Comparative Analysis of Infection Strategies of Pseudomonas cannabina pv. alisalensis and P. syringae pv. tomato in Different Host Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Plant Materials and Growth Conditions
2.3. Bacterial Inoculation Methods
2.4. Monitoring Bacterial Gene Expressions in Planta
2.5. Statistical Analysis
3. Results
3.1. Pcal Multiplication in Cabbage and Tomato
3.2. Gene Expression Profiles of Pcal During Infection in Cabbage and Tomato
3.3. Pst Multiplication in Tomato
3.4. Pst Gene Expression Profiles During Infection in Tomato
3.5. Disease Phenotypes and Bacterial Multiplication of Pcal and Pst T3SS, COR, and Flagellar Motility Mutants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xin, X.F.; Kvitko, B.; He, S.Y. Pseudomonas syringae: What it takes to be a pathogen. Nat. Rev. Microbiol. 2018, 16, 316–328. [Google Scholar] [CrossRef]
- Xin, X.-F.; He, S.Y. Pseudomonas syringae pv. tomato DC3000: A model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol. 2013, 51, 473–498. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, Y.; Yamagishi, N.; Ogiso, H.; Fujinaga, M.; Takikawa, Y. Bacterial brown spot on Avena storigosa Schereb. caused by Pseudomonas syringae pv. alisalensis. J. Gen. Plant Pathol. 2013, 79, 155–157. [Google Scholar] [CrossRef]
- Takikawa, Y.; Takahashi, F. Bacterial leaf spot and blight of crucifer plants (Brassicaceae) caused by Pseudomonas syringae pv. maculicola and P. cannabina pv. alisalensis. J. Gen. Plant Pathol. 2014, 80, 466–474. [Google Scholar] [CrossRef]
- Sakata, N.; Ino, T.; Hayashi, C.; Ishiga, T.; Ishiga, Y. Controlling stomatal aperture, a potential strategy for managing plant bacterial disease. Plant Sci. 2023, 327, 111534. [Google Scholar] [CrossRef]
- Baltrus, D.A.; Nishimura, M.T.; Romanchuk, A.; Chang, J.H.; Mukhtar, M.S.; Cherkis, K.; Roach, J.; Grant, S.R.; Jones, C.D.; Dangl, J.L. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog. 2011, 7, e1002132. [Google Scholar] [CrossRef]
- Bender, C.L.; Alarcón-Chaidez, F.; Gross, D.C. Pseudomonas syringae phytotoxins: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 1999, 63, 266–292. [Google Scholar] [CrossRef]
- Sakata, N.; Ishiga, T.; Masuo, S.; Hashimoto, Y.; Ishiga, Y. Coronatine contributes to Pseudomonas cannabina pv. alisalensis virulence by overcoming both stomatal and apoplastic defenses in dicot and monocot Plants. Mol. Plant. Microbe. Interact. 2021, 34, 746–757. [Google Scholar] [CrossRef]
- Melotto, M.; Underwood, W.; Koczan, J.; Nomura, K.; He, S.Y. Plant stomata function in innate immunity against bacterial invasion. Cell 2006, 126, 969–980. [Google Scholar] [CrossRef]
- Melotto, M.; Underwood, W.; He, S.Y. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 2008, 46, 101–122. [Google Scholar] [CrossRef]
- Ichihara, A.; Shiraishi, K.; Sato, H.; Sakamura, S.; Nishiyama, K.; Sakai, R.; Furusaki, A.; Matsumoto, T. The structure of coronatine. J. Am. Chem. Soc. 1977, 99, 636–637. [Google Scholar] [CrossRef]
- Peñaloza-Vázquez, A.; Bender, C.L. Characterization of CorR, a transcriptional activator which is required for biosynthesis of the phytotoxin coronatine. J. Bacteriol. 1998, 180, 6252–6259. [Google Scholar] [CrossRef] [PubMed]
- Markel, E.; Stodghill, P.; Bao, Z.; Myers, C.R.; Swingle, B. AlgU controls expression of virulence genes in Pseudomonas syringae pv. tomato DC3000. J. Bacteriol. 2016, 198, 2330–2344. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Wei, H.-L.; Ma, X.; Swingle, B. Pseudomonas syringae AlgU downregulates flagellin gene expression, helping evade plant immunity. J. Bacteriol. 2020, 202, e00418-19. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, M.; Wang, Q.; Zhang, L.; Chang, X.; Zhang, L. Role of the sigma factor AlgU in regulating growth, virulence, motility, exopolysaccharide production, and environmental stress adaptation of Pseudomonas syringae pv. actinidiae QSY6. Phytopathol. Res. 2024, 6, 26. [Google Scholar] [CrossRef]
- Taguchi, F.; Suzuki, T.; Inagaki, Y.; Toyoda, K.; Shiraishi, T.; Ichinose, Y. The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J. Bacteriol. 2010, 192, 117–126. [Google Scholar] [CrossRef]
- Swingle, B.; Thete, D.; Moll, M.; Myers, C.R.; Schneider, D.J.; Cartinhour, S. Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other Pseudomonads. Mol. Microbiol. 2008, 68, 871–889. [Google Scholar] [CrossRef]
- Clarke, C.R.; Chinchilla, D.; Hind, S.R.; Taguchi, F.; Miki, R.; Ichinose, Y.; Martin, G.B.; Leman, S.; Felix, G.; Vinatzer, B.A. Allelic Variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytol. 2013, 200, 847–860. [Google Scholar] [CrossRef]
- Sun, W.; Dunning, F.M.; Pfund, C.; Weingarten, R. Within-species flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2–Dependent defense. Plant Cell 2006, 18, 764–779. [Google Scholar] [CrossRef]
- Sakata, N.; Ishiga, T.; Saito, H.; Nguyen, V.T.; Ishiga, Y. Transposon mutagenesis reveals Pseudomonas cannabina pv. alisalensis optimizes its virulence factors for pathogenicity on different hosts. PeerJ 2019, 2019, e7698. [Google Scholar] [CrossRef]
- Elizabeth, S.V.; Bender, C.L. The phytotoxin coronatine from Pseudomonas syringae pv. tomato DC3000 functions as a virulence factor and influences defence pathways in edible brassicas. Mol. Plant Pathol. 2007, 8, 83–92. [Google Scholar] [CrossRef] [PubMed]
- King, E.O.; Ward, M.K.; Raney, D.E. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 1954, 44, 301–307. [Google Scholar] [PubMed]
- Ishiga, Y.; Ichinose, Y. Pseudomonas syringae pv. tomato OxyR is required for virulence in tomato and Arabidopsis. Mol. Plant. Microbe. Interact. 2016, 29, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, F.; Ogiso, H.; Fujinaga, M.; Ishiyama, Y.; Inoue, Y.; Shirakawa, T.; Takikawa, Y. First report of bacterial blight of crucifers caused by Pseudomonas cannabina pv. alisalensis in Japan. J. Gen. Plant Pathol. 2013, 79, 260–269. [Google Scholar] [CrossRef]
- Meaden, S.; Koskella, B. Adaptation of the pathogen, Pseudomonas syringae, during experimental evolution on a native vs. alternative host plant. Mol. Ecol. 2017, 26, 1790–1801. [Google Scholar] [CrossRef]
- Fouts, D.E.; Abramovitch, R.B.; Alfano, J.R.; Baldo, A.M.; Buell, C.R.; Cartinhour, S.; Chatterjee, A.K.; D’Ascenzo, M.; Gwinn, M.L.; Lazarowitz, S.G.; et al. Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc. Natl. Acad. Sci. USA 2002, 99, 2275–2280. [Google Scholar] [CrossRef]
- Sreedharan, A.; Penaloza-Vazquez, A.; Kunkel, B.N.; Bender, C.L. CorR regulates multiple components of virulence in Pseudomonas syringae pv. tomato DC3000. Mol. Plant. Microbe. Interact. 2006, 19, 768–779. [Google Scholar] [CrossRef]
- Wang, W.; Yang, J.; Zhang, J.; Liu, Y.X.; Tian, C.; Qu, B.; Gao, C.; Xin, P.; Cheng, S.; Zhang, W.; et al. An Arabidopsis secondary metabolite directly targets expression of the bacterial type III secretion system to inhibit bacterial virulence. Cell Host Microbe 2020, 27, 601–613.e7. [Google Scholar] [CrossRef]
- Sakata, N.; Ishiga, T.; Ishiga, Y. Pseudmonas cannabina pv. alisalensis TrpA is required for virulence in multiple host plants. Front. Microbiol. 2021, 12, 659734. [Google Scholar] [CrossRef]
- Colaianni, N.R.; Parys, K.; Lee, H.-S.; Conway, J.M.; Kim, N.H.; Edelbacher, N.; Mucyn, T.S.; Madalinski, M.; Law, T.F.; Jones, C.D.; et al. A complex immune response to flagellin epitope variation in commensal communities. Cell Host Microbe 2021, 29, 635–649.e9. [Google Scholar] [CrossRef]
- Parys, K.; Colaianni, N.R.; Lee, H.S.; Hohmann, U.; Edelbacher, N.; Trgovcevic, A.; Blahovska, Z.; Lee, D.; Mechtler, A.; Muhari-Portik, Z.; et al. Signatures of antagonistic pleiotropy in a bacterial flagellin epitope. Cell Host Microbe 2021, 29, 620–634.e9. [Google Scholar] [CrossRef] [PubMed]
- Lovelace, A.H.; Smith, A.; Kvitko, B.H. Pattern-triggered immunity alters the transcriptional regulation of virulence-associated genes and induces the sulfur starvation response in Pseudomonas syringae pv. tomato DC3000. Mol. Plant. Microbe. Interact. 2018, 31, 750–765. [Google Scholar] [CrossRef] [PubMed]
- Nobori, T.; Velásquez, A.C.; Wu, J.; Kvitko, B.H.; Kremer, J.M.; Wang, Y.; He, S.Y.; Tsuda, K. Transcriptome landscape of a bacterial pathogen under plant immunity. Proc. Natl. Acad. Sci. USA 2018, 115, E3055–E3064. [Google Scholar] [CrossRef]
- Sakata, N.; Shiraishi, N.; Saito, H.; Komoto, H.; Ishiga, T.; Usuki, G.; Yamashita, Y.; Ishiga, Y. Covering cabbage leaves with cellulose nanofiber confers resistance against Pseudomonas cannabina pv. alisalensis. J. Gen. Plant Pathol. 2022, 89, 53–60. [Google Scholar] [CrossRef]
5 × 103 | 5 × 104 | 5 × 105 | 5 × 106 | |
---|---|---|---|---|
Cabbage | 0.082 | 0.080 | 0.074 | 0.068 |
Tomato | 0.068 | 0.063 | 0.043 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakata, N.; Usuki, G.; Yamamoto, K.; Ishiga, Y. Comparative Analysis of Infection Strategies of Pseudomonas cannabina pv. alisalensis and P. syringae pv. tomato in Different Host Plants. Bacteria 2024, 3, 379-389. https://doi.org/10.3390/bacteria3040026
Sakata N, Usuki G, Yamamoto K, Ishiga Y. Comparative Analysis of Infection Strategies of Pseudomonas cannabina pv. alisalensis and P. syringae pv. tomato in Different Host Plants. Bacteria. 2024; 3(4):379-389. https://doi.org/10.3390/bacteria3040026
Chicago/Turabian StyleSakata, Nanami, Giyu Usuki, Kanon Yamamoto, and Yasuhiro Ishiga. 2024. "Comparative Analysis of Infection Strategies of Pseudomonas cannabina pv. alisalensis and P. syringae pv. tomato in Different Host Plants" Bacteria 3, no. 4: 379-389. https://doi.org/10.3390/bacteria3040026
APA StyleSakata, N., Usuki, G., Yamamoto, K., & Ishiga, Y. (2024). Comparative Analysis of Infection Strategies of Pseudomonas cannabina pv. alisalensis and P. syringae pv. tomato in Different Host Plants. Bacteria, 3(4), 379-389. https://doi.org/10.3390/bacteria3040026