Scarification with a Low Concentration of Acid Facilitates Water Acquisition and Minimizes Cold Stratification Duration, Improving the Seed Germination of Canadian Buffaloberry (Shepherdia canadensis (L.) Nutt.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Collection and Seed Extraction
2.2. Experiment Design
2.3. Seed Treatments
2.4. Visible Germination Test
2.5. Water Acquisition Tests
2.6. Data Analysis
- Germination rate: it represents the proportion of seeds that successfully germinated out of the total number of seeds tested. It is expressed as follows:
- 2.
- Mean gtermination ime (MGT): MGT represents the average time required for seeds to germinate and was calculated using the following formula:
- 3.
- Synchronization index (SYN): SYN quantifies the degree of synchronization in germination timing and was calculated using the following formula:
3. Results
3.1. Visible Germination Test
3.2. Mean Germination Time (MGT)
3.3. Synchronization Index (SYN)
3.4. Water Acquisition Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rhoades, C.; Binkley, D.; Oskarsson, H.; Stottlemyer, R. Soil Nitrogen Accretion along a Floodplain Terrace Chronosequence in Northwest Alaska: Influence of the Nitrogen-Fixing Shrub Shepherdia canadensis. Écoscience 2008, 15, 223–230. [Google Scholar] [CrossRef]
- Beddes, T.; Kratsch, H.A. Seed Germination of Roundleaf Buffaloberry (Shepherdia rotundifolia) and Silver Buffaloberry (Shepherdia argentea) in Three Substrates. J. Environ. Hortic. 2009, 27, 129–133. [Google Scholar] [CrossRef]
- Walkup, Crystal J. 1991. Shepherdia canadensis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available online: https://www.fs.usda.gov/database/feis/plants/shrub/shecan/all.html (accessed on 26 December 2024).
- Smreciu, A.; Gould, K.; Wood, S. Boreal Plant Species for Reclamation of Athabasca Oil Sands Disturbances—Updated December 2014; Oil Sands Research and Information Network, University of Alberta, School of Energy and the Environment: Edmonton, Alberta, 2013. [Google Scholar]
- Turner, N.J. New Plants, New Resources, New Knowledge: Early Introductions of Exotic Plants to Indigenous Territories in Northwestern North America. Plants 2023, 12, 3087. [Google Scholar] [CrossRef] [PubMed]
- Favorite, J. Plant Guide: Buffaloberry Shepherdia canadensis (L.) Nutt.; USDA NRCS National Plant Data Center: Baton Rouge, LA, USA, 2002. [Google Scholar]
- Braid, A.C.R.; Manzer, D.; Nielsen, S.E. Wildlife Habitat Enhancements for Grizzly Bears: Survival Rates of Planted Fruiting Shrubs in Forest Harvests. Forest Ecol. Manag. 2016, 369, 144–154. [Google Scholar] [CrossRef]
- Denny, C.K.; Stenhouse, G.B.; Nielsen, S.E. Scales of Selection and Perception: Landscape Heterogeneity of an Important Food Resource Influences Habitat Use by a Large Omnivore. Wildlife Biol. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Oil Sands Research and Information Network. Future of Shrubs in Oil Sands Reclamation Workshop. Available online: https://era.library.ualberta.ca/items/8c841fd1-50ba-4579-a173-6e55f2b14ab6 (accessed on 12 December 2024).
- Balshor, B.J.; Garrambone, M.S.; Austin, P.; Balazs, K.R.; Weihe, C.; Martiny, J.B.H.; Huxman, T.E.; McCollum, J.R.; Kimball, S. The Effect of Soil Inoculants on Seed Germination of Native and Invasive Species. Botany 2016, 95, 469–480. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: Oxford, UK, 2014. [Google Scholar]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Environmental Regulation of Dormancy and Germination. In Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H., Eds.; Springer: New York, NY, USA, 2013; pp. 299–339. ISBN 978-1-4614-4693-4. [Google Scholar]
- Wada, S.; Reed, B.M. Standardizing Germination Protocols for Diverse Raspberry and Blackberry Species. Scientia Hortic. 2011, 132, 42–49. [Google Scholar] [CrossRef]
- Rosner, L.S.; Harrington, J.T. Optimizing Acid Scarification and Stratification Combinations for Russet Buffaloberry Seeds. NPJ 2003, 4, 81–86. [Google Scholar] [CrossRef]
- Heit, C.E. Propagation from Seed. Part 22: Testing and Growing Western Desert and Mountain Shrub Species. Am. Nurserym. 1971, 133, 1010–127689. [Google Scholar]
- Yang, P.; Li, X.; Wang, X.; Chen, H.; Chen, F.; Shen, S. Proteomic Analysis of Rice (Oryza sativa) Seeds during Germination. Proteomics 2007, 7, 3358–3368. [Google Scholar] [CrossRef]
- Bewley, J.D.; Black, M. Storage, Imbibition, and Germination. In Seeds: Physiology of Development and Germination; Bewley, J.D., Black, M., Eds.; Springer: Boston, MA, USA, 1985; pp. 89–134. ISBN 978-1-4615-1747-4. [Google Scholar]
- Bewley, J.D.; Bradford, K.; Hilhorst, H.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-4692-7. [Google Scholar]
- Pereira, M.D.; dos Santos Dias, D.C.F.; dos Santos Dias, L.A.; Araújo, E.F. Hydration of Carrot Seeds in Relation to Osmotic Potential of Solution and Conditioning Method. Rev. Bras. Sementes 2007, 29, 144–150. [Google Scholar] [CrossRef]
- Kumar, M.; Sarvade, S.; Kumar, R.; Kumar, A. Pre-Sowing Treatments on Seeds of Forest Tree Species to Overcome the Germination Problems. Asian J. Environ. Ecol. 2024, 23, 1–18. [Google Scholar] [CrossRef]
- Pipinis, E.; Milios, E.; Aslanidou, M.; Mavrokordopoulou, O.; Efthymiou, E.; Smiris, P. Effects of Sulphuric Acid Scarification, Cold Stratification, and Plant Growth Regulators on the Germination of Rhus coriaria L. Seeds. J. Environ. Prot. Ecol. 2017, 18, 544–552. [Google Scholar]
- Zemetra, R.S.; Havstad, C.; Cuany, R.L. Reducing Seed Dormancy in Indian Ricegrass (Oryzopsis hymenoides) Revegetation, Western United States and Canada, Forage Crop. Rangeland Ecol. Manag. 1983, 36, 239–241. [Google Scholar] [CrossRef]
- Long, S.; Xie, W.; Zhao, W.; Liu, D.; Wang, P.; Zhao, L. Effects of Acid and Aluminum Stress on Seed Germination and Physiological Characteristics of Seedling Growth in Sophora davidii. Plant Signal. Behav. 2024, 19, 2328891. [Google Scholar] [CrossRef]
- Bahrani, M.J.; Niknejad-Kazempour, H. Effect of Dormancy Breaking Treatments and Salinity on Seed Germination of Two Desert Shrubs. Arid Land Res. Manag. 2007, 21, 107–118. [Google Scholar] [CrossRef]
- Zhou, Z.-Q.; Bao, W.-K.; Wu, N. Dormancy and Germination in Rosa multibracteata Hemsl. & E. H. Wilson. Scientia Hortic. 2009, 119, 434–441. [Google Scholar] [CrossRef]
- Dashti, F.; Ghahremani-Majd, H.; Esna-Ashari, M. Overcoming Seed Dormancy of Mooseer (Allium hirtifolium) through Cold Stratification, Gibberellic Acid, and Acid Scarification. J. Forestry Res. 2012, 23, 707–710. [Google Scholar] [CrossRef]
- Nemoto, K.; Watanabe, A.; Yoshida, C.; Nishihara, M. Methods to Promote Seed Germination in the Lacquer Tree, Toxicodendron vernicifluum (Stokes) F.A. Barkley. PLoS ONE 2022, 17, e0272665. [Google Scholar] [CrossRef]
- O’Neill, R.; Massey-Leclerc, R.; Sobze, J.-M.; Bartman, K.; Brown, C. Shepherdia Canadensis; Technical Note #36; NAIT Centre for Boreal Research: Peace River, AB, Canada, 2020; pp. 1–5. [Google Scholar]
- Bewley, J. Seed Germination and Dormancy. Plant Cell 1997, 9, 1055–1066. [Google Scholar] [CrossRef]
- Lozano-Isla, F.; Benites-Alfaro, O.E.; Pompelli, M.F. GerminaR: An R Package for Germination Analysis with the Interactive Web Application “GerminaQuant for R”. Ecol. Res. 2019, 34, 339–346. [Google Scholar] [CrossRef]
- McLean, A. Germination of Forest Range Species from Southern British Columbia. Rangel. Ecol. Manag. J. Range Manag. Arch. 1967, 20, 321–322. [Google Scholar] [CrossRef]
- Herranz, J.M.; Ferrandis, P.; Martínez-Duro, E. Seed Germination Ecology of the Threatened Endemic Iberian Delphinium fissum subsp. sordidum (Ranunculaceae). Plant Ecol. 2010, 211, 89–106. [Google Scholar] [CrossRef]
- Hu, D.; Baskin, J.M.; Baskin, C.C.; Yang, X.; Huang, Z. Ecological Role of Physical Dormancy in Seeds of Oxytropis racemosa in a Semiarid Sandland with Unpredictable Rainfall. J. Plant Ecol. 2018, 11, 542–552. [Google Scholar] [CrossRef]
- Kildisheva, O.A.; Dixon, K.W.; Silveira, F.A.O.; Chapman, T.; Di Sacco, A.; Mondoni, A.; Turner, S.R.; Cross, A.T. Dormancy and Germination: Making Every Seed Count in Restoration. Restor. Ecol. 2020, 28, S256–S265. [Google Scholar] [CrossRef]
- Hayes, P.A.; Steeves, T.A.; Neal, B.R. An Architectural Analysis of Shepherdia canadensis and Shepherdia argentea: Patterns of Shoot Development. Can. J. Bot. 1989, 67, 1870–1877. [Google Scholar] [CrossRef]
- Laskin, D.N.; McDermid, G.J.; Nielsen, S.E.; Marshall, S.J.; Roberts, D.R.; Montaghi, A. Advances in Phenology Are Conserved across Scale in Present and Future Climates. Nat. Clim. Chang. 2019, 9, 419–425. [Google Scholar] [CrossRef]
- Bateman, T.J.; Nielsen, S.E. Direct and Indirect Effects of Overstory Canopy and Sex-Biased Density Dependence on Reproduction in the Dioecious Shrub Shepherdia canadensis (Elaeagnaceae). Diversity 2020, 12, 37. [Google Scholar] [CrossRef]
- Pipinis, E.; Stampoulidis, A.; Milios, E.; Kitikidou, K.; Akritidou, S.; Theodoridou, S.; Radoglou, K. Effects of Seed Moisture Content, Stratification and Sowing Date on the Germination of Corylus avellana Seeds. J. For. Res. 2020, 31, 743–749. [Google Scholar] [CrossRef]
- Sacheti, U.; Al-Rawahy, S.H. The Effects of Various Pretreatments on the Germination of Important Leguminous Shrub-Tree Species of the Sultanate of Oman. Seed Sci. Technol. 1998, 26, 691–699. [Google Scholar]
- Yousif, M.A.I.; Wang, Y.R.; Dali, C. Seed Dormancy Overcoming and Seed Coat Structure Change in Leucaena leucocephala and Acacia nilotica. For. Sci. Technol. 2020, 16, 18–25. [Google Scholar] [CrossRef]
- Cartes-Rodríguez, E.; Álvarez-Maldini, C.; Acevedo, M.; González-Ortega, M.; Urbina-Parra, A.; León-Lobos, P. Pre-Germination Treatments at Operational Scale for Six Tree Species from the Sclerophyll Forest of Central Chile. Plants 2022, 11, 608. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Huang, W.H.; Peng, C.Y.; Shen, Y.B.; Visscher, A.M.; Pritchard, H.W.; Gao, Q.; Sun, X.R.; Wang, M.Z.; Deng, Z. Effects of H2SO4, GA3, and Cold Stratification on the Water Content, Coat Composition, and Dormancy Release of Tilia miqueliana Seeds. Front. Plant Sci. 2023, 14, 1240028. [Google Scholar] [CrossRef] [PubMed]
Seedlot No. | Year of Collection | Latitude | Longitude |
---|---|---|---|
NAIT 952 | 2019 | N-56.33477 | W-117.34823 |
NAIT 953 | 2019 | N-56.33469 | W-117.34814 |
NAIT 954 | 2019 | N-56.54013 | W-116.92723 |
NAIT 955 | 2019 | N-56.59835 | W-116.94783 |
Strat (DF = 5) | Scar (DF = 2) | Strat × Scar (DF = 10) | ||||
---|---|---|---|---|---|---|
Variable | F | p | F | p | F | p |
Germination rate | 186.465 | <0.001 | 2.345 | 0.106 | 2.206 | 0.031 |
MGT | 9.852 | <0.001 | 9.877 | <0.001 | 1.785 | 0.093 |
SYN | 4.346 | 0.003 | 0.076 | 0.927 | 1.270 | 0.284 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inoue, S.; Sobze, J.-M. Scarification with a Low Concentration of Acid Facilitates Water Acquisition and Minimizes Cold Stratification Duration, Improving the Seed Germination of Canadian Buffaloberry (Shepherdia canadensis (L.) Nutt.). Seeds 2025, 4, 2. https://doi.org/10.3390/seeds4010002
Inoue S, Sobze J-M. Scarification with a Low Concentration of Acid Facilitates Water Acquisition and Minimizes Cold Stratification Duration, Improving the Seed Germination of Canadian Buffaloberry (Shepherdia canadensis (L.) Nutt.). Seeds. 2025; 4(1):2. https://doi.org/10.3390/seeds4010002
Chicago/Turabian StyleInoue, Sahari, and Jean-Marie Sobze. 2025. "Scarification with a Low Concentration of Acid Facilitates Water Acquisition and Minimizes Cold Stratification Duration, Improving the Seed Germination of Canadian Buffaloberry (Shepherdia canadensis (L.) Nutt.)" Seeds 4, no. 1: 2. https://doi.org/10.3390/seeds4010002
APA StyleInoue, S., & Sobze, J.-M. (2025). Scarification with a Low Concentration of Acid Facilitates Water Acquisition and Minimizes Cold Stratification Duration, Improving the Seed Germination of Canadian Buffaloberry (Shepherdia canadensis (L.) Nutt.). Seeds, 4(1), 2. https://doi.org/10.3390/seeds4010002