhatia, R.; Lyons, D.; Paraskevaidis, E.; Li, J.V.; et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci. Rep. 2015, 5, 16865. [Google Scholar] [CrossRef]
- Piyathilake, C.J.; Ollberding, N.J.; Kumar, R.; Macaluso, M.; Alvarez, R.D.; Morrow, C.D. Cervical microbiota associated with higher grade cervical intraepithelial neoplasia in women infected with high-risk human papillomaviruses. Cancer Prev. Res. 2016, 9, 357–366. [Google Scholar] [CrossRef]
- Audirac-Chalifour, A.; Torres-Poveda, K.; Bahena-Roman, M.; Tellez-Sosa, J.; Martinez-Barnetche, J.; Cortina-Ceballos, B.; Lopez-Estrada, G.; Delgado-Romero, K.; Burguete-Garcia, A.I.; Cantu, D.; et al. Cervical microbiome and cytokine profile at various stages of cervical cancer: A pilot study. PLoS ONE 2016, 11, e0153274. [Google Scholar] [CrossRef]
- Molina, M.A.; Leenders, W.P.J.; Huynen, M.A.; Melchers, W.J.G.; Andralojc, K.M. Temporal composition of the cervicovaginal microbiome associates with hrHPV infection outcomes in a longitudinal study. BMC Infect. Dis. 2024, 24, 552. [Google Scholar] [CrossRef]
- Chee, W.J.Y.; Chew, S.Y.; Than, L.T.L. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb. Cell Fact. 2020, 19, 203. [Google Scholar] [CrossRef]
- Verhoeven, V.; Renard, N.; Makar, A.; Van Royen, P.; Bogers, J.P.; Lardon, F.; Peeters, M.; Baay, M. Probiotics enhance the clearance of human papillomavirus-related cervical lesions: A prospective controlled pilot study. Eur. J. Cancer Prev. 2013, 22, 46–51. [Google Scholar] [CrossRef]
- Al Kassaa, I.; Hober, D.; Hamze, M.; Chihib, N.E.; Drider, D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob. Proteins 2014, 6, 177–185. [Google Scholar] [CrossRef]
- Boris, S.; Barbés, C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2000, 2, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Cha, M.K.; Lee, D.K.; An, H.M.; Lee, S.W.; Shin, S.H.; Kwon, J.H.; Kim, K.J.; Ha, N.J. Antiviral activity of Bifidobacterium adolescentis SPM1005-A on human papillomavirus type 16. BMC Med. 2012, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Motevaseli, E.; Shirzad, M.; Akrami, S.M.; Mousavi, A.S.; Mirsalehian, A.; Modarressi, M.H. Normal and tumour cervical cells respond differently to vaginal lactobacilli, independent of pH and lactate. J. Med. Microbiol. 2013, 62, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Moscicki, A.B.; Shi, B.; Huang, H.; Barnard, E.; Li, H. Cervical-vaginal microbiome and associated cytokine profiles in a prospective study of HPV 16 acquisition, persistence, and clearance. Front. Cell. Infect. Microbiol. 2020, 10, 569022. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, Z.E.; Łaniewski, P.; Thomas, N.; Roe, D.J.; Chase, D.M.; Herbst-Kralovetz, M.M. Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling. EBioMedicine 2019, 44, 675–690. [Google Scholar] [CrossRef]
- Colbert, L.E.; El Alam, M.B.; Wang, R.; Karpinets, T.; Lo, D.; Lynn, E.J.; Harris, T.A.; Elnaggar, J.H.; Yoshida-Court, K.; Tomasic, K.; et al. Tumor-resident Lactobacillus iners confer chemoradiation resistance through lactate-induced metabolic rewiring. Cancer Cell 2023, 41, 1945–1962.e11. [Google Scholar] [CrossRef]
- Molina, M.A.; Melchers, W.J.G.; Andralojc, K.M.; Leenders, W.P.J.; Huynen, M.A. Longitudinal analysis on the ecological dynamics of the cervicovaginal microbiome in hrHPV infection. Comput. Struct. Biotechnol. J. 2023, 21, 4424–4431. [Google Scholar] [CrossRef]
- Ntuli, L.; Mtshali, A.; Mzobe, G.; Liebenberg, L.J.; Ngcapu, S. Role of immunity and vaginal microbiome in clearance and persistence of human papillomavirus infection. Front. Cell. Infect. Microbiol. 2022, 12, 927131. [Google Scholar] [CrossRef]
- Graham, S.V. The human papillomavirus replication cycle, and its links to cancer progression: A comprehensive review. Clin. Sci. 2017, 131, 2201–2221. [Google Scholar] [CrossRef]
- Cavalcanti, E.F.; Silva, C.R.; Ferreira, D.C.; Ferreira, M.V.; Vanderborght, P.R.; Torres, M.C.; Torres, S.R. Detection of human papillomavirus in dental biofilm and the uterine cervix of a pregnant adolescent. Sao Paulo Med. J. 2016, 134, 88–91. [Google Scholar] [CrossRef]
- Choi, E.; Murray, B.; Choi, S. Biofilm and cancer: Interactions and future directions for cancer therapy. Int. J. Mol. Sci. 2023, 24, 12836. [Google Scholar] [CrossRef] [PubMed]
- Zevin, A.S.; Xie, I.Y.; Birse, K.; Arnold, K.; Romas, L.; Westmacott, G.; Novak, R.M.; McCorrister, S.; McKinnon, L.R.; Cohen, C.R.; et al. Microbiome composition and function drives wound-healing impairment in the female genital tract. PLoS Pathog. 2016, 12, e1005889. [Google Scholar] [CrossRef] [PubMed]
- Mwapagha, L.M.; Tiffin, N.; Parker, I. Delineation of the HPV11E6 and HPV18E6 pathways in initiating cellular transformation. Front. Oncol. 2017, 7, 258. [Google Scholar] [CrossRef] [PubMed]
- Lebeau, A.; Bruyere, D.; Roncarati, P.; Peixoto, P.; Hervouet, E.; Cobraiville, G.; Taminiau, B.; Masson, M.; Gallego, C.; Mazzucchelli, G.; et al. HPV infection alters vaginal microbiome through down-regulating host mucosal innate peptides used by Lactobacilli as amino acid sources. Nat. Commun. 2022, 13, 1076. [Google Scholar] [CrossRef] [PubMed]
- Holubekova, V.; Kolkova, Z.; Kasubova, I.; Samec, M.; Mazurakova, A.; Koklesova, L.; Kubatka, P.; Rokos, T.; Kozubik, E.; Biringer, K.; et al. Interaction of cervical microbiome with epigenome of epithelial cells: Significance of inflammation to primary healthcare. Biomol. Concepts 2022, 13, 61–80. [Google Scholar] [CrossRef]
- Da Silva, M.L.R.; De Albuquerque, B.; Allyrio, T.; De Almeida, V.D.; Cobucci, R.N.O.; Bezerra, F.L.; Andrade, V.S.; Lanza, D.C.F.; De Azevedo, J.C.V.; De Araújo, J.M.G.; et al. The role of HPV-induced epigenetic changes in cervical carcinogenesis (Review). Biomed. Rep. 2021, 15, 60. [Google Scholar] [CrossRef]
- Nené, N.R.; Barrett, J.; Jones, A.; Evans, I.; Reisel, D.; Timms, J.F.; Paprotka, T.; Leimbach, A.; Franchi, D.; Colombo, N.; et al. DNA methylation signatures to predict the cervicovaginal microbiome status. Clin. Epigenetics 2020, 12, 180. [Google Scholar] [CrossRef]
- Dareng, E.O.; Ma, B.; Adebamowo, S.N.; Famooto, A.; Ravel, J.; Pharoah, P.P.; Adebamowo, C.A. Vaginal microbiota diversity and paucity of Lactobacillus species are associated with persistent hrHPV infection in HIV negative but not in HIV positive women. Sci. Rep. 2020, 10, 19095. [Google Scholar] [CrossRef]
- Ravilla, R.; Coleman, H.N.; Chow, C.E.; Chan, L.; Fuhrman, B.J.; Greenfield, W.W.; Robeson, M.S.; Iverson, K.; Spencer, H., 3rd; Nakagawa, M. Cervical microbiome and response to a human papillomavirus therapeutic vaccine for treating high-grade cervical squamous intraepithelial lesion. Integr. Cancer Ther. 2019, 18, 1534735419893063. [Google Scholar] [CrossRef]
- World Health Organization (WHO) Regional Office for Africa. Cervical Cancer Common Amongst African Women 2015. Available online: https://www.afro.who.int/news/cervical-cancer-common-amongst-african-women (accessed on 20 October 2024).
- Pinheiro, S.P.; Holmes, M.D.; Pollak, M.N.; Barbieri, R.L.; Hankinson, S.E. Racial differences in premenopausal endogenous hormones. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2147–2153. [Google Scholar] [CrossRef]
- Marsh, E.E.; Shaw, N.D.; Klingman, K.M.; Tiamfook-Morgan, T.O.; Yialamas, M.A.; Sluss, P.M.; Hall, J.E. Estrogen levels are higher across the menstrual cycle in African-American women compared with Caucasian women. J. Clin. Endocrinol. Metab. 2011, 96, 3199–3206. [Google Scholar] [CrossRef] [PubMed]
- Zahid, M.; Mondal, B.; LeVan, T.D.; Rogan, E.G. Estrogen metabolism in African-American women with and without breast cancer: A pilot study. Chem. Res. Toxicol. 2019, 32, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Cornejo, O.E.; Hickey, R.J.; Suzuki, H.; Forney, L.J. Focusing the diversity of Gardnerella vaginalis through the lens of ecotypes. Evol. Appl. 2018, 11, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Schellenberg, J.J.; Patterson, M.H.; Hill, J.E. Gardnerella vaginalis diversity and ecology in relation to vaginal symptoms. Res. Microbiol. 2017, 168, 837–844. [Google Scholar] [CrossRef]
- Onywera, H.; Chambuso, R.; Benjamin, D.; Hilt, E.; Thomas-White, K. Editorial: An outlook on urobiome: Advances in understanding the role of urobiome in urological health and disease and its potential in biotherapeutics. Front. Urol. 2024, 4, 1380340. [Google Scholar] [CrossRef]
Issue/Challenge | Description and/or Existing Data | Future Direction |
---|---|---|
Question of whether CVM is distinct or exists as a continuum and how this impacts cervicovaginal health |
|
|
Limited data on the relationship of CVM and HPV-associated cervical disease in SSA, which limit cross-study comparisons and generalizability |
|
|
Understudied role of non-Lactobacillus spp. and non-Lactobacillus-dominated CVM in HPV progression to CIN |
|
|
Unexplored impact of antimicrobial properties of lactobacilli on HR-HPV and cervical neoplasia |
|
|
Need to underscore if association means causation during CVM alterations |
|
|
Need for deeper insight into the mechanistic role of CVM and host changes in HPV persistence and carcinogenesis |
|
|
Limited understanding of the role of bacterial biofilms in the natural history of HPV infection and HPV-induced cancer |
| |
Unexplored impact of HPV vaccines on CVM diversity and composition |
|
|
Low uptake and coverage of HPV vaccines and late diagnosis of cervical cancer |
|
|
Underexplored role of oestrogen in CVM and cancer risk |
| |
Debate on CVM homogeneity versus heterogeneity and definition of a healthy versus diseased CVM in asymptomatic women of African descent |
|
|
Existence of genomic diversity and reclassification of certain bacterial species |
|
|
Limited translatable research in CVM |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onywera, H.; Mbulawa, Z.Z.A.; Brink, A.; Williamson, A.-L.; Mwapagha, L.M. Unravelling the Biological Interplay Between Genital HPV Infection and Cervicovaginal Microbiota in Sub-Saharan Africa: Implications for Cervical (Pre)cancer Prevention. Venereology 2024, 3, 211-231. https://doi.org/10.3390/venereology3040017
Onywera H, Mbulawa ZZA, Brink A, Williamson A-L, Mwapagha LM. Unravelling the Biological Interplay Between Genital HPV Infection and Cervicovaginal Microbiota in Sub-Saharan Africa: Implications for Cervical (Pre)cancer Prevention. Venereology. 2024; 3(4):211-231. https://doi.org/10.3390/venereology3040017
Chicago/Turabian StyleOnywera, Harris, Zizipho Z. A. Mbulawa, Adrian Brink, Anna-Lise Williamson, and Lamech M. Mwapagha. 2024. "Unravelling the Biological Interplay Between Genital HPV Infection and Cervicovaginal Microbiota in Sub-Saharan Africa: Implications for Cervical (Pre)cancer Prevention" Venereology 3, no. 4: 211-231. https://doi.org/10.3390/venereology3040017
APA StyleOnywera, H., Mbulawa, Z. Z. A., Brink, A., Williamson, A. -L., & Mwapagha, L. M. (2024). Unravelling the Biological Interplay Between Genital HPV Infection and Cervicovaginal Microbiota in Sub-Saharan Africa: Implications for Cervical (Pre)cancer Prevention. Venereology, 3(4), 211-231. https://doi.org/10.3390/venereology3040017