Variations in Seed Dormancy Occurrence and Their Classifications in Thirteen Actinidia Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Source
2.2. Seed Extraction, Sterilization, Drying and Temporary Storage
2.3. Initial Seed Germination
2.4. Germination Rate Assessments
2.5. Dormancy-Breaking Treatments
2.6. Seed Vigor Assessment
2.7. RNA Fragmentation Analysis
2.8. Data Analysis
3. Results
3.1. Initial Seed Germination
3.2. Germination following Dormancy-Breaking Treatments
3.3. Assessment of Germination Rate following Dormancy-Breaking Treatments
3.4. Seed Vigor Assessment Comparing Radicle Emergence and Final Germination
3.5. RNA Integrity Analysis for Seed Health
4. Discussion
4.1. Environmental Control of Seed Germination
4.2. Assessment of Seed Dormancy
4.3. Effect of Species Origin and Geographical Distribution on Their Seed Dormancy
4.4. Putative Impacts of Maternal and Paternal Parents on Seed Dormancy
4.5. Seed Vigor Assessment
4.6. RNA Integrity Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barboni, T.; Cannac, M.; Chiaramonti, N. Effect of cold storage and ozone treatment on physicochemical parameters, soluble sugars and organic acids in Actinidia deliciosa. Food Chem. 2010, 121, 946–951. [Google Scholar] [CrossRef]
- Poudel, K.; Shah, M.; Mandal, J. Fruit Quality Analysis of Kiwifruit Cultivars Cultivated in Eastern Mid-Hills in Nepal. J. Agric. Environ. 2019, 20, 217–225. [Google Scholar] [CrossRef]
- Rey, M.; Ferradas, Y.; Martinez, O.; Gonzalez, M.V. Actinidia spp. Kiwifruit; CABI Digital Library: Wallingford, UK, 2020; pp. 1–18. [Google Scholar]
- Zespri-Annual-Report. Available online: https://www.zespri.com/content/dam/zespri/nz/publications/annual-reports/Zespri-Annual-Report-2021-22.pdf (accessed on 5 June 2023).
- MPI. Situation and Outlook for Primary Industry New Zealand; Ministry for Primary Industries: Wellington, New Zealand, 2023.
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Baskin, J.M.; Baskin, C.C. A classification system for seed dormancy. Seed Sci. Res. 2004, 14, 1–16. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Lawes, G.; Anderson, D. Influence of temperature and gibberellic acid on kiwifruit (Actinidia chinensis) seed germination. N. Z. J. Exp. Agric. 1980, 8, 277–280. [Google Scholar] [CrossRef]
- Windauer, L.B.; Insausti, P.; Biganzoli, F.; Benech-Arnold, R.; Izaguirre, M.M. Dormancy and germination responses of kiwifruit (Actinidia deliciosa) seeds to environmental cues. Seed Sci. Res. 2016, 26, 342–350. [Google Scholar] [CrossRef]
- Fleming, M.B.; Richards, C.M.; Walters, C. Decline in RNA integrity of dry-stored soybean seeds correlates with loss of germination potential. J. Exp. Bot. 2017, 68, 2219–2230. [Google Scholar] [CrossRef]
- Penfield, S.; MacGregor, D.R. Effects of environmental variation during seed production on seed dormancy and germination. J. Exp. Bot. 2016, 68, 819–825. [Google Scholar] [CrossRef]
- Huang, H. Kiwifruit: The Genus Actinidia; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Ferguson, A.R. The genus Actinidia. In Kiwifruit Science and Management, 1st ed.; Warrington, I.J., Weston, G.C., Eds.; New Zealand Society for Horticultural Science: Auckland, New Zealand, 1990; pp. 15–35. [Google Scholar]
- Li, J.-Q.; Li, X.-W.; Soejarto, D.D. Actinidiaceae. In Flora of China; Wu, Z.-Y., Raven, P.H., Hong, D.-Y., Eds.; Science Press: Beijing, China; Missouri Botanical Gardens: St. Louis, MO, USA, 2007; Volume 12, pp. 334–360. [Google Scholar]
- ISTA. International Rules for Seed Testing; International Seed Testing Association: Wallisellen, Switzerland, 2023. [Google Scholar]
- Kader, M.A. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J. Proc. R. Soc. N. S. W. 2005, 138, 65–75. [Google Scholar] [CrossRef]
- Schroeder, A.; Mueller, O.; Stocker, S.; Salowsky, R.; Leiber, M.; Gassmann, M.; Lightfoot, S.; Menzel, W.; Granzow, M.; Ragg, T. The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 2006, 7, 3. [Google Scholar] [CrossRef]
- Geneve, R.L. Impact of temperature on seed dormancy. HortScience 2003, 38, 336–340. [Google Scholar] [CrossRef]
- Benech-Arnold, R.L.; Sánchez, R.A.; Forcella, F.; Kruk, B.C.; Ghersa, C.M. Environmental control of dormancy in weed seed banks in soil. Field Crops Res. 2000, 67, 105–122. [Google Scholar] [CrossRef]
- Koller, D. Environmental control of seed germination. In Seed Biology; Kozlowski, T.T.E., Ed.; Academic Press: New York, NY, USA, 1972; pp. 2–101. [Google Scholar]
- Willis, C.G.; Baskin, C.C.; Baskin, J.M.; Auld, J.R.; Venable, D.L.; Cavender-Bares, J.; Donohue, K.; Rubio de Casas, R.; The NESCent Germination Working Group. The evolution of seed dormancy: Environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 2014, 203, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.D.; Ocampo-Serna, D.M.; Martínez-Rubio, R.A.; Correa-Navarro, Y.M. Determination of gibberellic acid and abscisic acid in (Zea mays L.) (ICA-V305) seeds germinated using dynamic sonication assisted solvent extraction and maceration. MethodsX 2022, 9, 101821. [Google Scholar] [CrossRef] [PubMed]
- Kermode, A.R. Role of Abscisic Acid in Seed Dormancy. J. Plant Growth Regul. 2005, 24, 319–344. [Google Scholar] [CrossRef]
- Rolston, M.P. Water Impermeable Seed Dormancy. Bot. Rev. 1978, 44, 365–396. [Google Scholar] [CrossRef]
- Mayer, W.V. “Dormancy”. Encyclopedia Britannica. 18 August 2022. Available online: https://www.britannica.com/science/dormancy (accessed on 1 November 2023).
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: San Diego, CA, USA, 2014; p. 1600. [Google Scholar]
- Kim, I.; Hwang, J.; Han, K.; Lee, K. Studies on the germination of seeds in native Actinidia species. J. Korean Soc. Hortic. Sci. 1987, 28, 335–342. [Google Scholar]
- Smith, R.; Toy, S. Effects of stratification and alternating temperatures on seed germination of the Chinese gooseberry, Actinidia chinensis Planch. Proc. Am. Soc. Hortic. Sci. 1967, 90, 409–412. [Google Scholar]
- Donohue, K. Seeds and seasons: Interpreting germination timing in the field. Seed Sci. Res. 2005, 15, 175–187. [Google Scholar] [CrossRef]
- Sautu, A.; Baskin, J.M.; Baskin, C.C.; Condit, R. Studies on the seed biology of 100 native species of trees in a seasonal moist tropical forest, Panama, Central America. For. Ecol. Manag. 2006, 234, 245–263. [Google Scholar] [CrossRef]
- Wagmann, K.; Hautekèete, N.-C.; Piquot, Y.; Meunier, C.; Schmitt, S.E.; Van Dijk, H. Seed dormancy distribution: Explanatory ecological factors. Ann. Bot. 2012, 110, 1205–1219. [Google Scholar] [CrossRef]
- Meyer, S.E.; Allen, P.S. Ecological Genetics of Seed Germination Regulation in Bromus tectorum L. II. Reaction Norms in Response to a Water Stress Gradient Imposed during Seed Maturation. Oecologia 1999, 120, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Baskin, J.M.; Baskin, C.C. How much influence does the paternal parent have on seed germination? Seed Sci. Res. 2019, 29, 1–11. [Google Scholar] [CrossRef]
- Lee, K.P.; Piskurewicz, U.; Turecková, V.; Strnad, M.; Lopez-Molina, L. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc. Natl. Acad. Sci. USA 2010, 107, 19108–19113. [Google Scholar] [CrossRef]
- Kang, J.; Yim, S.; Choi, H.; Kim, A.; Lee, K.P.; Lopez-Molina, L.; Martinoia, E.; Lee, Y. Abscisic acid transporters cooperate to control seed germination. Nat. Commun. 2015, 6, 8113. [Google Scholar] [CrossRef] [PubMed]
- Penfield, S.; Li, Y.; Gilday, A.D.; Graham, S.; Graham, I.A. Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 2006, 18, 1887–1899. [Google Scholar] [CrossRef]
- Karssen, C.M. The light promoted germination of the seeds of Chenopodium album L. III. Effect of the photoperiod during growth and development of the plants on the dormancy of the produced seeds. Plant Biol. 1970, 19, 81–94. [Google Scholar] [CrossRef]
- Pourrat, Y.; Jacques, R. The influence of photoperiodic conditions received by the mother plant on morphological and physiological characteristics of Chenopodium polyspermum L. seeds. Plant Sci. Lett. 1975, 4, 273–279. [Google Scholar] [CrossRef]
- Hansen, A.K.; Escobar, L.K.; Gilbert, L.E.; Jansen, R.K. Paternal, maternal, and biparental inheritance of the chloroplast genome in Passiflora (Passifloraceae): Implications for phylogenetic studies. Am. J. Bot. 2007, 94, 42–46. [Google Scholar] [CrossRef]
- Schmid, B.; Dolt, C. Effects of Maternal and Paternal Environment and Genotype on Offspring Phenotype in Solidago altissima L. Evolution 1994, 48, 1525–1549. [Google Scholar] [CrossRef]
- Herman, J.; Sultan, S. Adaptive Transgenerational Plasticity in Plants: Case Studies, Mechanisms, and Implications for Natural Populations. Front. Plant Sci. 2011, 2, 102. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, J.; Piskurewicz, U.; Loubery, S.; Utz-Pugin, A.; Bailly, C.; Mène-Saffrané, L.; Lopez-Molina, L. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination. PLoS Genet. 2015, 11, e1005708. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, H.; Bassel, G.W.; Bewley, J.D. Germination—Still a mystery. Plant Sci. 2010, 179, 574–581. [Google Scholar] [CrossRef]
- Bewley, J.D.; Black, M. Seeds: Physiology of Development and Germination; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
Species Code | Species | Nomenclature Author Citation | References |
---|---|---|---|
AA | A. arguta var. arguta * | (Rehder) C.F. Liang ex Q.Q. Chang. | [13,15] |
AE | A. arguta | (Sieb and Zucc.) Planch. Ex Miq. | [15] |
CK | A. chinensis var. chinensis | Planch. | [14,15] |
DA | A. chinensis var. deliciosa | (A. Chev.) A. Chev. | [13,15] |
DD | A. deliciosa var. coloris ** | T.H. Lin and X.Y. Xiong. | [13] |
EA | A. eriantha | Bentham. | [13,15] |
GD | A. fortunatii *** | Finet et Gagnep. | [13,15] |
LB | A. lanceolata | Dunn. | [13] |
LC | A. latifolia | (Gardner et Champ.) Merr. | [15] |
PC | A. polygama | (Sieb. Et Zucc.) Maxim. | [13,15] |
RE | A. rufa | (Sieb. Et Zucc.) Planch. Ex Miq. | [13,15] |
SB | A. setosa **** | (Li) C.F. Liang et A.R. Ferguson. | [13,15] |
VA | A. valvata | Dunn. | [13,15] |
Region/Border | Province/ Region | Min Temp (°C) | Max Temp (°C) | Mean Temp (°C) | Climate Description | Species Origin Distribution * |
---|---|---|---|---|---|---|
North | Shandong | −5–1 | 24–28 | 11–14 | 1530 m alt. warm temperate semi-humid monsoon | AA, PC |
Shanxi | −16–2 | 19–28 | 4–14 | 700–2000 m alt. temperate semi-humid, semi-arid continental monsoon | AA | |
Hebei | −16–−3 | 20–27 | 3–15 | 150–5000 m alt. warm temperate semi-humid, semi-arid continental monsoon | AA, PC | |
Beijing | −10–−5 | 22–26 | 10–12 | 280–1300 m alt. continental monsoon | AA, PC | |
Tianjin | −6–−4 | 26 | 12 | 600–800 m alt. warm temperate semi-humid continental monsoon | AA | |
Northeast | Liaoning | −15–−5 | 24 | −6–11 | 500–700 m alt. temperate semi-humid & moist continental monsoon | AA, PC |
Jilin | −18 | 20–23 | −3–7 | temperate semi-humid and semi-arid continental monsoon | AA, PC | |
Heilongjiang | −30–−18 | 18–22 | −2–3 | mild and cold temperate semi-humid continental | AA, PC | |
Central | Hubei | 1–6 | 24–30 | 13–18 | subtropical humid monsoon | CK, DA, DD, LC, PC |
Chongqing | 1–8 | 21–29 | 13–18 | subtropical humid monsoon | AA, CK, PC | |
Hunan | 3–8 | 27–30 | 15–19 | subtropical humid monsoon | AA, CK, DA, DD, EA, LC, VA | |
Henan | 0–2 | 26–28 | 13–15 | 350–1200 m alt. humid and semi-humid continental monsoon | AA, CK, DA, DD, EA, LC, VA | |
Anhui | no data found | no data found | 14–17 | monsoon with mild temperature and medium rainfall | AA, CK, EA, LB, PC, VA | |
Shaanxi | −11–4 | 21–28 | 9–16 | 1500–3000 m alt. temperate semi-arid monsoon | AA, CK, DA, DD, PC | |
Gansu | −14–3 | 11–27 | −1–14 | 660–1600 m alt. temperate continental | AA, PC | |
Southwest | Yunnan | 8–12 | 18–24 | 13–20 | 1100–2500 m alt. subtropical and tropical highland humid monsoon | AA, CK, DA, DD, LB, LC, PC |
Guizhou | 3–6 | 22–26 | 10–20 | 500–800 m alt. subtropical highland humid monsoon | AA, CK, DA, DD, EA, LB, LC, PC | |
Sichuan | no reference | no reference | 16–18 | 1200–1800 m alt. subtropical moist monsoon to temperate subtropical highland | DA, DD, LC, PC | |
East and Southeast | Jiangxi | 4–9 | 28–30 | 16–20 | subtropical humid monsoon | AA, CK, DA, DD, EA, LB, LC, PC, VA |
Zhejiang | 3–8 | 28 | 15–19 | 300–1600 m alt. subtropical humid monsoon | AA, CK, EA, LB, LC, PC, VA | |
Jiangsu | −1–3 | 27–28 | 13–16 | <500 m alt. warm semi-humid monsoon | AA, CK, VA | |
Fujian | 6–12 | 28–29 | 17–22 | >800 m alt. subtropical humid monsoon | AA, CK, EA, LB, LC, PC, VA | |
South | Guangdong | 8–16 | 27–29 | 19 | subtropical humid monsoon | AA, CK, LB, LC, VA, GD |
Hainan | 16–21 | 25–29 | 22–27 | 200–900 m alt. tropical humid monsoon | LC | |
Guangxi | 6–16 | 25–29 | 17–23 | subtropical humid monsoon | AA, CK, DA, DD, EA, LC, GD | |
Taiwan | 13–20 | 24–29 | 20–25 | 150–2700 m alt. subtropical humid monsoon | AE, LC, RE, SB | |
New Zealand (South Island) | Motueka | 1–7 | 18–24 | 7–19 | 11 m alt., 41.0724° S lat., temperate | All 13 species |
New Zealand (North Island) | Te Puke | 5–10 | 18–24 | 9–19 | 99 m alt., 37.7666° S lat., temperate maritime | All 13 species |
DBT | DBT Description | |
---|---|---|
1 | Fresh control | Fresh seeds following surface sterilization. |
2 | Stratified control | Surface-sterilized seeds stratified at constant 5 °C with a 16 h photoperiod for 4 weeks. |
3 | Fresh-soaking | Surface-sterilized seeds soaked in sterile RO water for 24 h at room temperature in darkness |
4 | Stratified-soaking | Surface-sterilized and stratified seeds soaked in sterile RO water for 24 h at room temperature in darkness. |
5 | Fresh-clipping | Following surface sterilization, part of the seed coat and endosperm was manually clipped at the opposite side to where radicle emergence would occur. |
6 | Stratified-clipping | Following surface sterilization and stratification, part of the seed coat and endosperm was manually clipped at the opposite side to where radicle emergence would occur. |
7 | Fresh-GA3 | Surface-sterilized seeds soaked in gibberellic acid solution (GA3) (2500 ppm in sterile RO water) for 24 h at room temperature in darkness, then rinsed with sterile RO water. |
8 | Stratified-GA3 | Surface-sterilized and stratified seeds soaked in gibberellic acid solution (GA3) (2500 ppm in sterile RO water) for 24 h at room temperature in darkness. |
9 | Fresh-sanding | Surface-sterilized seeds rubbed with sandpaper (100–150 grit) until part of the seed endosperm was exposed. |
10 | Stratified-sanding | Surface-sterilized and stratified seeds rubbed with sandpaper (100–150 grit) until part of the seed endosperm was exposed. |
11 | Fresh-seed coat removal | The entire seed coat was manually removed from surface-sterilized seeds. |
12 | Stratified-seed coat removal | Following surface sterilization and stratification, the entire seed coat was manually removed. |
Species Code | Germination (%) | |
---|---|---|
Constant Temperature | Alternating Temperature | |
AA | 0 | 0 |
AE | 0 | 40.0 *** |
CK | 0 | 1.0 |
DA | 0 | 5.0 |
DD | 0 | 13.0 *** |
EA | 0 | 0 |
GD | 0 | 23.0 *** |
LB | 5.0 | 21.0 |
LC | 0 | 30.0 *** |
PC | 0 | 3.0 |
RE | 0 | 85.0 *** |
SB | 0 | 41.0 *** |
VA | 0 | 16.0 |
Species Fresh/Stratified | Control | Soaking | Clipping | GA3 | Sanding | Seed Coat Removal |
---|---|---|---|---|---|---|
AA | *** | *** | *** | *** | *** | *** |
Fresh | 0 | 0 | 0 | 0 | 0 | 0 |
Stratified | 35.6 | 33.0 | 70.0 *** | 30.0 | 53.0 ** | 22.5† |
AE | *** | *** | * | *** | *** | *** |
Fresh | 40.0 | 51.0 | 13.0 *** | 48.0 | 38.7 | 22.0 ** |
Stratified | 0 | 0.8 | 3.8 * | 0.8 | 2.8 ** | 3.8 |
CK | *** | * | *** | |||
Fresh | 1.0 | 5.0 † | 4.0 | 15.0 *** | 0 | 0 |
Stratified | 1.9 | 2.0 | 37.0 *** | 8.0 * | 6.0 | 25.0 *** |
DA | † | *** | *** | *** | ||
Fresh | 5.0 | 0 * | 6.0 | 1.0 † | 4.0 | 1.0 † |
Stratified | 7.7 | 3.0 * | 41.0 *** | 28.0 *** | 8.0 | 30.0 ** |
DD | *** | *** | *** | *** | ** | |
Fresh | 13.0 | 10.0 | 7.0 | 11.0 | 16.0 | 9.0 |
Stratified | 0 | 0 | 43.0 *** | 0.3 | 9.4 *** | 21.5 *** |
EA | *** | |||||
Fresh | 0 | 2.0 | 0 | 1.0 | 0 | 7.0 ** |
Stratified | 0 | 1.0 | 16.0 *** | 3.0 † | 0 | 2.5 |
GD | *** | *** | *** | *** | *** | * |
Fresh | 23.0 | 9.0 ** | 8.0 ** | 1.0 *** | 17.0 | 10.0 * |
Stratified | 52.7 | 71.8 ** | 64.0 † | 95.0 *** | 58.0 | 30.0 ** |
LB | ** | † | *** | |||
Fresh | 21.0 | 4.0 *** | 19.0 | 11.0 † | 10.0 * | 2.0 *** |
Stratified | 9.5 | 8.1 | 10.5 | 10.9 | 13.9 † | 26.2 *** |
LC | *** | *** | *** | *** | *** | |
Fresh | 30.0 | 26.0 | 19.0† | 32.0 | 33.0 | 0*** |
Stratified | 0 | 0 | 0 | 0 | 0 | 0 |
PC | *** | *** | *** | *** | ** | |
Fresh | 3.0 | 0 † | 14.0 ** | 0 † | 6.0 | 4.0 |
Stratified | 10.8 | 13.0 | 83.1 *** | 21.0 * | 11.0 | 22.5 † |
RE | *** | *** | *** | |||
Fresh | 85.0 | 78.0 | 26.0 *** | 85.0 | 33.0 *** | 7.0 *** |
Stratified | 86.0 | 86.0 | 80.0 | 86.0 | 84.0 | 40.0 *** |
SB | * | *** | * | *** | ||
Fresh | 41.0 | 12.0 *** | 34.0 | 15.0 *** | 29.0† | 3.0 *** |
Stratified | 28.6 | 31.1 | 26.7 | 27.4 | 29.4 | 23.2 |
VA | *** | *** | *** | *** | *** | |
Fresh | 16.0 | 68.0 *** | 30.0 * | 48.0 *** | 29.0 * | 17.5 |
Stratified | 0 | 0 | 64.0 *** | 0 | 0 | 10.0 * |
Species | Best DBT * | FGP (%) | MGT (Days) | GRI (%/Day) | * Proportion of Dormant Seeds (%) | Dormancy Classification |
---|---|---|---|---|---|---|
AA | Stratification + clipping | 70.0 | 29.0 (1.0) | 6.3 (0.7) | 70 | PY + PD |
AE | (1) Fresh + soaking | 51.0 | 35.9 (0.7) | 4.8 (0.8) | 9 | MD |
(2) Fresh + GA3 | 48.0 | 31.0 (1.6) | 5.9 (0.8) | |||
CK | Stratification + clipping | 37.0 | 35.0 (0.6) | 2.0 (0.4) | 36 | PY + PD |
DA | Stratification + clipping | 41.0 | 27.4 (1.7) | 3.8 (0.8) | 36 | PY + PD |
DD | Stratification + clipping | 43.0 | 24.7 (0.8) | 6.6 (0.9) | 30 | PY + PD |
EA | Stratification + clipping | 16.0 | 41.5 (0.9) | 0.5 (0.1) | 16 | PY + PD |
GD | Stratification + GA3 | 95.0 | 41.3 (0.5) | 3.8 (0.2) | 72 | MPD |
LB | Stratification + seed coat removal | 26.2 | 28.3 (0.4) | 2.1 (0.5) | 5.2 | PY + PD |
PC | Stratification + clipping | 83.1 | 23.1 (1.8) | 13.2 (1.6) | 80.1 | PY + PD |
VA | Fresh + soaking | 68.0 | 29.0 (0.0) | 8.4 (0.2) | 52 | MD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esfandiari, A.; Norling, C.; Kaji, R.; McLachlan, A.; Mathew, L.; Fleming, M.; Morgan, E.; Nadarajan, J. Variations in Seed Dormancy Occurrence and Their Classifications in Thirteen Actinidia Species. Seeds 2024, 3, 179-195. https://doi.org/10.3390/seeds3020014
Esfandiari A, Norling C, Kaji R, McLachlan A, Mathew L, Fleming M, Morgan E, Nadarajan J. Variations in Seed Dormancy Occurrence and Their Classifications in Thirteen Actinidia Species. Seeds. 2024; 3(2):179-195. https://doi.org/10.3390/seeds3020014
Chicago/Turabian StyleEsfandiari, Azadeh, Cara Norling, Ryohei Kaji, Andrew McLachlan, Liya Mathew, Margaret Fleming, Ed Morgan, and Jayanthi Nadarajan. 2024. "Variations in Seed Dormancy Occurrence and Their Classifications in Thirteen Actinidia Species" Seeds 3, no. 2: 179-195. https://doi.org/10.3390/seeds3020014
APA StyleEsfandiari, A., Norling, C., Kaji, R., McLachlan, A., Mathew, L., Fleming, M., Morgan, E., & Nadarajan, J. (2024). Variations in Seed Dormancy Occurrence and Their Classifications in Thirteen Actinidia Species. Seeds, 3(2), 179-195. https://doi.org/10.3390/seeds3020014