Darwin’s Digestion Myth: Historical and Modern Perspectives on Our Understanding of Seed Dispersal by Waterbirds
Abstract
:1. Introduction
2. Methodology
Date | Scientist | Description | Reference |
---|---|---|---|
1859 | Charles Darwin | Darwin favoured epi- rather than endozoochory because he assumed seeds were destroyed during gut passage (called ‘Darwin’s digestion myth’ in this paper). He described early experiments into zoochory. | [10] |
1898 | William Beal | Reinforced Darwin’s digestion myth in an influential book on plant dispersal. | [22] |
1906 | Henry Guppy | Favoured endozoochory and showed gut passage can increase germination of pondweeds. | [23] |
1914–1918 | First World War forms a dividing line between the early work of the long 19th Century and later 20th century studies. | ||
1930 | Henry Ridley | Major book on plant dispersal recognized both epi- and endozoochory. | [24] |
1959–1968 | Vernon Proctor | Series of papers, first on algae and liverworts, later on flowering plants, demonstrated experimentally the importance of endozoochory and its potential for long-distance dispersal (LDD). | Two key papers in Science. [25]—on algae. [26]—on flowering plants. |
1966 | Robert Cruden | Argued that only epizoochory of seeds can provide LDD for plants | [27] |
1967 | Sherwin Carlquist | Suggested both epi- and endozoochory are important for colonization of oceanic islands. | [28] |
3. Early Perspectives on Dispersal: The Pre-Darwinian Context
The Special Case of Aquatic Habitats as Ecological Islands
4. Darwin and His Powerful Influence
4.1. What Darwin Said
4.2. Other Pioneers from the Nineteenth Century
5. Pioneers of the Twentieth Century
5.1. Henry Guppy
5.2. Henry Ridley
5.3. Cruden and Carlquist
6. Vernon W. Proctor
7. State of the Art: Modern Understanding of Epizoochory and Endozoochory
8. Continuing Influence of Darwin’s Digestion Myth in the 21st Century
9. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilkinson, D.M. The Fundamental Processes in Ecology: Life and the Earth System, 2nd ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Beckman, N.G.; Sullivan, L.L. The Causes and Consequences of Seed Dispersal. Annu. Rev. Ecol. Evol. Syst. 2023, 54, 403–427. [Google Scholar] [CrossRef]
- Schaefer, H.M.; Ruxton, G.D. Plant-Animal Communication; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Brochet, A.L.; Guillemain, M.; Fritz, H.; Gauthier-Clerc, M.; Green, A.J. Plant dispersal by teal (Anas crecca) in the Camargue: Duck guts are more important than their feet. Freshw. Biol. 2010, 55, 1262–1273. [Google Scholar] [CrossRef]
- Costa, J.M.; Ramos, J.A.; da Silva, L.P.; Timoteo, S.; Araújo, P.M.; Felgueiras, M.S.; Rosa, A.; Matos, C.; Encarnação, P.; Tenreiro, P.Q.; et al. Endozoochory largely outweighs epizoochory in migrating passerines. J. Avian Biol. 2014, 45, 59–64. [Google Scholar] [CrossRef]
- Reynolds, C.; Cumming, G.S. Seed dispersal by waterbirds in southern Africa: Comparing the roles of ectozoochory and endozoochory. Freshw. Biol. 2016, 61, 349–361. [Google Scholar] [CrossRef]
- Wetlands International. Waterbird Populations Portal. 2024. Available online: https://wpp.wetlands.org/ (accessed on 29 May 2024).
- Green, A.J.; Brochet, A.L.; Kleyheeg, E.; Soons, M.B. Dispersal of plants by waterbirds. In Why Birds Matter: Avian Ecological Function and Ecosystem Services; Şekercioğlu, C.H., Wenny, D.G., Whelan, C.J., Eds.; University of Chicago Press: Chicago, IL, USA, 2016; pp. 147–195. ISBN 9780226382630. [Google Scholar]
- Green, A.J.; Lovas-Kiss, Á.; Reynolds, C.; Sebastián-González, E.; Silva, G.G.; van Leeuwen, C.H.A.; Wilkinson, D.M. Dispersal of aquatic and terrestrial organisms by waterbirds: A review of current knowledge and future priorities. Freshw. Biol. 2023, 68, 173–190. [Google Scholar] [CrossRef]
- Darwin, C. The Origin of Species by Means of Natural Selection, 1st ed.; John Murray: London, UK, 1859. [Google Scholar]
- Almeida, B.A.; Lukács, B.A.; Lovas-Kiss, A.; Reynolds, C.; Green, A.J. Functional traits drive dispersal interactions between European waterfowl and seeds. Front. Plant Sci. 2022, 12, 795288. [Google Scholar] [CrossRef] [PubMed]
- Lovas-Kiss, Á.; Sanchez, M.I.; Wilkinson, D.M.; Coughlan, N.; Alves, J.; Green, A.J. Shorebirds as important vectors for plant dispersal in Europe. Ecography 2019, 42, 956–967. [Google Scholar] [CrossRef]
- Lovas-Kiss, Á.; Martín-Vélez, V.; Brides, K.; Wilkinson, D.M.; Griffin, L.R.; Green, A.J. Migratory geese allow plants to disperse to cooler latitudes across the ocean. J. Biogeogr. 2023, 50, 1602–1614. [Google Scholar] [CrossRef]
- Viana, D.S.; Santamaria, L.; Michot, T.C.; Figuerola, J. Migratory strategies of waterbirds shape the continental-scale dispersal of aquatic organisms. Ecography 2013, 36, 430–438. [Google Scholar] [CrossRef]
- Lewis, L.R.; Behling, E.; Gousse, H.; Qian, E.; Elphick, C.S.; Lamarre, J.F.; Bety, J.; Liebezeit, J.; Rozzi, R.; Goffinet, B. First evidence of bryophyte diaspores in the plumage of transequatorial migrant birds. PeerJ 2014, 2, e424. [Google Scholar] [CrossRef]
- Manning, F.S.; Curtis, P.J.; Walker, I.R.; Pither, J. Potential long-distance dispersal of freshwater diatoms adhering to waterfowl plumage. Freshw. Biol. 2021, 66, 1136–1148. [Google Scholar] [CrossRef]
- Medawar, P.B. Advice to a Young Scientist; Pan Books: London, UK, 1979. [Google Scholar]
- Tiffney, B.H. Vertebrate dispersal of seed plants through time. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 1–29. [Google Scholar] [CrossRef]
- Green, A.J.; Baltzinger, C.; Lovas-Kiss, Á. Plant dispersal syndromes are unreliable, especially for predicting zoochory and long-distance dispersal. Oikos 2022, 2022, e08327. [Google Scholar] [CrossRef]
- Wilkinson, D.M. Paleontology and Ecology; their common origin and later split. In Palaeontology in Ecology and Conservation; Louys, J., Ed.; Springer: Berlin, Germany, 2012; pp. 9–22. [Google Scholar]
- Gordin, M.D. Scientific Babel; Profile Books: London, UK, 2015. [Google Scholar]
- Beal, W.J. Seed Dispersal; Ginn & Company: Boston, MA, USA, 1898. [Google Scholar]
- Guppy, H.B. Observations of a Naturalist in the Pacific between 1896 and 1899. Volume 2. Plant-Dispersal; Macmillan & Co. Ltd.: London, UK, 1906. [Google Scholar]
- Ridley, H.N. The Dispersal of Plants throughout the World; L. Reeve & Co., Ltd.: Ashford, UK, 1930. [Google Scholar]
- Proctor, V.W. Dispersal of fresh-water algae by migratory water birds. Science 1959, 130, 623–624. [Google Scholar] [CrossRef] [PubMed]
- Proctor, V.W. Long-distance dispersal of seeds by retention in digestive tract of birds. Science 1968, 160, 321–322. [Google Scholar] [CrossRef]
- Carlquist, S. Biota of Long-Distance Dispersal. V. Plant Dispersal to Pacific Islands. Bull. Torrey Bot. Club 1967, 94, 129–162. [Google Scholar] [CrossRef]
- Cruden, R.W. Birds as Agents of Long-Distance Dispersal for Disjunct Plant Groups of Temperate Western Hemisphere. Evolution 1966, 20, 517–532. [Google Scholar] [CrossRef]
- Bowler, P.J. The Fontana History of the Environmental Sciences; Harper Collins: London, UK, 1992. [Google Scholar]
- Mayr, E. The Growth of Biological Thought; Harvard University Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Henry, J. The Scientific Revolution and the Origins of Modern Science, 3rd ed.; Palgrave MacMillan: Basingstoke, UK, 2008. [Google Scholar]
- Wooton, D. The Invention of Science; Allen Lane: London, UK, 2015. [Google Scholar]
- Rudwick, M.J.S. Bursting the Limits of Time: The Reconstruction of Geohistory in the Age of Revolution; University of Chicago Press: Chicago, IL, USA, 2005. [Google Scholar]
- Rudwick, M.J.S. Lyell and Principles of Geology. In Lyell: The Past Is the Key to the Present; Blundell, D.J., Scott, A.C., Eds.; Geological Society of London, Special Publications: London, UK, 1998; Volume 143, pp. 3–15. [Google Scholar]
- Wilkinson, D.M. Ecology before ecology: Biogeography and ecology in Lyells ‘Principles’. J. Biogeogr. 2002, 29, 1109–1115. [Google Scholar] [CrossRef]
- Rudwick, M.J.S. Worlds before Adam: The Reconstruction of Geohistory in the Age of Reform; The University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Baker, J.M.R.; Halliday, T.R. Amphibian colonization of new ponds in an agricultural landscape. Herpetol. J. 1999, 9, 55–63. [Google Scholar]
- Jeffries, M. Measuring Talling’s ‘element of chance in pond populations’. Freshw. Biol. 1989, 21, 383–393. [Google Scholar]
- Frisch, D.; Cottenie, K.; Badosa, A.; Green, A.J. Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity. PLoS ONE 2012, 7, e40205. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, F. (Ed.) Charles Darwin’s Letters: A Selection; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Santamaría, L. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 2002, 23, 137–154. [Google Scholar] [CrossRef]
- van der Pijl, L. Principles of Dispersal in Higher Plants; Springer: Berlin, Germany, 1969. [Google Scholar]
- van Leeuwen, C.H.A.; Villar, N.; Mendoza, I.; Green, A.J.; Bakker, E.S.; Soons, M.B.; Galetti, M.; Jansen, P.; Nolet, B.A.; Santamaría, L. Seed Dispersal Effectiveness framework across the mutualism-antagonism continuum. Oikos 2022, 2022, e09254. [Google Scholar] [CrossRef]
- Sibly, R.M. Strategies of digestion and defecation. In Physiological Ecology: An Evolutionary Approach to Resource Use; Townsend, C.R., Calow, P., Eds.; Sinauer: Sunderland, MA, USA, 1981; pp. 109–139. [Google Scholar]
- Van Leeuwen, C.H.A.; Van der Velde, G.; Van Groenendael, J.M.; Klaassen, M. Gut travellers: Internal dispersal of aquatic organisms by waterfowl. J. Biogeogr. 2012, 39, 2031–2040. [Google Scholar] [CrossRef]
- Bucher, E.H.; Bocco, P.J. Reassessing the importance of granivorous pigeons as massive, long-distance seed dispersers. Ecology 2009, 90, 2321–2327. [Google Scholar] [CrossRef]
- Godó, L.; Borza, S.; Valkó, O.; Rádai, Z.; Deák, B. Owl-mediated diploendozoochorous seed dispersal increases dispersal distance and supports seedling establishment. Glob. Ecol. Conserv. 2023, 45, e02519. [Google Scholar] [CrossRef]
- Darwin, C. The Origin of Species by Means of Natural Selection, 6th ed.; John Murray: London, UK, 1872. [Google Scholar]
- Figuerola, J.; Green, A.J. Dispersal of aquatic organisms by waterbirds: A review of past research and priorities for future studies. Freshw. Biol. 2002, 47, 483–494. [Google Scholar] [CrossRef]
- Brochet, A.L.; Guillemain, M.; Gauthier-Clerc, M.; Fritz, H.; Green, A.J. Endozoochory of Mediterranean aquatic plant seeds by teal after a period of desiccation: Determinants of seed survival and influence of retention time on germinability and viability. Aquat. Bot. 2010, 93, 99–106. [Google Scholar] [CrossRef]
- Lovas-Kiss, A.; Vincze, O.; Kleyheeg, E.; Sramkó, G.; Laczkó, L.; Fekete, R.; Molnár, V.A.; Green, A.J. Seed mass, hardness and phylogeny determine the potential for endozoochory by granivorous waterbirds. Ecol. Evol. 2020, 10, 1413–1424. [Google Scholar] [CrossRef]
- Peralta-Sánchez, J.M.; Ansotegui, A.; Hortas, F.; Redón, S.; Martín-Vélez, V.; Green, A.J.; Navarro-Ramos, M.J.; Lovas-Kiss, A.; Sánchez, M.I. Seed size, not dispersal syndrome, determines potential for spread of ricefield weeds by gulls. Plants 2023, 12, 1470. [Google Scholar] [CrossRef]
- Green, A.J.; Jenkins, K.M.; Bell, D.; Morris, P.J.; Kingsford, R.T. The potential role of waterbirds in dispersing invertebrates and plants in arid Australia. Freshw. Biol. 2008, 53, 380–392. [Google Scholar] [CrossRef]
- van Leeuwen, C.H.A.; Lovas-Kiss, A.; Ovegård, M.; Green, A.J. Great cormorants reveal overlooked secondary dispersal of plants and invertebrates by piscivorous waterbirds. Biol. Lett. 2017, 13, 20170406. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Ramos, M.J.; Green, A.J.; Lovas-Kiss, A.; Roman, J.; Brides, K.; van Leeuwen, C.H.A. A predatory waterbird as a vector of plant seeds and aquatic invertebrates. Freshw. Biol. 2022, 67, 657–671. [Google Scholar] [CrossRef]
- Richards, R.A. Darwin’s experiments. Endeavour 2014, 38, 235–245. [Google Scholar] [CrossRef]
- Reynolds, C.S. The state of freshwater ecology. Freshw. Biol. 1998, 39, 741–753. [Google Scholar] [CrossRef]
- Kerner von Marilaun, A. The Natural History of Plants. Their Forms, Growth, Reproduction, and Distribution; Blackie & Son, Ltd.: London, UK, 1894. [Google Scholar]
- Urgyán, R.; Lukács, B.A.; Fekete, R.; Molnár, V.A.; Nagy, A.; Orsolya, V.; Green, A.J.; Lovas-Kiss, Á. Plants dispersed by a non-frugivorous migrant change throughout the annual cycle. Glob. Ecol. Biogeogr. 2023, 32, 70–82. [Google Scholar] [CrossRef]
- Figuerola, J.; Green, A.J.; Santamaría, L. Comparative dispersal effectiveness of wigeongrass seeds by waterfowl wintering in south-west Spain: Quantitative and qualitative aspects. J. Ecol. 2002, 90, 989–1001. [Google Scholar] [CrossRef]
- Figuerola, J.; Green, A.J. How frequent is external transport of seeds and invertebrate eggs by waterbirds? A study in Donana, SW Spain. Arch. Hydrobiol. 2002, 155, 557–565. [Google Scholar] [CrossRef]
- Wallace, A.R. Darwinism: An Exposition of the Theory of Natural Selection with Some of Its Applications; Macmillan & Co.: London, UK; New York, NY, USA, 1889. [Google Scholar]
- Wallace, A.R. Island Life, 2nd ed.; Macmillan & Co.: London, UK, 1895. [Google Scholar]
- Hesselman, H. Nagra iakttagelser öfver växternas spridning. Bot. Not. 1897, 1897, 97–112. [Google Scholar]
- Holmboe, J. Notizen über die endozische Samenverbreitung der Vögel. NYT Mag. Nat. 1900, 38, 303–320. [Google Scholar]
- Reid, C. The Origin of the British Flora; Dulau & Co.: London, UK, 1899. [Google Scholar]
- Cittadino, E. Nature as the Laboratory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Schimper, A.F.W. Pflanzen-Geographie auf Physiologischer Grundlage; Verlag von Gustav Fisher: Jena, Germany, 1898. [Google Scholar]
- Warming, E. Oecology of Plants; The Clarendon Press: Oxford, UK, 1909. [Google Scholar]
- Schenck, H. Die Biologie der Wassergewaechse; Cohen & Sohn: Bonn, Germany, 1886; 162p. [Google Scholar]
- Soons, M.B.; van der Vlugt, C.; van Lith, B.; Heil, G.W.; Klaassen, M. Small seed size increases the potential for dispersal of wetland plants by ducks. J. Ecol. 2008, 96, 619–627. [Google Scholar] [CrossRef]
- Woodhead, T.W. The Study of Plants: An Introduction to Botany and Plant Ecology; Clarendon Press: Oxford, UK, 1915. [Google Scholar]
- Larsen, E.J. An Empire of Ice; Yale University Press: New Haven, CT, USA, 2012. [Google Scholar]
- Arber, A. Water Plants: A Study of Aquatic Angiosperms; Cambridge University Press: Cambridge, UK, 1920. [Google Scholar]
- Duval-Jouve, J. Lettre sur la decouverte du Coleanthus suhtilis en Bretagne. Bull. Soc. Bot. Fr. T 1864, 11, 265–267. [Google Scholar] [CrossRef]
- Weddell, H.A. Observations sur une espece nouvelle du genre Wolffia (Lemnacees). Ann. Sci. Nat. Ser. III. Bot. T 1849, 12, 155–173. [Google Scholar]
- Maximilian, Prince of Wied-Neuwied. Travels in Brazil in the Years 1815, 1816, 1817; Henry Colburn & Co.: London, UK, 1820. [Google Scholar]
- Silva, G.G.; Green, A.J.; Weber, V.; Hoffmann, P.; Lovas-Kiss, A.; Stenert, C.; Maltchik, L. Whole angiosperms Wolffia columbiana disperse by gut passage through wildfowl in South America. Biol. Lett. 2018, 14, 20180703. [Google Scholar] [CrossRef]
- Coughlan, N.E.; Cuthbert, R.N.; Kelly, T.C.; Jansen, M.A.K. Parched plants: Survival and viability of invasive aquatic macrophytes following exposure to various desiccation regimes. Aquat. Bot. 2018, 150, 9–15. [Google Scholar] [CrossRef]
- Matthews, J.R. Origin and Distribution of the British Flora; Hutchinsons University Library: London, UK, 1955. [Google Scholar]
- Howe, H.F.; Smallwood, J. Ecology of Seed Dispersal. Annu. Rev. Ecol. Syst. 1982, 13, 201–228. [Google Scholar] [CrossRef]
- Carlquist, S.; Pauly, Q. Experimental studies on epizoochorous dispersal in Californian plants. Aliso 1986, 11, 167–177. [Google Scholar] [CrossRef]
- Proctor, V.W. Dispersal of desmids by waterbirds. Phycologia 1966, 5, 227–232. [Google Scholar] [CrossRef]
- Schlichting, H.E.J. The role of waterfowl in the dispersal of algae. Trans. Am. Microsc. Soc. 1960, 79, 160–166. [Google Scholar] [CrossRef]
- Proctor, V.W. Dispersal of Riella spores by waterfowl. Bryologist 1961, 64, 58–61. [Google Scholar] [CrossRef]
- Proctor, V.W. Viability of Chara oospores taken from migratory water birds. Ecology 1962, 43, 528–529. [Google Scholar] [CrossRef]
- Proctor, V.W.; Malone, C.R. Further evidence of the passive dispersal of small aquatic organisms via the intestinal tract of birds. Ecology 1965, 46, 728–729. [Google Scholar] [CrossRef]
- Proctor, V.W.; Malone, C.R.; deVlaming, V.L. Dispersal of aquatic organisms: Viability of disseminules recovered from the intestinal tract of captive Killdeer. Ecology 1967, 48, 672–676. [Google Scholar] [CrossRef]
- de Vlaming, V.; Proctor, V.W. Dispersal of aquatic organisms: Viability of seeds recovered from the droppings of captive killdeer and mallard ducks. Am. J. Bot. 1968, 55, 20–26. [Google Scholar] [CrossRef]
- Atkinson, K.M. Dispersal of phytoplankton by ducks. Wildfowl 1970, 21, 110–111. [Google Scholar]
- Atkinson, K.M. Birds as transporters of algae. Br. Phycol. J. 1972, 7, 319–321. [Google Scholar] [CrossRef]
- Atkinson, K.M. Experiments in dispersal of phytoplankton by ducks. Br. Phycol. J. 1980, 15, 49–58. [Google Scholar] [CrossRef]
- Figuerola, J.; Green, A.J.; Santamaria, L. Passive internal transport of aquatic organisms by waterfowl in Donana, south-west Spain. Glob. Ecol. Biogeogr. 2003, 12, 427–436. [Google Scholar] [CrossRef]
- Pollux, B.J.A.; Santamaria, L.; Ouborg, N.J. Differences in endozoochorous dispersal between aquatic plant species, with reference to plant population persistence in rivers. Freshw. Biol. 2005, 50, 232–242. [Google Scholar] [CrossRef]
- García-Álvarez, A.; van Leeuwen, C.H.A.; Luque, C.J.; Hussner, A.; Vélez-Martín, A.; Pérez-Vázquez, A.; Green, A.J.; Castellanos, E.M. Internal transport of alien and native plants by geese and ducks—An experimental study. Freshw. Biol. 2015, 60, 1316–1329. [Google Scholar] [CrossRef]
- Shimada, T. Ducks foraging on swan faeces. Wildfowl 2012, 62, 224–227. [Google Scholar]
- Proctor, V.W. Historical Biogeography of Chara (Charophyta)—An Appraisal of the Braun-Wood Classification Plus a Falsifiable Alternative for Future Consideration. J. Phycol. 1980, 16, 218–233. [Google Scholar] [CrossRef]
- Wilkinson, D.M. Plant colonisation: Are wind dispersed seeds really dispersed by birds at larger spatial and temporal scales? J. Biogeogr. 1997, 24, 61–65. [Google Scholar] [CrossRef]
- Drees, T.H.; Shea, K. Climate warming increases insect-driven seed removal of two elaiosome-bearing invasive thistle species. Ecology 2024, 105, e4223. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.H. Patterns in ecology. Oikos 1996, 75, 145–147. [Google Scholar] [CrossRef]
- Raulings, E.; Morris, K.; Thompson, R.; Mac Nally, R. Do birds of a feather disperse plants together? Freshw. Biol. 2011, 56, 1390–1402. [Google Scholar] [CrossRef]
- Lovas-Kiss, A.; Vizi, B.; Vincze, O.; Molnár, V.A.; Green, A.J. Endozoochory of aquatic ferns and angiosperms by mallards in central Europe. J. Ecol. 2018, 106, 1714–1723. [Google Scholar] [CrossRef]
- Paolacci, S.; Jansen, M.A.K.; Stejskal, V.; Kelly, T.C.; Coughlan, N.E. Metabolically active angiosperms survive passage through the digestive tract of a large-bodied waterbird. R. Soc. Open Sci. 2023, 10, 230090. [Google Scholar] [CrossRef]
- Kulbaba, M.W.; Tardif, J.C.; Staniforth, R.J. Morphological and Ecological Relationships between Burrs and Furs. Am. Midl. Nat. 2009, 161, 380–391. [Google Scholar] [CrossRef]
- Muchhala, N.; Thomson, J.D. Fur versus feathers: Pollen delivery by bats and hummingbirds and consequences for pollen production. Am. Nat. 2010, 175, 717–726. [Google Scholar] [CrossRef]
- Aoyama, Y.; Kawakami, K.; Chiba, S. Seabirds as adhesive seed dispersers of alien and native plants in the oceanic Ogasawara Islands, Japan. Biodivers. Conserv. 2012, 21, 2787–2801. [Google Scholar] [CrossRef]
- Czarnecka, J.; Kitowski, I. The white stork as an engineering species and seed dispersal vector when nesting in Poland. Ann. Bot. Fenn. 2013, 50, 1–12. [Google Scholar] [CrossRef]
- Espinar, J.L.; Garcia, L.V.; Figuerola, J.; Green, A.J.; Clemente, L. Effects of salinity and ingestion by ducks on germination patterns of Juncus subulatus seeds. J. Arid. Environ. 2006, 66, 376–383. [Google Scholar] [CrossRef]
- van Leeuwen, C.H.A.; Soons, M.B.; Vandionant, L.G.V.T.I.; Green, A.J.; Bakker, E.S. Seed dispersal by waterbirds: A mechanistic understanding by simulating avian digestion. Ecography 2023, 2023, e06470. [Google Scholar] [CrossRef]
- Sánchez-García, R.; Green, A.J.; Tomasson, L.; Hortas, F.; Ortiz, M.A. Invasive buttonweed Cotula coronopifolia (Asteraceae) is halotolerant and has high potential for dispersal by endozoochory. Plants 2024, 13, 2219. [Google Scholar] [CrossRef]
- Espinar, J.L.; Figuerola, J.; Green, A.J. Long term impacts of endozoochory and salinity on germination of wetland plants, after entering simulated seed banks. Front. Plant Sci. 2023, 14, e1275622. [Google Scholar] [CrossRef]
- Martín-Vélez, V.; van Leeuwen, C.H.A.; Sánchez, M.I.; Hortas, F.; Shamoun-Baranes, J.; Thaxter, C.B.; Lens, L.; Camphuysen, C.J.; Green, A.J. Spatial patterns of weed dispersal by wintering gulls within and beyond an agricultural landscape. J. Ecol. 2021, 109, 1947–1958. [Google Scholar] [CrossRef]
- Navarro-Ramos, M.J.; van Leeuwen, C.H.A.; Olsson, C.; Elmberg, J.; Månsson, J.; Martín-Vélez, V.; Lovas-Kiss, A.; Green, A.J. Seed dispersal between aquatic and agricultural habitats by greylag geese. Agric. Ecosyst. Environ. 2024, 359, 108741. [Google Scholar] [CrossRef]
- Viana, D.S.; Santamaria, L.; Figuerola, J. Migratory Birds as Global Dispersal Vectors. Trends Ecol. Evol. 2016, 31, 763–775. [Google Scholar] [CrossRef]
- Janzen, D.H. Dispersal of Small Seeds by Big Herbivores—Foliage Is the Fruit. Am. Nat. 1984, 123, 338–353. [Google Scholar] [CrossRef]
- Costea, M.; El Miari, H.; Laczkó, L.; Fekete, R.; Molnár, V.A.; Ádám Lovas-Kiss, A.; Green, A.J. The Effect of Gut Passage by Waterbirds on the Seed Coat and Pericarp of Diaspores Lacking “External Flesh”: Evidence for Widespread Adaptation to Endozoochory in Angiosperms. PLoS ONE 2019, 14, e0226551. [Google Scholar] [CrossRef] [PubMed]
- Orłowski, G.; Czarnecka, J.; Goławski, A.; Karg, J.; Panek, M. The effectiveness of endozoochory in three avian seed predators. J. Ornithol. 2016, 157, 61–73. [Google Scholar] [CrossRef]
- Green, A.J.; Elmberg, J.; Lovas-Kiss, Á. Beyond Scatter-Hoarding and Frugivory: European Corvids as Overlooked Vectors for a Broad Range of Plants. Front. Ecol. Evol. 2019, 7, 133. [Google Scholar] [CrossRef]
- Blanco, G.; Bravo, C.; Pacifico, E.C.; Chamorro, D.; Speziale, K.L.; Lambertucci, S.A.; Hiraldo, F.; Tella, J.L. Internal seed dispersal by parrots: An overview of a neglected mutualism. PeerJ 2016, 4, e1688. [Google Scholar] [CrossRef] [PubMed]
- Blanco, G.; Chamorro, D.; Lovas-Kiss, Á.; Bravo, C. Seed dispersal by the cosmopolitan house sparrow widens the spectrum of unexpected endozoochory by granivore birds. Ecol. Evol. 2024, 14, e11556. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Castro-Díez, P. Tolerance to air exposure of the New Zealand mudsnail Potamopyrgus antipodarum (Hydrobiidae, Mollusca) as a prerequisite to survival in overland translocations. NeoBiota 2012, 14, 67–74. [Google Scholar] [CrossRef]
- Sanchez, M.I.; Hortas, F.; Figuerola, J.; Green, A.J. Comparing the potential for dispersal via waterbirds of a native and an invasive brine shrimp. Freshw. Biol. 2012, 57, 1896–1903. [Google Scholar] [CrossRef]
- Carbonell, J.A.; Céspedes, V.; Green, A.J. Is the Spread of the Alien Water Boatman Trichocorixa verticalis verticalis (Hemiptera, Corixidae) Aided by Zoochory and Drought Resistant Eggs? Freshw. Biol. 2021, 66, 409–420. [Google Scholar] [CrossRef]
- Coughlan, N.E.; Kelly, T.C.; Davenport, J.; Jansen, M.A.K. Up, up and away: Bird-mediated ectozoochorous dispersal between aquatic environments. Freshw. Biol. 2017, 62, 631–648. [Google Scholar] [CrossRef]
- Dosil Hiriart, F.D.; Katinas, L.; Segura, L.N. The fruit dispersion of Adenostemma brasilianum (Asteraceae) by birds: An experimental approach. N. Z. J. Bot. 2023, 1–16. [Google Scholar] [CrossRef]
- Allen, J.A. Alfred Russel Wallace (1823–1913). Biol. J. Linn. Soc. 2013, 108, 1–2. [Google Scholar] [CrossRef]
- Perez-Harguindeguy, N.; Diaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Vargas, P.; Heleno, R.; Costa, J.M. EuDiS—A comprehensive database of the seed dispersal syndromes of the European flora. Biodivers. Data J. 2023, 11, e104079. [Google Scholar] [CrossRef]
- González-Varo, J.P.; Rumeu, B.; Bracho-Estévanez, C.A.; Acevedo-Limón, L.; Baltzinger, C.; Lovas-Kiss, Á.; Green, A.J. Overlooked seed-dispersal modes and underestimated distances. Glob. Ecol. Biogeogr. 2024, 33, e13835. [Google Scholar] [CrossRef]
- Schenk, J.J.; Saunders, K. Inferring long-distance dispersal modes in American amphitropically disjunct species through adaptive dispersal structures. Am. J. Bot. 2017, 104, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Renner, S. Plant Dispersal across the Tropical Atlantic by Wind and Sea Currents. Int. J. Plant Sci. 2004, 165, S23–S33. [Google Scholar] [CrossRef]
- Ozinga, W.A.; Romermann, C.; Bekker, R.M.; Prinzing, A.; Tamis, W.L.M.; Schaminee, J.H.J.; Hennekens, S.M.; Thompson, K.; Poschlod, P.; Kleyer, M.; et al. Dispersal failure contributes to plant losses in NW Europe. Ecol. Lett. 2009, 12, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Hintze, C.; Heydel, F.; Hoppe, C.; Cunze, S.; König, A.; Tackenberg, O. D3: The Dispersal and Diaspore Database–Baseline data and statistics on seed dispersal. Perspect. Plant Ecol. Evol. Syst. 2013, 15, 180–192. [Google Scholar] [CrossRef]
- Brochet, A.L.; Guillemain, M.; Fritz, H.; Gauthier-Clerc, M.; Green, A.J. The role of migratory ducks in the long-distance dispersal of native plants and the spread of exotic plants in Europe. Ecography 2009, 32, 919–928. [Google Scholar] [CrossRef]
- Navarro-Ramos, M.J.; Green, A.J.; de Vries, R.; van Leeuwen, C.H.A. Float, fly, then sink: Wetland plant seed buoyancy is lost after internal dispersal by waterbirds. Hydrobiologia 2024, 851, 4033–4048. [Google Scholar] [CrossRef]
- Green, A.J.; Elmberg, J. Ecosystem services provided by waterbirds. Biol. Rev. 2014, 89, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Boedeltje, G.; Bakker, J.P.; Bekker, R.M.; Van Groenendael, J.M.; Soesbergen, M. Plant dispersal in a lowland stream in relation to occurrence and three specific life-history traits of the species in the species pool. J. Ecol. 2003, 91, 855–866. [Google Scholar] [CrossRef]
- Nilsson, C.; Brown, R.L.; Jansson, R.; Merritt, D.M. The role of hydrochory in structuring riparian and wetland vegetation. Biol. Rev. 2010, 85, 837–858. [Google Scholar] [CrossRef] [PubMed]
- Tóth, P.; Green, A.J.; Wilkinson, D.M.; Brides, K.; Lovas-Kiss, Á. Plant traits associated with the seed dispersal of ducks and geese in urban and natural habitats. Ecol. Evol. 2023, 13, e10677. [Google Scholar] [CrossRef]
- Vargas, P.; Heleno, R.; Traveset, A.; Nogales, M. Colonization of the Galápagos Islands by plants with no specific syndromes for long-distance dispersal: A new perspective. Ecography 2012, 35, 33–43. [Google Scholar] [CrossRef]
- Thomson, F.J.; Moles, A.T.; Auld, T.D.; Ramp, D.; Ren, S.Q.; Kingsford, R.T. Chasing the unknown: Predicting seed dispersal mechanisms from plant traits. J. Ecol. 2010, 98, 1310–1318. [Google Scholar] [CrossRef]
- Fridley, J.D.; Liu, X.; Pérez-Harguindeguy, N.; Chapin, F.S., III; Crawley, M.; De Deyn, G.; Díaz, S.; Grace, J.B.; Grubb, P.; Harrison, S.; et al. Perspectives on the scientific legacy of J. Philip Grime. J. Ecol. 2023, 111, 1814–1831. [Google Scholar] [CrossRef]
- Grime, J.P.; Hodgson, J.G.; Hunt, R. Comparative Plant Ecology: A Functional Approach to Common British Species, 2nd ed.; Castlepoint Press: Dalbeattie, UK, 2007. [Google Scholar]
- Sumoski, S.E.; Orth, R.J. Biotic dispersal in eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 2012, 471, 1–10. [Google Scholar] [CrossRef]
- Nagy, S.; Breiner, F.T.; Anand, M.; Butchart, S.H.M.; Flörke, M.; FluetChouinard, E.; Guisan, A.; Hilarides, L.; Jones, V.R.; Kalyakin, M.; et al. Climate change exposure of waterbird species in the African-Eurasian flyways. Bird Conserv. Int. 2021, 32, 1–26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Green, A.J.; Wilkinson, D.M. Darwin’s Digestion Myth: Historical and Modern Perspectives on Our Understanding of Seed Dispersal by Waterbirds. Seeds 2024, 3, 505-527. https://doi.org/10.3390/seeds3040034
Green AJ, Wilkinson DM. Darwin’s Digestion Myth: Historical and Modern Perspectives on Our Understanding of Seed Dispersal by Waterbirds. Seeds. 2024; 3(4):505-527. https://doi.org/10.3390/seeds3040034
Chicago/Turabian StyleGreen, Andy J., and David M. Wilkinson. 2024. "Darwin’s Digestion Myth: Historical and Modern Perspectives on Our Understanding of Seed Dispersal by Waterbirds" Seeds 3, no. 4: 505-527. https://doi.org/10.3390/seeds3040034
APA StyleGreen, A. J., & Wilkinson, D. M. (2024). Darwin’s Digestion Myth: Historical and Modern Perspectives on Our Understanding of Seed Dispersal by Waterbirds. Seeds, 3(4), 505-527. https://doi.org/10.3390/seeds3040034