Prevalence of Seed-Borne Fungi on Soybean (Glycine max L. Merr.) Seeds Stored Under Medium-Term Cold Room Facilities: Implications for Genebanks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Materials
2.2. Measurement of Equilibrium Seed Moisture Content (Eqmc)
2.3. Seed Health Test
2.4. Identification of Fungi Isolates from Infested Soybean Seeds
2.5. Statistical Analysis
3. Results
3.1. Soybean Seed Moisture Content at Varying Seed Ages
3.2. Germination Percentage of Soybean Seeds at Varying Seed Ages and Seed Treatments
3.3. Fungal Incidence Among Soybean Seeds of Varying Seed Ages and Seed Treatments
3.4. Relationship Between Seed Age in Storage, Seed Moisture Content, and Fungal Incidence on Seed Germination Percentage
3.5. Fungi Isolated from the Soybean Seed Samples
3.6. Pathogenicity of the Isolated Fungi Species Associated with Soybean Seeds
4. Discussion
4.1. Seed Moisture Content Increased with Soybean Seed Age in Cold Room Storage
4.2. Fungi Survived in Fresh and Older Seeds in Cold Room Storage
4.3. Eqmc Impaired Seed Germination but with No Direct Link to Fungal Incidence
4.4. Fungi Isolates and Their Impact on Soybean Seed Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sequeros, T.; Ochieng, J.; Schreinemachers, P.; Binagwa, P.H.; Huelgas, Z.M.; Hapsari, R.T.; Juma, M.O.; Kangile, J.R.; Karimi, R.; Khaririyatun, N.; et al. Mungbean in Southeast Asia and East Africa: Varieties, practices, and constraints. Agric. Food Secur. 2021, 10, 2. [Google Scholar] [CrossRef]
- Chang, X.; Li, H.; Naeem, M.; Wu, X.; Yong, T.; Song, C.; Liu, T.; Chen, W.; Yang, W. Diversity of the seedborne fungi and pathogenicity of Fusarium species associated with intercropped soybean. Pathogens 2020, 9, 531. [Google Scholar] [CrossRef]
- Rupe, J.C.; Ferriss, R.S. Effects of pod moisture on soybean seed infection by Phomopsis sp. Phytopathology 1986, 76, 273–277. [Google Scholar] [CrossRef]
- Balducchi, A.J.; McGee, D.C. Environmental factors influencing infection of soybean seeds by Phomopsis and Diaporthe species during seed maturation. Plant Dis. 1987, 71, 209–212. [Google Scholar] [CrossRef]
- Liu, J.; Deng, J.; Zhang, K.; Wu, H.; Yang, C.; Zhang, X.; Du, J.; Shu, K.; Yang, W. Pod mildew on soybeans can mitigate the damage to the seed arising from field mold at harvest time. J. Agric. Food Chem. 2016, 64, 9135–9142. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.K.; Sinclair, J.B. (Eds.) Principles of Seed Pathology; CRC Press: Florida, FL, USA, 1996; ISBN 9780429152856. [Google Scholar]
- Hartman, G.L. Worldwide importance of soybean pathogens and pests. In Compendium of Soybean Diseases and Pests, 5th ed.; Hartman, G.L., Rupe, J.C., Sikora, E.J., Domier, L.L., Davis, J.A., Steffey, K.L., Eds.; The American Phytopathological Society: Northwood, OH, USA, 2015; pp. 4–5. ISBN 978-0-89054-475-4. [Google Scholar]
- Ellis, M.A.; Galvez, E.G.E. Seed pathology. In Bean Production Problems: Disease, Insect Soil and Climatic Constraints of Phaseolus Vulgaris; Howard, F., Gálvez, E., Guillermo, E., Eds.; Centro Internacional de Agricultura Tropical (CIAT): Cali, Colombia, 1980; pp. 301–314. ISBN 958-9183-04-2. [Google Scholar]
- Barros, G.; Zanon, M.A.; Abod, A.; Oviedo, M.; Ramirez, M.; Reynoso, M.; Torres, A.; Chulze, S. Natural deoxynivalenol occurrence and genotype and chemotype determination of a field population of the Fusarium graminearum complex associated with soybean in Argentina. Food Addit. Contam. 2012, 29, 293–303. [Google Scholar] [CrossRef]
- Garcia, D.; Barros, G.; Chulze, S.; Ramos, A.J.; Sanchis, V.; Marín, S. Impact of cycling temperatures on Fusarium verticillioides and Fusarium graminearum growth and mycotoxins production in soybean. J. Sci. Food Agric. 2012, 92, 2952–2959. [Google Scholar] [CrossRef]
- Petrović, K.; Riccioni, L.; Vidić, M.; Đorđević, V.; Balešević-Tubić, S.; Đukić, V.; Miladinov, Z. First report of Diaporthe novem, D. foeniculina, and D. Rudis associated with soybean seed decay in Serbia. Plant Dis. 2016, 100, 2324. [Google Scholar] [CrossRef]
- Li, S.; Hartman, G.L.; Boykin, D.L. Aggressiveness of Phomopsis longicolla and other Phomopsis spp. on soybean. Plant Dis. 2010, 94, 1035–1040. [Google Scholar] [CrossRef]
- Ellis, M.L.; Díaz Arias, M.M.; Leandro, L.F. First report of Fusarium armeniacum causing seed rot and root rot on soybean (Glycine max) in the United States. Plant Dis. 2013, 97, 1557–1562. [Google Scholar] [CrossRef]
- Alemu, K. Seed borne fungal pathogen associated with soybean (Glycine max L.) and their management in Jimma, Southwestern Ethiopia. J. Biol. Agric. Healthc. 2014, 4, 14–19. [Google Scholar] [CrossRef]
- Ahmed, O.; Balogun, O.S.; Fawole, O.B.; Fabiyi, O.A.; Hussein, A.T.; Kassoum, K.O. Seed-borne fungi of soybeans (Glycine max [L.] Merr) in the Guinea Savannah agroecology of Nigeria. J. Agric. Sci. 2016, 61, 57–68. [Google Scholar] [CrossRef]
- Dias, M.D.; Dias-Neto, J.J.; Santos, M.D.M.; Formento, A.N.; Bizerra, L.V.; Fonseca, M.E.N.; Boiteux, L.S.; Café-Filho, A.C. Current status of soybean anthracnose associated with Colletotrichum truncatum in Brazil and Argentina. Plants 2019, 8, 459. [Google Scholar] [CrossRef]
- Walcott, R.R.; McGee, D.C.; Misra, M.K. Detection of asymptomatic fungal infections of soybean seeds by ultrasound analysis. Plant Dis. 1998, 82, 584–589. [Google Scholar] [CrossRef]
- Li, S.; Rupe, J.; Chen, P.; Shannon, G.; Wrather, A.; Boykin, D. Evaluation of diverse soybean germplasm for resistance to Phomopsis seed decay. Plant Dis. 2015, 99, 1517–1525. [Google Scholar] [CrossRef]
- Naeem, M.; Li, H.; Yan, L.; Raza, M.A.; Gong, G.; Chen, H.; Yang, C.; Zhang, M.; Shang, J.; Liu, T.; et al. Characterization and pathogenicity of Fusarium species associated with soybean pods in maize/soybean strip intercropping. Pathogens 2019, 8, 245. [Google Scholar] [CrossRef]
- Broders, K.D.; Lipps, P.E.; Paul, P.A.; Dorrance, A.E. Evaluation of Fusarium graminearum associated with corn and soybean seed and seedling disease in Ohio. Plant Dis. 2007, 91, 1155–1160. [Google Scholar] [CrossRef]
- Pedrozo, R.; Little, C.R. Fusarium verticillioides inoculum potential influences soybean seed quality. Eur. J. Plant Pathol. 2017, 148, 749–754. [Google Scholar] [CrossRef]
- Díaz Arias, M.M.; Leandro, L.; Munkvold, G.P. Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybean. Phytopathology 2013, 103, 822–832. [Google Scholar] [CrossRef]
- Chang, K.F.; Hwang, S.F.; Conner, R.L.; Gossen, B.D. First report of Fusarium proliferatum causing root rot in soybean (Glycine max L.) in Canada. Crop Prot. 2015, 67, 52–58. [Google Scholar] [CrossRef]
- Chang, X.L.; Dai, H.; Wang, D.P.; Zhou, H.H.; He, W.Q.; Fu, Y.; Ibrahim, F.; Zhou, Y.; Gong, G.S.; Shang, J.; et al. Identification of Fusarium species associated with soybean root rot in Sichuan Province, China. Eur. J. Plant Pathol. 2018, 151, 563–577. [Google Scholar] [CrossRef]
- Altieri, M.A.; Funes-Monzote, F.R.; Petersen, P. Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agron. Sustain. Dev. 2012, 32, 1–13. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Rahman, A.; Mahmud, J.A.; Hossain, M.S.; Fujita, M. Soybean Production and Environmental Stresses. In Environmental Stresses in Soybean Production: Soybean Production; Elsevier Inc.: Amsterdam, The Netherlands, 2016; Volume 2. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Potapov, P.; Adusei, B.; Pickering, J.; Adami, M.; Lima, A.; Zalles, V.; Stehman, S.V.; Di Bella, C.M.; et al. Massive soybean expansion in South America since 2000 and implications for conservation. Nat. Sustain. 2021, 4, 784–792. [Google Scholar] [CrossRef]
- Belete, T.; Yadete, E. Effect of Mono Cropping on Soil Health and Fertility Management for Sustainable Agriculture Practices: A Review. J. Plant Sci. 2023, 11, 192–197. [Google Scholar] [CrossRef]
- Benitez-Alfonso, Y.; Soanes, B.K.; Zimba, S.; Sinanaj, B.; German, L.; Sharma, V.; Bohra, A.; Kolesnikova, A.; Dunn, J.A.; Martin, A.C.; et al. Enhancing climate change resilience in agricultural crops. Curr. Biol. 2023, 33, R1246–R1261. [Google Scholar] [CrossRef]
- Roth, M.G.; Webster, R.W.; Mueller, D.S.; Chilvers, M.I.; Faske, T.R.; Mathew, F.M.; Bradley, C.A.; Damicone, J.P.; Kabbage, M.; Smith, D.L. Integrated Management of Important Soybean Pathogens of the United States in Changing Climate. J. Integr. Pest Manag. 2021, 11, 17. [Google Scholar] [CrossRef]
- Timilsina, A.P.; Baigorria, G.A.; Wilhite, D.; Shulski, M.; Heeren, D.; Romero, C.; Fensterseifer, C.A. Soybean response under climatic scenarios with changed mean and variability under rainfed and irrigated conditions in major soybean-growing states of the USA. J. Agric. Sci. 2023, 161, 157–174. [Google Scholar] [CrossRef]
- Rajjou, L.; Debeaujon, I. Seed longevity: Survival and maintenance of high germination ability of dry seeds. Comptes Rendus Biol. 2008, 331, 796–805. [Google Scholar] [CrossRef]
- Rao, P.J.M.; Pallavi, M.; Bharathi, Y.; Priya, P.B.; Sujatha, P.; Prabhavathi, K. Insights into mechanisms of seed longevity in soybean: A review. Front. Plant Sci. 2023, 14, 1206318. [Google Scholar] [CrossRef]
- Naflath, T.V.; Rajendraprasad, S.; Ravikumar, R.L. Evaluation of diverse soybean genotypes for seed longevity and its association with seed coat colour. Sci. Rep. 2023, 13, 4313. [Google Scholar] [CrossRef]
- Salgotra, R.K.; Chauhan, B.S. Genetic Diversity, Conservation, and Utilization of Plant Genetic Resources. Genes 2023, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Salgotra, R.K.; Zargar, S.M. Rediscovery of Genetic and Genomic Resources for Future Food Security. In Rediscovery of Genetic and Genomic Resources for Future Food Security (Issue November 2020); Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Peres, S. Saving the gene pool for the future: Seed banks as archives. Stud. Hist. Philos. Sci. Part C: Stud. Hist. Philos. Biol. Biomed. Sci. 2016, 55, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Díez, M.J.; De la Rosa, L.; Martín, I.; Guasch, L.; Cartea, M.E.; Mallor, C.; Casals, J.; Simó, J.; Rivera, A.; Anastasio, G.; et al. Plant genebanks: Present situation and proposals for their improvement. The case of the Spanish network. Front. Plant Sci. 2018, 871, 1794. [Google Scholar] [CrossRef] [PubMed]
- Aubry, S. Genebanking plant genetic resources in the postgenomic era. Agric. Hum. Values 2023, 40, 961–971. [Google Scholar] [CrossRef]
- Chandra, S.; Talukdar, A.; Taak, Y.; Yadav, R.R.; Saini, M.; Sipani, N.S. Seed longevity studies in wild type, cultivated and inter-specific recombinant inbred lines (RILs) of soybean [Glycine max (L.) Merr.]. Genet. Resour. Crop Evol. 2022, 69, 399–409. [Google Scholar] [CrossRef]
- FAO. Genebank Standards for Plant Genetic Resources for Food and Agriculture, Rev. ed.; FAO: Rome, Italy, 2014; Available online: https://reliefweb.int/report/world/genebank-standards-plant-genetic-resources-food-and-agriculture (accessed on 4 May 2023).
- CGIAR. Manual of Seed Handling. 1994. Available online: https://cropgenebank.sgrp.cgiar.org/images/file/procedures/chapter_6_2seedstorage_genebankmanual8.pdf (accessed on 11 September 2024).
- Pirredda, M.; Fañanás-Pueyo, I.; Oñate-Sánchez, L.; Mira, S. Seed Longevity and Ageing: A Review on Physiological and Genetic Factors with an Emphasis on Hormonal Regulation. Plants 2023, 13, 41. [Google Scholar] [CrossRef]
- Coradi, P.C.; Lima, R.E.; Padia, C.L.; Alves, C.Z.; Teodoro, P.E.; da Silva Candido, A.C. Soybean seed storage: Packaging technologies and conditions of storage environments. J. Stored Prod. Res. 2020, 89, 101709. [Google Scholar] [CrossRef]
- Farhana, B.; Fajrina, N. Effect of Packages, Storage Conditions, and Periods on The Shelf Life of Mung Bean Seeds. IOP Conf. Ser. Earth Environ. Sci. 2022, 1024, 012027. [Google Scholar] [CrossRef]
- Schafleitner, R.; Lin, Y.; Dinssa, F.F.; N’Danikou, S.; Finkers, R.; Minja, R.; Abukutsa-Onyango, M.; Nyonje, W.A.; Lin, C.; Wu, T.; et al. The world vegetable center Amaranthus germplasm collection: Core collection development and evaluation of agronomic and nutritional traits. Crop Sci. 2022, 62, 1173–1187. [Google Scholar] [CrossRef]
- Ojiewo, C.O.; Swai, I.S.; Oluoch, M.O.; Silue, D.; Nono-Womdim, R.; Hanson, P.; Black, L.; Wang, T.C. Development and release oflate blight-resistant tomato varieties “Meru” and “Kiboko”. Int. J. Veg. Sci. 2010, 16, 134–147. [Google Scholar] [CrossRef]
- IBPGR. Design of Seed Storage Facilities for Genetic Conservation, Revised 1985 and 1990; International Board for Plant Genetic Resources: Rome, Italy, 1990. [Google Scholar]
- Hay, F.R.; Rezaei, S.; Buitink, J. Seed moisture isotherms, sorption models, and longevity. Front. Plant Sci. 2022, 13, 891913. [Google Scholar] [CrossRef]
- Earle, F.R.; Jones, Q. Analyses of seed samples from 113 plant families. Econ. Bot. 1962, 16, 221–250. [Google Scholar] [CrossRef]
- Rao, N.K.; Hanson, J.; Dulloo, M.E.; Ghosh, K.; Nowell, D.; Larinde, M. Manual of Seed Handling in Genebanks. In Handbooks for Genebanks No. 8; Bioversity International: Rome, Italy, 2006; ISBN 978-92-9043-740-6. [Google Scholar]
- ISTA. International Rules for Seed Testing: Chapter 7: Seed Health Testing; International Seed Testing Association: Bassersdorf, Switzerland, 2021. [Google Scholar] [CrossRef]
- Crous, P.W.; de Cock, A.W.A.M. Fungal Biodiversity; CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2009; ISBN 9789070351779/9070351773. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 4 May 2022).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Harrell, F., Jr. Hmisc: Harrell Miscellaneous, R Package Version 4.7-0. 2022. Available online: https://CRAN.R-project.org/package=Hmisc (accessed on 11 September 2022).
- Clerkx, E.J.; Blankestijn-De, V.H.; Ruys, G.J.; Groot, S.P.; Koornneef, M. Genetic differences in seed longevity of various Arabidopsis mutants. Phys. Plant 2004, 121, 448–461. [Google Scholar] [CrossRef]
- Tatipata, A. Effect of seed moisture content, packaging and storage period on mitochondria inner membrane of soybean seed. J. Agric. Technol. 2009, 5, 51–64. [Google Scholar]
- Tangney, R.; Merritt, D.J.; Fontaine, J.B.; Miller, B.P. Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds. J. Ecol. 2019, 107, 1093–1105. [Google Scholar] [CrossRef]
- Odjo, S.; Palacios-Rojas, N.; Burgueno, J.; Corrado, M.; Ortner, T.; Verhulst, N. Hermetic storage technologies preserve maize seed quality and minimize grain quality loss in smallholder farming systems in Mexico. J. Stored Prod. Res. 2022, 96, 101954. [Google Scholar] [CrossRef]
- Kameswara Rao, N.; Dulloo, M.E.; Engels, J.M. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Gen. Res. Crop Evol. 2017, 64, 1061–1074. [Google Scholar] [CrossRef]
- Groot, S.P.; de Groot, L.; Kodde, J.; van Treuren, R. Prolonging the longevity of ex situ conserved seeds by storage under anoxia. Plant Gen. Res. 2015, 13, 18–26. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Sun, J.; Meng, J.; Tao, J. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiol. Biochem. 2021, 158, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Mbofung, G.C.; Goggi, A.S.; Leandro, L.F.; Mullen, R.E. Effects of storage temperature and relative humidity on viability and vigor of treated soybean seeds. Crop Sci. 2013, 53, 1086–1095. [Google Scholar] [CrossRef]
- Davino, S.; Caruso, A.G.; Bertacca, S.; Barone, S.; Panno, S. Tomato brown rugose fruit virus: Seed transmission rate and efficacy of different seed disinfection treatments. Plants 2020, 9, 1615. [Google Scholar] [CrossRef]
- Sauer, D.B.; Burroughs, R. Disinfection of seed surfaces with sodium hypochlorite. Phytopathology 1986, 76, 745–749. [Google Scholar] [CrossRef]
- Martín, I.; Gálvez, L.; Guasch, L.; Palmero, D. Fungal Pathogens and Seed Storage in the Dry State. Plants 2022, 11, 3167. [Google Scholar] [CrossRef]
- Paul, C.; Filippidou, S.; Jamil, I.; Kooli, W.; House, G.L.; Estoppey, A.; Hayoz, M.; Junier, T.; Palmieri, F.; Wunderlin, T.; et al. Bacterial spores, from ecology to biotechnology. Adv. Appl. Microbiol. 2019, 106, 79–111. [Google Scholar] [CrossRef] [PubMed]
- Dadlani, M.; Gupta, A.; Sinha, S.N.; Kavali, R. Seed storage and packaging. In Seed Science and Technology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 239–266. [Google Scholar]
- Orzali, L.; Allagui, M.B.; Chaves-Lopez, C.; Molina-Hernandez, J.B.; Moumni, M.; Mezzalama, M.; Romanazzi, G. Basic Substances and Potential Basic Substances: Key Compounds for a Sustainable Management of Seedborne Pathogens. Horticulturae 2023, 9, 1220. [Google Scholar] [CrossRef]
- Sastry, K.S. Methods of Combating Seed-Transmitted Virus Diseases. In Seed-Borne Plant Virus Diseases; Springer: New Delhi, India, 2013. [Google Scholar] [CrossRef]
- Kaiser, W.J.; Hannan, R.M. Incidence of seedborne Ascochyta lentis in lentil germplasm. Phytopathology 1986, 76, 355–360. [Google Scholar] [CrossRef]
- Hewett, P. Pathogen viability on seed in deep freeze storage. Seed Sci. Technol. 1987, 15, 73–77. [Google Scholar]
- Brodal, G.; Asdal, Å. Longevity of plant pathogens in dry agricultural seeds during 30 years of storage. Microorganisms 2021, 9, 2175. [Google Scholar] [CrossRef]
- Duan, C.X.; Wang, X.M.; Zhu, Z.D.; Wu, X.F. Testing of seedborne fungi in wheat germplasm conserved in the National Crop Genebank of China. Agric. Sci. China 2007, 6, 682–687. [Google Scholar] [CrossRef]
- Bramel, P. Key issues facing genebanks in preserving crop genetic diversity ex situ: Overview of the range of challenges. In Plant Genetic Resources: A Review of Current Research and Future Needs; Dulloo, M.E., Ed.; Burleigh Dodds Science: Cambridge, UK, 2021; pp. 139–153. ISBN 9781003180623. [Google Scholar]
- Jiang, S.; Chen, Y.; Han, S.; Lv, L.; Li, L. Next-generation sequencing applications for the study of fungal pathogens. Microorganisms 2022, 10, 1882. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Gupta, A.; Srivastava, S.; Devi, G.; Singh, V.K.; Goswami, S.K.; Gurjar, M.S.; Aggarwal, R. Diagnosis and Detection of Seed-Borne Fungal Phytopathogens. In Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management; Kumar, R., Gupta, A., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Silva Zatti, M.; Domingos Arantes, T.; Cordeiro Theodoro, R. Isothermal nucleic acid amplification techniques for detection and identification of pathogenic fungi: A review. Mycoses 2020, 63, 1006–1020. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.P.; Othman, S.; Lau, Y.L.; Radu, S.; Chee, H.Y. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. J. Appl. Microbiol. 2018, 124, 626–643. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, L.; Kuang, H.; Xiao, J.; Xu, C. Immunoassays for rapid mycotoxin detection: State of the art. Analyst 2020, 145, 7088–7102. [Google Scholar] [CrossRef]
- Yang, W.K.; Li, T.Q.; Wu, S.M.; Finnegan, P.M.; Gao, J.Y. Ex situ seed baiting to isolate germination-enhancing fungi for assisted colonization in Paphiopedilum spicerianum, a critically endangered orchid in China. Glob. Ecol. Conserv. 2020, 23, 11–47. [Google Scholar] [CrossRef]
- Ghosh, T.A.; Biswas, M.K.; Guin, C.H.; Roy, P.R.; Aikat, K.A.A. A review on seed borne mycoflora associated with different cereal crop seeds and their management. Plant Cell Biotechnol. Mol. Biol. 2018, 19, 107–117. [Google Scholar]
- Mao, W.; Lumsden, R.D.; Lewis, J.A.; Hebbar, P.K. Seed treatment using pre-infiltration and biocontrol agents to reduce damping-off of corn caused by species of Pythium and Fusarium. Plant Dis. 1998, 82, 294–299. [Google Scholar] [CrossRef]
- Ramdan, E.P.; Perkasa, A.Y.; Azmi, T.K.K.; Kurniasih, R.; Kanny, P.I.; Asnur, P. Effects of physical and chemical treatments on seed germination and soybean seed-borne fungi. IOP Conf. Ser. Earth Environ. Sci. 2021, 883, 012022. [Google Scholar] [CrossRef]
- Hurdeal, V.G.; Gentekaki, E.; Lee, H.B.; Jeewon, R.; Hyde, K.D.; Tipbromma, S.; Mortimer, P.E.; Xu, J. Mucoralean fungi in Thailand: Novel species of Absidia from tropical forest soil. Cryptogam. Mycol. 2021, 42, 39–61. [Google Scholar] [CrossRef]
- Ladaniya, M. Postharvest disease management with fungicides. In Citrus Fruit; Elsevier: Amsterdam, The Netherlands, 2023; pp. 563–594. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780323993067000050 (accessed on 11 September 2024).
- Thrane, U. Fusarium. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 76–81. [Google Scholar] [CrossRef]
- Burmeister, H.; Hesseltine, C. Biological assays for two mycotoxins produced by Fusarium tricinctum. Appl. Microbiol. 1970, 20, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Hasan, H.A.H. Phytotoxicity of pathogenic fungi and their mycotoxins to cereal seedling viability. Mycopathologia 1999, 148, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Tylkowska, K.; Grabarkiewicz-Szczesna, J.; Iwanowska, H. Production of toxins by Alternaria alternata and A. radicina and their effects on germination of carrot seeds. Seed Sci. Technol. 2003, 31, 309–316. [Google Scholar] [CrossRef]
- Meng, Y.; Hao, J.; Mayfield, D.; Luo, L.; Munkvold, G.P.; Li, J. Roles of genotype-determined mycotoxins in maize seedling blight caused by Fusarium graminearum. Plant Dis. 2017, 101, 1103–1112. [Google Scholar] [CrossRef]
- Neergaard, P. (Ed.) Seed Pathology Vols. 1 and 2; The MacMillan Press: London, UK, 1977; ISBN 0333192737/9780333192733. [Google Scholar]
- Hoekstra, F.A. Pollen and spores: Desiccation tolerance in pollen and the spores of lower plants and fungi. In Desiccation and Survival in Plants: Drying Without Dying; Pritchard, H.W., Black, M., Eds.; CABI Publishing: Wallington, UK, 2002; pp. 185–205. ISBN 9780851995342. [Google Scholar]
- Rodríguez, M.; Martín, I.; Guerrero, M.; Palmero, D. Microbiótica Fúngica y Viabilidad de Semillas de Judía, Sometidas a Diferentes Tratamientos de Desecación; Actas Asociación Española de Leguminosas: Pontevedra, Spain, 2012; pp. 259–262. [Google Scholar]
SN | Accessions | Origin | Acquisition Year | Regeneration Year | Seed Age (Years) |
---|---|---|---|---|---|
1 | TZA 3829 | Tanzania | 2014 | 2015 | 7 |
2 | TZA 3826 | Tanzania | 2014 | 2015 | 7 |
3 | TZA 448 | Tanzania | 2014 | 2015 | 7 |
4 | AGS 329 | Taiwan | 2013 | 2016 | 6 |
5 | AGS 382 | Taiwan | 2013 | 2016 | 6 |
6 | AGS 423 | Taiwan | 2013 | 2016 | 6 |
7 | AGS 430 | Taiwan | 2013 | 2016 | 6 |
8 | AGS 432 | Taiwan | 2013 | 2016 | 6 |
9 | AGS 437 | Taiwan | 2013 | 2016 | 6 |
10 | AGS 440 | Taiwan | 2013 | 2016 | 6 |
11 | AGS 456 | Taiwan | 2013 | 2016 | 6 |
12 | AGS 457 | Taiwan | 2013 | 2016 | 6 |
13 | AGS 458 | Taiwan | 2013 | 2016 | 6 |
14 | AGS 459 | Taiwan | 2013 | 2016 | 6 |
15 | AGS 460 | Taiwan | 2013 | 2016 | 6 |
16 | AGS 461 | Taiwan | 2013 | 2016 | 6 |
17 | TGM 1203 | Nigeria | 2015 | 2016 | 6 |
18 | TGM 1257 | Nigeria | 2015 | 2016 | 6 |
19 | TGM 30 | Nigeria | 2015 | 2017 | 5 |
20 | AGS GS 84051-32-1 | Taiwan | 2013 | 2017 | 5 |
21 | AGS 129 | Taiwan | 2013 | 2017 | 5 |
22 | AGS 327 | Taiwan | 2013 | 2017 | 5 |
23 | AGS 133 | Taiwan | 2013 | 2017 | 5 |
24 | TGM 722 | Nigeria | 2015 | 2017 | 5 |
SN | Fungi Isolate | Number of Observations of Fungi Species from Samples | Isolation Frequency (%) | Macroscopic Features | Microscopic Features |
---|---|---|---|---|---|
1 | Absidia glauca | 2 | 1.3 | Whitish colonies at first, then slate-olive after a week | Sporangiophores solitary, non-septate hyphae |
2 | Aspergillus niger | 75 | 50.0 | Black and powdery-like colonies | Conidiophores smooth-walled and non-septate |
3 | Fusarium sp. | 3 | 2.0 | Yellow pink creamy colonies | Cylindrical to ovoid conidia, curved septate conidiophores |
4 | Mucor hiemalis | 8 | 5.3 | Creamy-yellow colonies | Round, conidia non-septate |
5 | Pestalotiopsis versicolor | 1 | 0.7 | Brown colonies | Narrow fusiform conidia, hyaline apical appendages |
6 | Sordaria macrospora | 21 | 14.0 | White with abundant aerial mycelium | Hyphae hyaline, thin-walled, septate, irregularly branched |
7 | Unidentified fungi spp. | 40 | 26.7 | - | - |
Total | 150 | 100.0 |
Isolate | Disease Severity Index (DSI) (n = 12) | Seed Germination Percentage (GP) (n = 12) |
---|---|---|
Sordaria macrospora | 75.0 ± 0.0 a | 0.0 ± 0.0 b |
Mucor hiemalis | 71.7 ± 2.2 ab | 13.3 ± 8.8 ab |
Aspergillus niger | 70.8 ± 1.7 ab | 16.7 ± 6.7 ab |
Fusarium spp. | 68.3 ± 0.8 b | 26.7 ± 3.3 a |
p-value | 0.0683 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shango, A.J.; N’Danikou, S.; Ramadhani, S.; Sumaye, S.; Nickas, J.; Daud, M.L. Prevalence of Seed-Borne Fungi on Soybean (Glycine max L. Merr.) Seeds Stored Under Medium-Term Cold Room Facilities: Implications for Genebanks. Seeds 2024, 3, 589-607. https://doi.org/10.3390/seeds3040040
Shango AJ, N’Danikou S, Ramadhani S, Sumaye S, Nickas J, Daud ML. Prevalence of Seed-Borne Fungi on Soybean (Glycine max L. Merr.) Seeds Stored Under Medium-Term Cold Room Facilities: Implications for Genebanks. Seeds. 2024; 3(4):589-607. https://doi.org/10.3390/seeds3040040
Chicago/Turabian StyleShango, Abdul J, Sognigbé N’Danikou, Shebati Ramadhani, Saphina Sumaye, Jonas Nickas, and Michael L Daud. 2024. "Prevalence of Seed-Borne Fungi on Soybean (Glycine max L. Merr.) Seeds Stored Under Medium-Term Cold Room Facilities: Implications for Genebanks" Seeds 3, no. 4: 589-607. https://doi.org/10.3390/seeds3040040
APA StyleShango, A. J., N’Danikou, S., Ramadhani, S., Sumaye, S., Nickas, J., & Daud, M. L. (2024). Prevalence of Seed-Borne Fungi on Soybean (Glycine max L. Merr.) Seeds Stored Under Medium-Term Cold Room Facilities: Implications for Genebanks. Seeds, 3(4), 589-607. https://doi.org/10.3390/seeds3040040