Implementation and Performance Evaluation of Quantum Machine Learning Algorithms for Binary Classification
Abstract
:1. Introduction
2. Background Information and Literature Review
2.1. Quantum Computation and Quantum Information
2.2. QC Implementation Models
2.3. Quantum Algorithms and Quantum Data Encoding Methods
2.4. Related Work
2.4.1. Studies Using Variational Quantum Classifier (VQC)
2.4.2. Studies Using Quantum Support Vector Classifier (QSVC)
2.4.3. Studies Using Quantum Neural Networks (QNN)
3. Materials and Methods
3.1. ML Approach and Models
3.2. Datasets
3.3. Data Preprocessing
3.4. QML Model Implementation
4. Results
4.1. Breast Cancer Dataset Performance Metrics
4.2. Diabetes Dataset Performance Metrics
4.3. Heart Disease Dataset Performance Metrics
5. Discussion
5.1. Discussion and Limitations
5.2. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gill, S.S.; Kumar, A.; Singh, H.; Singh, M.; Kaur, K.; Usman, M.; Buyya, R. Quantum computing: A taxonomy, systematic review and future directions. Softw. Pract. Exp. 2022, 52, 66–114. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, L.; Sun, Y.; Zhang, J.; Ma, T.; He, L. A survey of human-in-the-loop for machine learning. Future Gener. Comput. Syst. 2022, 135, 364–381. [Google Scholar] [CrossRef]
- Sahu, M.; Gupta, R.; Ambasta, R.K.; Kumar, P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Prog. Mol. Biol. Transl. Sci. 2022, 190, 57–100. [Google Scholar] [CrossRef] [PubMed]
- Oztas, B.; Cetinkaya, D.; Adedoyin, F.; Budka, M.; Aksu, G.; Dogan, H. Transaction monitoring in anti-money laundering: A qualitative analysis and points of view from industry. Future Gener. Comput. Syst. 2024, 159, 161–171. [Google Scholar] [CrossRef]
- Sabeur, Z.; Bruno, A.; Johnstone, L.; Ferjani, M.; Benaouda, D.; Arbab-Zavar, B.; Cetinkaya, D.; Sallal, M. Cyber-physical behaviour detection and understanding using artificial intelligence. In Proceedings of the 13th International Conference on Applied Human Factors and Ergonomics (AHFE’22), Cognitive Computing and Internet of Things, New York, NY, USA, 24–28 July 2022; Volume 67. [Google Scholar]
- Bertolini, M.; Mezzogori, D.; Neroni, M.; Zammori, F. Machine learning for industrial applications: A comprehensive literature review. Expert Syst. Appl. 2021, 175, 114820. [Google Scholar] [CrossRef]
- Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer, J.S. A survey on distributed machine learning. ACM Comput. Surv. 2020, 53, 30. [Google Scholar] [CrossRef]
- Ali, S.; Yue, T.; Abreu, R. When software engineering meets quantum computing. Commun. ACM 2022, 65, 84–88. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Saxena, V.; Chanana, V.; Parashari, P.; Mumtaz, S.; Guizani, M. Present landscape of quantum computing. IET Quantum Commun. 2020, 1, 42–48. [Google Scholar] [CrossRef]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef]
- Ramezani, S.B.; Sommers, A.; Manchukonda, H.K.; Rahimi, S.; Amirlatifi, A. Machine learning algorithms in quantum computing: A survey. In Proceedings of the International Joint Conference on Neural Networks, Glasgow, UK, 19–24 July 2020. [Google Scholar]
- Bayerstadler, A.; Becquin, G.; Binder, J.; Botter, T.; Ehm, H.; Ehmer, T.; Erdmann, M.; Gaus, N.; Harbach, P.; Hess, M.; et al. Industry quantum computing applications. EPJ Quantum Technol. 2021, 8, 25. [Google Scholar] [CrossRef]
- Hughes, C.; Isaacson, J.; Perry, A.; Sun, R.F.; Turner, J. Quantum Computing for the Quantum Curious; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Wang, Y.; Hu, Z.; Sanders, B.C.; Kais, S. Qudits and high-dimensional quantum computing. Front. Phys. Sec. Quantum Eng. Technol. 2020, 8, 589504. [Google Scholar] [CrossRef]
- Menon, S.G.; Glachman, N.; Pompili, M.; Dibos, A.; Bernien, H. An integrated atom array-nanophotonic chip platform with background-free imaging. Nat. Commun. 2024, 15, 6156. [Google Scholar] [CrossRef] [PubMed]
- Grumbling, E.; Horowitz, M. (Eds.) Quantum Computing: Progress and Prospects; The National Academies of Sciences, Engineering and Medicine, The National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Bharti, K.; Cervera-Lierta, A.; Kyaw, T.H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J.S.; Menke, T.; et al. Noisy intermediate-scale quantum (NISQ) algorithms. Rev. Mod. Phys. 2022, 94, 015004. [Google Scholar] [CrossRef]
- Bova, F.; Goldfarb, A.; Melko, R.G. Commercial applications of quantum computing. EPJ Quantum Technol. 2021, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.S. Forbes Top 10 Quantum Computing Companies Making Change—December 2023. Available online: https://www.forbes.com/sites/technology/article/top-quantum-computing-companies/ (accessed on 29 October 2024).
- Elben, A.; Vermersch, B.; van Bijnen, R.; Kokail, C.; Brydges, T.; Maier, C.; Joshi, M.K.; Blatt, R.; Roos, C.F.; Zoller, P. Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett. 2020, 124, 010504. [Google Scholar] [CrossRef] [PubMed]
- Shor, P.W. Fault-tolerant quantum computation. In Proceedings of the 37th Conference on Foundations of Computer Science, Burlington, VT, USA, 14–16 October 1996; IEEE Computer Society Press: Washington, DC, USA, 1996. [Google Scholar]
- Nimbe, P.; Weyori, B.A.; Adekoya, A.F. Models in quantum computing: A systematic review. Quantum Inf. Process. 2021, 20, 80. [Google Scholar] [CrossRef]
- DiVincenzo, D.P. Quantum gates and circuits. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 261–276. [Google Scholar] [CrossRef]
- McGeoch, C. Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice; Part of the book series: Synthesis Lectures on Quantum Computing (SLQC); Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Albash, T.; Lidar, D.A. Adiabatic quantum computation. Rev. Mod. Phys. 2018, 90, 015002. [Google Scholar] [CrossRef]
- Rath, M.; Date, H. Quantum data encoding: A comparative analysis of classical-to-quantum mapping techniques and their impact on machine learning accuracy. EPJ Quantum Technol. 2024, 11, 72. [Google Scholar] [CrossRef]
- Schuld, M.; Bocharov, A.; Svore, K.; Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 2020, 101, 032308. [Google Scholar] [CrossRef]
- Munshi, M.; Gupta, R.; Jadav, N.K.; Polkowski, Z.; Tanwar, S.; Alqahtani, F.; Said, W. Quantum machine learning-based framework to detect heart failures in Healthcare 4.0. Softw. Pract. Exp. 2024, 54, 168–185. [Google Scholar] [CrossRef]
- Maheshwari, D.; Sierra-Sosa, D.; Garcia-Zapirain, B. Variational quantum classifier for binary classification: Real vs synthetic dataset. IEEE Access 2022, 10, 3705–3715. [Google Scholar] [CrossRef]
- Kavitha, S.S.; Kaulgud, N. Quantum machine learning for support vector machine classification. Evol. Intell. 2024, 17, 819–828. [Google Scholar] [CrossRef]
- Suzuki, T.; Hasebe, T.; Miyazaki, T. Quantum support vector machines for classification and regression on a trapped-ion quantum computer. Quantum Mach. Intell. 2024, 6, 31. [Google Scholar] [CrossRef]
- Yuan, X.-J.; Chen, Z.-Q.; Liu, Y.-D.; Xie, Z.; Liu, Y.-Z.; Jin, X.-M.; Wen, X.; Tang, H. Quantum support vector machines for aerodynamic classification. Intell. Comput. 2023, 2, 0057. [Google Scholar] [CrossRef]
- Aly, M.; Fadaaq, S.; Warga, O.A.; Nasir, Q.; Talib, M.A. Experimental benchmarking of quantum machine learning classifiers. In Proceedings of the 6th International Conference on Signal Processing and Information Security (ICSPIS), Dubai, United Arab Emirates, 8–9 November 2023; pp. 240–245. [Google Scholar] [CrossRef]
- Beer, K.; Bondarenko, D.; Farrelly, T.; Osborne, T.; Salzmann, R.; Scheiermann, D.; Wolf, R. Training deep quantum neural networks. Nat. Commun. 2020, 11, 808. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Han, R.; Shi, S.; Li, J.; Shang, R.; Zheng, H.; Zhong, G.; Gu, Y. Quantum recurrent neural networks for sequential learning. Neural Netw. 2023, 166, 148–161. [Google Scholar] [CrossRef]
- Simoes, R.D.M.; Huber, P.; Meier, N.; Smailov, N.; Fuchslin, R.M.; Stockinger, K. Experimental evaluation of quantum machine learning algorithms. IEEE Access 2023, 11, 6197–6208. [Google Scholar] [CrossRef]
- Desai, U.; Kola, K.S.; Nikhitha, S.; Nithin, G.; Raj, G.P.; Karthik, G. Comparison of machine learning and quantum machine learning for breast cancer detection. In Proceedings of the International Conference on Smart Systems for Applications in Electrical Sciences, Tumakuru, India, 3–4 May 2024. [Google Scholar] [CrossRef]
- Reka, S.S.; Karthikeyan, H.L.; Shakil, A.J.; Venugopal, P.; Muniraj, M. Exploring quantum machine learning for enhanced skin lesion classification: A comparative study of implementation methods. IEEE Access 2024, 12, 104568–104584. [Google Scholar] [CrossRef]
- Peral-García, D.; Cruz-Benito, J.; García-Peñalvo, F.J. Systematic literature review: Quantum machine learning and its applications. Comput. Sci. Rev. 2024, 51, 100619. [Google Scholar] [CrossRef]
- Broughton, M.; Verdon, G.; McCourt, T.; Martinez, A.J.; Yoo, J.H.; Isakov, S.V.; Massey, P.; Halavati, R.; Niu, M.Y.; Zlokapa, A.; et al. TensorFlow Quantum: A software framework for quantum machine learning. arXiv 2020, arXiv:2003.02989. Available online: http://arxiv.org/abs/2003.02989 (accessed on 31 October 2024).
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- IBM Qiskit Machine Learning Documentation. Available online: https://qiskit-community.github.io/qiskit-machine-learning/ (accessed on 30 October 2024).
- Hasan, B.M.S.; Abdulazeez, A.M. A review of principal component analysis algorithm for dimensionality reduction. J. Soft Comput. Data Min. 2021, 2, 20–30. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev.-Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Ahsan, M.; Mahmud, M.; Saha, P.; Gupta, K.; Siddique, Z. Effect of data scaling methods on machine learning algorithms and model performance. Technologies 2021, 9, 52. [Google Scholar] [CrossRef]
- Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with quantum-enhanced feature spaces. Nature 2019, 567, 209–212. [Google Scholar] [CrossRef]
- Vasques, X.; Paik, H.; Cif, L. Application of quantum machine learning using quantum kernel algorithms on multiclass neuron M-type classification. Sci. Rep. 2023, 13, 11541. [Google Scholar] [CrossRef] [PubMed]
- Bonet-Monroig, X.; Wang, H.; Vermetten, D.; Senjean, B.; Moussa, C.; Bäck, T.; Dunjko, V.; O’Brien, T.E. Performance comparison of optimization methods on variational quantum algorithms. arXiv 2021, arXiv:2111.13454. Available online: http://arxiv.org/abs/2111.13454 (accessed on 31 October 2024). [CrossRef]
- Javadi-Abhari, A.; Treinish, M.; Krsulich, K.; Wood, C.J.; Lishman, J.; Gacon, J.; Martiel, S.; Nation, P.D.; Bishop, L.S.; Cross, A.W.; et al. Quantum computing with Qiskit. arXiv 2024, arXiv:2405.08810. [Google Scholar] [CrossRef]
- Ball, H.; Biercuk, M.J.; Carvalho, A.R.R.; Chen, J.; Hush, M.; De Castro, L.A.; Li, L.; Liebermann, P.J.; Slatyer, H.J.; Edmunds, C.; et al. Software tools for quantum control: Improving quantum computer performance through noise and error suppression. Quantum Sci. Technol. 2021, 6, 044011. [Google Scholar] [CrossRef]
Feature | Quantum | Classical |
---|---|---|
Theory | Quantum mechanics | Classical physics |
Computation | Probabilistic | Deterministic |
Operations | Linear algebra operations | Boolean algebra operations |
Information storage | Qubits, qudits | Bits |
System state | Continuous possible states in superposition | Discrete number of possible states |
Technology | Superconducting loops, trapped ions, quantum dots, etc. | Transistors |
Applications | Complex problems, optimization, simulation | General purpose |
Error rate | High | Low |
Environment | Ultracold | Room temperature |
Computing power | Exponential growth | Linear growth |
Processing | QPU | CPU |
Models | SVC_Linear | SVC_Poly | SVC_RBF | SVC_Sigmoid | MLP | QSVC | QNN |
---|---|---|---|---|---|---|---|
Accuracy | 95.26 | 90.17 | 94.03 | 90.34 | 95.26 | 93.86 | 77.19 |
Precision | 96.17 | 87.67 | 94.32 | 91.67 | 96.13 | 93.86 | 77.19 |
Recall | 96.36 | 98.31 | 96.35 | 93.27 | 96.36 | 93.73 | 76.44 |
F1 score | 96.23 | 92.65 | 95.29 | 92.38 | 96.23 | 94.41 | 77.02 |
ROC-AUC | 98.82 | 98.11 | 98.39 | 96.05 | 98.80 | 91.86 | 73.44 |
Models | SVC_Linear | SVC_Poly | SVC_RBF | SVC_Sigmoid | MLP | QSVC | QNN |
---|---|---|---|---|---|---|---|
Accuracy | 72.39 | 69.40 | 72.14 | 62.63 | 72.40 | 70.78 | 67.53 |
Precision | 64.89 | 74.48 | 65.40 | 46.5 | 65.27 | 70.78 | 67.53 |
Recall | 45.90 | 17.92 | 42.54 | 47.01 | 45.92 | 69.26 | 60.35 |
F1 score | 53.68 | 28.67 | 51.31 | 46.72 | 53.44 | 69.66 | 68.04 |
ROC-AUC | 76.27 | 75.45 | 74.71 | 63.02 | 77.25 | 64.75 | 56.16 |
Models | SVC_Linear | SVC_Poly | SVC_RBF | SVC_Sigmoid | MLP | QSVC | QNN |
---|---|---|---|---|---|---|---|
Accuracy | 74.57 | 73.90 | 74.90 | 69.55 | 75.57 | 63.33 | 58.33 |
Precision | 75.11 | 69.67 | 77.47 | 53.02 | 74.34 | 63.33 | 58.33 |
Recall | 43.42 | 25.74 | 45.53 | 51.89 | 50.74 | 53.31 | 42.98 |
F1 score | 47.26 | 33.14 | 48.88 | 51.24 | 52.95 | 77.49 | 34.03 |
ROC-AUC | 83.79 | 82.51 | 77.32 | 72.69 | 83.76 | 56.00 | 50.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajibosin, S.S.; Cetinkaya, D. Implementation and Performance Evaluation of Quantum Machine Learning Algorithms for Binary Classification. Software 2024, 3, 498-513. https://doi.org/10.3390/software3040024
Ajibosin SS, Cetinkaya D. Implementation and Performance Evaluation of Quantum Machine Learning Algorithms for Binary Classification. Software. 2024; 3(4):498-513. https://doi.org/10.3390/software3040024
Chicago/Turabian StyleAjibosin, Surajudeen Shina, and Deniz Cetinkaya. 2024. "Implementation and Performance Evaluation of Quantum Machine Learning Algorithms for Binary Classification" Software 3, no. 4: 498-513. https://doi.org/10.3390/software3040024
APA StyleAjibosin, S. S., & Cetinkaya, D. (2024). Implementation and Performance Evaluation of Quantum Machine Learning Algorithms for Binary Classification. Software, 3(4), 498-513. https://doi.org/10.3390/software3040024