A Review of the Molecular Understanding of the Mpox Virus (MPXV): Genomics, Immune Evasion, and Therapeutic Targets
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. The MPXV—Its Genome and Genetics
4. Molecular Mechanisms of the MPXV’s Replication, Pathogenesis, and Immune Evasion
5. Pathogenesis and Immune Evasion
6. Molecular Diagnostic Tools and Their Importance
6.1. Current Methods
6.2. Challenges and Limitations
7. Therapeutic Targets and Vaccine Development
8. Future Directions in Mpox Molecular Research
9. Conclusions
Funding
Conflicts of Interest
References
- Ferrareze, P.A.G.; Pereira, E.C.R.A.; Thompson, C.E. Genomic characterization and molecular evolution of human monkeypox viruses. Arch. Virol. 2023, 168, 278. [Google Scholar] [CrossRef]
- Ghate, S.D.; Suravajhala, P.; Patil, P.; Vangala, R.K.; Shetty, P.; Rao, R.S.P. Molecular detection of monkeypox and related viruses: Challenges and opportunities. Virus Genes 2023, 59, 343–350. [Google Scholar] [CrossRef]
- Yousaf, M.A.; Basheera, S.; Sivanandan, S. Inhibition of monkeypox virus DNA polymerase using Moringa oleifera phytochemicals: Computational studies of drug-likeness, molecular docking, molecular dynamics simulation and density functional theory. Indian J. Microbiol. 2024, 64, 1057–1074. [Google Scholar] [CrossRef]
- Khan, A.A.S.; Yousaf, M.A.; Azhar, J.; Maqbool, M.F.; Bibi, R. Repurposing FDA approved drugs against monkeypox virus DNA dependent RNA polymerase: Virtual screening, normal mode analysis and molecular dynamics simulation studies. VirusDisease 2024, 35, 260–270. [Google Scholar] [CrossRef]
- Kannan, S.; Shaik Syed Ali, P.; Sheeza, A. Monkeypox: Epidemiology, mode of transmission, clinical features, genetic clades and molecular properties. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5983–5990. [Google Scholar] [CrossRef]
- Tang, Z.; Han, Y.; Meng, Y.; Li, J.; Qiu, X.; Bajinka, O.; Wu, G.; Tan, Y. A bioinformatics approach to systematically analyze the molecular patterns of monkeypox virus-host cell interactions. Heliyon 2024, 10, e30483. [Google Scholar] [CrossRef]
- Wolf, J.M.; Wolf, L.M.; Fagundes, P.P.; Tomm, D.M.S.; Petek, H.; Brenner, A.; Maccari, J.G.; Nasi, L.A. Molecular evolution of the human monkeypox virus. J. Med. Virol. 2023, 95, e28533. [Google Scholar] [CrossRef] [PubMed]
- Abafi, D.S.O.; Adewunmi, M.O.; Michael, O.O.; Kia, G.S.N.; Adeyemo, O.K.; Alarape, S.A.; Meseko, C.A.; Oyetunde, J.S.; Mkpuma, N.; Shorunke, F.O.; et al. Molecular detection of monkeypox virus in wild rodents and humans in Ibadan, Nigeria—A cross-sectional study. PAMJ-One Health 2024, 13, 42143. [Google Scholar] [CrossRef]
- Wambani, J.; Were, T.; Okoth, P. Monkeypox: Genetic, clinical, molecular, diagnostic, and therapeutic perspectives. J. Rare Dis. 2024, 3, 18. [Google Scholar] [CrossRef]
- Abdizadeh, T. Identification of novel potential inhibitors of monkeypox virus thymidine kinase using molecular docking, molecular dynamics simulation and MM/PBSA methods. Mol. Divers. 2024, 28, 2513–2546. [Google Scholar] [CrossRef]
- Dyall, J.; Johnson, R.F.; Chen, D.Y.; Huzella, L.; Ragland, D.R.; Mollura, D.J.; Byrum, R.; Reba, R.C.; Jennings, G.; Jahrling, P.B.; et al. Evaluation of monkeypox disease progression by molecular imaging. J. Infect. Dis. 2011, 204, 1902–1911. [Google Scholar] [CrossRef]
- Anderson, M.; Hodges, A.; Luk, K.C.; Olivo, A.; Forberg, K.; Meyer, T.V.; Strobel, C.; Kim, M.; Toolsie, D.; Moore, N.M.; et al. Development and validation of three automated high-throughput molecular tests to detect monkeypox virus infections. J. Infect. Dis. 2024, 229, S137–S143. [Google Scholar] [CrossRef]
- Rimoin, A.W.; Mulembakani, P.M.; Johnston, S.C.; Lloyd Smith, J.O.; Kisalu, N.K.; Kinkela, T.L.; Blumberg, S.; Thomassen, H.A.; Pike, B.L.; Fair, J.N.; et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl. Acad. Sci. USA 2010, 107, 16262–16267. [Google Scholar] [CrossRef]
- Hutin, Y.J.; Williams, R.J.; Malfait, P.; Pebody, R.; Loparev, V.N.; Ropp, S.L.; Rodriguez, M.; Knight, J.C.; Tshioko, F.K.; Khan, A.S.; et al. Outbreak of human monkeypox, Democratic Republic of Congo, 1996 to 1997. Emerg. Infect Dis. 2001, 7, 434–438. [Google Scholar] [CrossRef]
- Shan, K.J.; Wu, C.; Tang, X.; Lu, R.; Hu, Y.; Tan, W.; Lu, J. Molecular evolution of protein sequences and codon usage in monkeypox viruses. Genom. Proteom. Bioinform. 2024, 22, qzad003. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, X.; Liu, J.; Xiang, L.; Huang, S.; Xie, X.; Fang, L.; Lin, Y.; Zhang, M.; Wang, L.; et al. Phylogeny and molecular evolution of the first local monkeypox virus cluster in Guangdong Province, China. Nat. Commun. 2023, 14, 8241. [Google Scholar] [CrossRef] [PubMed]
- Atlas.ti Scientific Software, Atlas.ti 9.1.7; ATLAS.ti Scientific Software Development GmbH: Berlin, Germany, 2024.
- Rabaan, A.A.; Alshahrani, F.S.; Garout, M.; Alissa, M.; Mashraqi, M.M.; Alshehri, A.A.; Alsaleh, A.A.; Alwarthan, S.; Sabour, A.A.; Alfaraj, A.H.; et al. Repositioning of anti-infective compounds against monkeypox virus core cysteine proteinase: A molecular dynamics study. Mol. Divers. 2024, 28, 4113–4135. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Bhattarai, A.; Karn, R.; Tamang, B. Computational investigations of potential inhibitors of monkeypox virus envelope protein E8 through molecular docking and molecular dynamics simulations. Sci. Rep. 2024, 14, 19585. [Google Scholar] [CrossRef] [PubMed]
- Islam, R.; Shahriar, A.; Uddin, M.R.; Fatema, N. Immunoinformatic and molecular docking approaches: siRNA prediction to silence cell surface binding protein of monkeypox virus. Beni-Suef Univ. J. Basic. Appl. Sci. 2024, 13, 17. [Google Scholar] [CrossRef]
- Charles, S.; Edgar, M.; Kasoma, N. The hunt for antipox compounds against monkeypox virus thymidylate kinase and scaffolding protein leveraging pharmacophore modeling, molecular docking, ADMET studies and molecular dynamics simulation studies. Virol. Mycol. 2023, 12, 1–14. [Google Scholar]
- Ivica Letunic. phyloT: A Phylogenetic Tree Generator. Available online: https://phylot.biobyte.de/ (accessed on 4 January 2025).
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; McVeigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef]
- Sayers, E.W.; Cavanaugh, M.; Clark, K.; Ostell, J.; Pruitt, K.D.; Karsch-Mizrachi, I. GenBank. Nucleic Acids Res. 2019, 47, D94–D99. [Google Scholar] [CrossRef]
- Maluquer de Motes, C. Poxvirus cGAMP nucleases: Clues and mysteries from a stolen gene. PLoS Pathog. 2021, 17, e1009372. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef] [PubMed]
- Ndodo, N.; Ashcroft, J.; Lewandowski, K.; Yinka-Ogunleye, A.; Chukwu, C.; Ahmad, A.; King, D.; Akinpelu, A.; Maluquer de Motes, C.; Ribeca, P.; et al. Distinct monkeypox virus lineages co-circulating in humans before 2022. Nat. Med. 2023, 29, 2317–2324. [Google Scholar] [CrossRef] [PubMed]
- Okwor, T.; Mbala, P.K.; Evans, D.H.; Kindrachuk, J. A contemporary review of clade-specific virological differences in monkeypox viruses. Clin. Microbiol. Infect. 2023, 29, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Microsoft Paint 11.2410.39.0; Microsoft Corporation: Redmond, DC, USA, 2024.
- Koehler, M.; Delguste, M.; Sieben, C.; Gillet, L.; Alsteens, D. Initial step of virus entry: Virion binding to cell-surface glycans. Annu. Rev. Virol. 2020, 7, 143–165. [Google Scholar] [CrossRef]
- Shi, D.; He, P.; Song, Y.; Cheng, S.; Linhardt, R.J.; Dordick, J.S.; Chi, L.; Zhang, F. Kinetic and structural aspects of glycosaminoglycan-monkeypox virus protein A29 interactions using surface plasmon resonance. Molecules 2022, 27, 5898. [Google Scholar] [CrossRef] [PubMed]
- Fantini, J.; Chahinian, H.; Yahi, N. A vaccine strategy based on the identification of an annular ganglioside binding motif in monkeypox virus protein E8L. Viruses 2022, 14, 2531. [Google Scholar] [CrossRef]
- Greseth, M.D.; Traktman, P. The life cycle of the vaccinia virus genome. Annu. Rev. Virol. 2022, 9, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Witt, A.S.A.; Trindade, G.S.; Souza, F.G.; Serafim, M.S.M.; da Costa, A.V.B.; Silva, M.V.F.; de Melo Iani, F.C.; Rodrigues, R.A.L.; Kroon, E.G.; Abrahao, J.S. Ultrastructural analysis of monkeypox virus replication in Vero cells. J. Med. Virol. 2023, 95, e28536. [Google Scholar] [CrossRef] [PubMed]
- Paniz-Mondolfi, A.; Reidy, J.; Pagani, N.; Lednicky, J.A.; McGrail, J.P.; Kasminskaya, Y.; Patino, L.H.; Garcia-Sastre, A.; Palacios, G.; Gonzalez-Reiche, A.S.; et al. Genomic and ultrastructural analysis of monkeypox virus in skin lesions and in human/animal infected cells reveals further morphofunctional insights into viral pathogenicity. J. Med. Virol. 2023, 95, e28878. [Google Scholar] [CrossRef]
- Li, P.; Pachis, S.T.; Xu, G.; Schraauwen, R.; Incitti, R.; de Vries, A.C.; Bruno, M.J.; Peppelenbosch, M.P.; Alam, I.; Raymond, K.; et al. Mpox virus infection and drug treatment modelled in human skin organoids. Nat. Microbiol. 2023, 8, 2067–2079. [Google Scholar] [CrossRef]
- Mucker, E.M.; Lindquist, M.; Hooper, J.W. Particle-specific neutralizing activity of a monoclonal antibody targeting the poxvirus A33 protein reveals differences between cell associated and extracellular enveloped virions. Virology 2020, 544, 42–54. [Google Scholar] [CrossRef]
- Alharbi, A.S.; Altwaim, S.A.; El-Daly, M.M.; Hassan, A.M.; Al-Zahrani, I.A.; Bajrai, L.H.; Alsaady, I.M.; Dwivedi, V.D.; Azhar, E.I. Marine fungal diversity unlocks potent antivirals against monkeypox through methyltransferase inhibition revealed by molecular dynamics and free energy landscape. BMC Chem. 2024, 18, 141. [Google Scholar] [CrossRef]
- Zhan, X.Y.; Zha, G.F.; He, Y. Evolutionary dissection of monkeypox virus: Positive darwinian selection drives the adaptation of virus-host interaction proteins. Front. Cell. Infect. Microbiol. 2022, 12, 1083234. [Google Scholar] [CrossRef]
- Kumar, R.; Nagar, S.; Haider, S.; Sood, U.; Ponnusamy, K.; Dhingra, G.G.; Anand, S.; Dua, A.; Singh, M.; Kumar, R.; et al. Monkeypox virus: Phylogenomics, host-pathogen interactome and mutational cascade. Microb. Genom. 2023, 9, 987. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shang, J.; Weng, S.; Aliyari, S.R.; Ji, C.; Cheng, G.; Wu, A. Genomic annotation and molecular evolution of monkeypox virus outbreak in 2022. J. Med. Virol. 2023, 95, e28036. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.R.; Sachdev, S.; Reddy, A.S.; Kandasamy, S.L.; Byrareddy, S.N.; Lorson, C.L.; Singh, K. Mutations in the monkeypox virus replication complex: Potential contributing factors to the 2022 outbreak. J. Autoimmun. 2022, 133, 102928. [Google Scholar] [CrossRef]
- Yadav, P.; Devasurmutt, Y.; Tatu, U. Phylogenomic and structural analysis of the monkeypox virus shows evolution towards increased stability. Viruses 2022, 15, 127. [Google Scholar] [CrossRef] [PubMed]
- Sereewit, J.; Lieberman, N.A.P.; Xie, H.; Bakhash, S.; Nunley, B.E.; Chung, B.; Mills, M.G.; Roychoudhury, P.; Greninger, A.L. ORF-interrupting mutations in monkeypox virus genomes from Washington and Ohio, 2022. Viruses 2022, 14, 2393. [Google Scholar] [CrossRef]
- Brown, K.; Leggat, P.A. Human monkeypox: Current state of knowledge and implications for the future. Trop. Med. Infect. Dis. 2016, 1, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lun, W. Skin manifestation of human monkeypox. J. Clin. Med. 2023, 12, 914. [Google Scholar] [CrossRef] [PubMed]
- Falendysz, E.A.; Lopera, J.G.; Doty, J.B.; Nakazawa, Y.; Crill, C.; Lorenzsonn, F.; Kalemba, L.N.; Ronderos, M.D.; Mejia, A.; Malekani, J.M.; et al. Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.). PLoS Negl. Trop. Dis. 2017, 11, e0005809. [Google Scholar] [CrossRef] [PubMed]
- Zaucha, G.M.; Jahrling, P.B.; Geisbert, T.W.; Swearengen, J.R.; Hensley, L. The pathology of experimental aerosolized monkeypox virus infection in cynomolgus monkeys (Macaca fascicularis). Lab. Invest. 2001, 81, 1581–1600. [Google Scholar] [CrossRef]
- Ogoina, D.; Damon, I.; Nakoune, E. Clinical review of human mpox. Clin. Microbiol. Infect. 2023, 29, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Paidas, M.J.; Fadel, A.; Ramamoorthy, R.; Garcia, E.; Saadoon, Z.F.; Casmartino, E.; Mendez, L.; Williams, E.A.; Ruiz-Cordero, R.; et al. Prior viral infection determines the mode and severity of monkeypox virus. Int. J. Infect. Dis. 2023, 131, 95–99. [Google Scholar] [CrossRef]
- Johnston, S.C.; Johnson, J.C.; Stonier, S.W.; Lin, K.L.; Kisalu, N.K.; Hensley, L.E.; Rimoin, A.W. Cytokine modulation correlates with severity of monkeypox disease in humans. J. Clin. Virol. 2015, 63, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.F.; Dyall, J.; Ragland, D.R.; Huzella, L.; Byrum, R.; Jett, C.; St Claire, M.; Smith, A.L.; Paragas, J.; Blaney, J.E.; et al. Comparative analysis of monkeypox virus infection of cynomolgus macaques by the intravenous or intrabronchial inoculation route. J. Virol. 2011, 85, 2112–2125. [Google Scholar] [CrossRef] [PubMed]
- Nalca, A.; Livingston, V.A.; Garza, N.L.; Zumbrun, E.E.; Frick, O.M.; Chapman, J.L.; Hartings, J.M. Experimental infection of cynomolgus macaques (Macaca fascicularis) with aerosolized monkeypox virus. PLoS ONE 2010, 5, e12880. [Google Scholar] [CrossRef]
- Barnewall, R.E.; Fisher, D.A.; Robertson, A.B.; Vales, P.A.; Knostman, K.A.; Bigger, J.E. Inhalational monkeypox virus infection in cynomolgus macaques. Front. Cell. Infect. Microbiol. 2012, 2, 117. [Google Scholar] [CrossRef]
- Hutson, C.L.; Damon, I.K. Monkeypox virus infections in small animal models for evaluation of anti-poxvirus agents. Viruses 2010, 2, 2763–2776. [Google Scholar] [CrossRef]
- Scanga, C.A.; Flynn, J.L. Modeling tuberculosis in nonhuman primates. Cold Spring Harb. Perspect. Med. 2014, 4, a018564. [Google Scholar] [CrossRef] [PubMed]
- Resman Rus, K.; Zakotnik, S.; Sagadin, M.; Kolenc, M.; Skubic, L.; Knap, N.; Korva, M.; Poljak, M.; Avšič-Županc, T. Review of virological methods for laboratory diagnosis and characterization of monkeypox virus (MPXV): Lessons learned from the 2022 mpox outbreak. Acta Dermatovenerol. Alp. Pannonica Et Adriat. 2024, 33, 23–35. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Z. Mpox: A review of laboratory detection techniques. Arch. Virol. 2023, 168, 221. [Google Scholar] [CrossRef] [PubMed]
- Luciani, L.; Inchauste, L.; Ferraris, O.; Charrel, R.; Nougairède, A.; Piorkowski, G.; Peyrefitte, C.; Bertagnoli, S.; de Lamballerie, X.; Priet, S. A novel and sensitive real-time PCR system for universal detection of poxviruses. Sci. Rep. 2021, 11, 1798. [Google Scholar] [CrossRef]
- Gul, I.; Liu, C.; Yuan, X.; Du, Z.; Zhai, S.; Lei, Z.; Chen, Q.; Raheem, M.A.; He, Q.; Hu, Q.; et al. Current and perspective sensing methods for monkeypox virus. Bioengineering 2022, 9, 571. [Google Scholar] [CrossRef]
- Nakhaie, M.; Arefinia, N.; Charostad, J.; Bashash, D.; Haji Abdolvahab, M.; Zarei, M. Monkeypox virus diagnosis and laboratory testing. Rev. Med. Virol. 2023, 33, e2404. [Google Scholar] [CrossRef]
- Silva, J.D.; Zauli, D.A. A-301 analytical and clinical performance of the molecular method for monkeypox virus detection. Clin. Chem. 2023, 69, hvad097.266. [Google Scholar] [CrossRef]
- de Souza, L.W.S.; de Gouvêa, A.R.; de Barros, D.P.; Vilela, F.; Scarano, K.T.; de souza, R.R.; Siebra, S.F. Manejo clínico e recomendações do monkeypox no Brasil. Rev. FOCO 2023, 16, e2596. [Google Scholar] [CrossRef]
- Kreutz, L.C.; Rezende, M.A.; Maté, Y.A. Varíola dos macacos (monkeypox virus—Poxviridae): Uma breve revisão. Ars. Vet. 2022, 38. [Google Scholar] [CrossRef]
- Silva, B.; Pereira Souza, M.; Curcelli, F.; Cremonesi, A.S. Vírus da varíola do macaco: Modelagem e análise de proteínas por bioinformática. Ens. USF 2023, 6, 41–51. [Google Scholar] [CrossRef]
- Pereira, V.S.M.; Netto, G.P.M.; Filho, A.R.A.F.; Hajjar, A.C.; Coury, H.d.P.T.; Pedrosa, L.L.; de Carvalho, W.E.; Wood, B.J.A.; Ratz, A.C.Y.; Antunes, J.A.V.; et al. Varíola dos macacos: Uma visão geral da doença reemergente no contexto atual. Braz. J. Dev. 2022, 8, 68071–68081. [Google Scholar] [CrossRef]
- Alves, A.V.G.; Fernandes Filho, D.P.; Pinheiro, A.G.A.; Santos, G.V.M. Varíola dos macacos: Nova ameaça pandêmica? Imunologia e diagnóstico do vírus. Rev. Ibero-Am. Humanidades Ciências E Educ. 2023, 1, 616–623. [Google Scholar] [CrossRef]
- Isidro, J.; Borges, V.; Pinto, M.; Sobral, D.; Santos, J.D.; Nunes, A.; Mixao, V.; Ferreira, R.; Santos, D.; Duarte, S.; et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 2022, 28, 1569–1572. [Google Scholar] [CrossRef]
- Azzi, A. Unusual monkeypox virus outbreak in 2022: Phenotypic and molecular characteristics. Asp. Mol. Med. 2023, 1, 100001. [Google Scholar] [CrossRef]
- Luna, N.; Ramirez, A.L.; Munoz, M.; Ballesteros, N.; Patino, L.H.; Castaneda, S.A.; Bonilla-Aldana, D.K.; Paniz-Mondolfi, A.; Ramirez, J.D. Phylogenomic analysis of the monkeypox virus (MPXV) 2022 outbreak: Emergence of a novel viral lineage? Travel. Med. Infect. Dis. 2022, 49, 102402. [Google Scholar] [CrossRef] [PubMed]
- Luna, N.; Munoz, M.; Bonilla-Aldana, D.K.; Patino, L.H.; Kasminskaya, Y.; Paniz-Mondolfi, A.; Ramirez, J.D. Monkeypox virus (MPXV) genomics: A mutational and phylogenomic analyses of B.1 lineages. Travel. Med. Infect. Dis. 2023, 52, 102551. [Google Scholar] [CrossRef] [PubMed]
- Beattie, E.; Tartaglia, J.; Paoletti, E. Vaccinia virus-encoded eIF-2 alpha homolog abrogates the antiviral effect of interferon. Virology 1991, 183, 419–422. [Google Scholar] [CrossRef]
- Alakunle, E.; Moens, U.; Nchinda, G.; Okeke, M.I. Monkeypox virus in Nigeria: Infection biology, epidemiology, and evolution. Viruses 2020, 12, 1257. [Google Scholar] [CrossRef] [PubMed]
- Ropp, S.L.; Jin, Q.; Knight, J.C.; Massung, R.F.; Esposito, J.J. PCR strategy for identification and differentiation of small pox and other orthopoxviruses. J. Clin. Microbiol. 1995, 33, 2069–2076. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Olson, V.A.; Laue, T.; Laker, M.T.; Damon, I.K. Detection of monkeypox virus with real-time PCR assays. J. Clin. Virol. 2006, 36, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Davi, S.D.; Kissenkotter, J.; Faye, M.; Bohlken-Fascher, S.; Stahl-Hennig, C.; Faye, O.; Faye, O.; Sall, A.A.; Weidmann, M.; Ademowo, O.G.; et al. Recombinase polymerase amplification assay for rapid detection of monkeypox virus. Diagn. Microbiol. Infect. Dis. 2019, 95, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Karagoz, A.; Tombuloglu, H.; Alsaeed, M.; Tombuloglu, G.; AlRubaish, A.A.; Mahmoud, A.; Smajlovic, S.; Cordic, S.; Rabaan, A.A.; Alsuhaimi, E. Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. J. Infect. Public Health 2023, 16, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Altindis, M.; Kahraman Kilbas, E.P. Managing viral emerging infectious diseases via current and future molecular diagnostics. Diagnostics 2023, 13, 1421. [Google Scholar] [CrossRef] [PubMed]
- Mileto, D.; Riva, A.; Cutrera, M.; Moschese, D.; Mancon, A.; Meroni, L.; Giacomelli, A.; Bestetti, G.; Rizzardini, G.; Gismondo, M.R.; et al. New challenges in human monkeypox outside Africa: A review and case report from Italy. Travel. Med. Infect. Dis. 2022, 49, 102386. [Google Scholar] [CrossRef] [PubMed]
- Uhteg, K.; Mostafa, H.H. Validation and implementation of an orthopoxvirus qualitative real-time PCR for the diagnosis of monkeypox in the clinical laboratory. J. Clin. Virol. 2023, 158, 105327. [Google Scholar] [CrossRef]
- Stadhouders, R.; Pas, S.D.; Anber, J.; Voermans, J.; Mes, T.H.M.; Schutten, M. The Effect of Primer-Template Mismatches on the Detection and Quantification of Nucleic Acids Using the 5′ Nuclease Assay. J. Mol. Diagn. 2010, 12, 109–117. [Google Scholar] [CrossRef]
- Elnifro, E.M.; Ashshi, A.M.; Cooper, R.J.; Klapper, P.E. Multiplex PCR: Optimization and application in diagnostic virology. Clin. Microbiol. Rev. 2000, 13, 559–570. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Wilkins, K.; Hughes, C.; Damon, I.K. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. J. Virol. Methods 2010, 169, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Veintimilla, C.; Catalan, P.; Alonso, R.; Garcia de Viedma, D.; Perez-Lago, L.; Palomo, M.; Cobos, A.; Aldamiz-Echevarria, T.; Munoz, P. The relevance of multiple clinical specimens in the diagnosis of monkeypox virus, Spain, June 2022. Eurosurveillance 2022, 27, 2200598. [Google Scholar] [CrossRef] [PubMed]
- Coppens, J.; Vanroye, F.; Brosius, I.; Liesenborghs, L.; van Henten, S.; Vanbaelen, T.; Bracke, S.; Berens-Riha, N.; De Baetselier, I.; Kenyon, C.; et al. Alternative sampling specimens for the molecular detection of mpox (formerly monkeypox) virus. J. Clin. Virol. 2023, 159, 105372. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Jiang, S.-C.; Li, Z.-L. Detection of monkeypox virus in anorectal swabs from asymptomatic men who have sex with men in a sexually transmitted infection screening program in Paris, France. Ann. Intern. Med. 2023, 176, eL230023. [Google Scholar] [CrossRef] [PubMed]
- Sklenovska, N.; Bloemen, M.; Vergote, V.; Logist, A.S.; Vanmechelen, B.; Laenen, L.; Andre, E.; Muyembe-Tamfum, J.J.; Wollants, E.; Van Ranst, M.; et al. Design and validation of a laboratory-developed diagnostic assay for monkeypox virus. Virus Genes 2023, 59, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shahed-Ai-Mahmud, M.; Chen, A.; Li, K.; Tan, H.; Joyce, R. An overview of antivirals against monkeypox virus and other orthopoxviruses. J. Med. Chem. 2023, 66, 4468–4490. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Gaur, M.; Mahanandia, N.C.; Subudhi, E.; Swain, R.P.; Subudhi, B.B. Identification of core therapeutic targets for monkeypox virus and repurposing potential of drugs against them: An in silico approach. Comput. Biol. Med. 2023, 161, 106971. [Google Scholar] [CrossRef]
- Hossain, F.M.A.; Bappy, M.N.I.; Robin, T.B.; Ahmad, I.; Patel, H.; Jahan, N.; Rabbi, M.G.R.; Roy, A.; Chowdhury, W.; Ahmed, N.; et al. A review on computational studies and bioinformatics analysis of potential drugs against monkeypox virus. J. Biomol. Struct. Dyn. 2023, 42, 6091–6107. [Google Scholar] [CrossRef] [PubMed]
- Chiem, K.; Nogales, A.; Lorenzo, M.; Morales Vasquez, D.; Xiang, Y.; Gupta, Y.K.; Blasco, R.; de la Torre, J.C.; Martinez-Sobrido, L. Identification of in vitro inhibitors of monkeypox replication. Microbiol. Spectr. 2023, 11, e0474522. [Google Scholar] [CrossRef] [PubMed]
- Rubins, K.H.; Hensley, L.E.; Relman, D.A.; Brown, P.O. Stunned silence: Gene expression programs in human cells infected with monkeypox or vaccinia virus. PLoS ONE 2011, 6, e15615. [Google Scholar] [CrossRef] [PubMed]
- Akash, S.; Rahman, M.M.; Goncalves Lima, C.M.; Emran, T.B.; Sultana, S.; Naz, S.; Aziz, T.; Alharbi, M.; Alshammari, A.; Alasmari, A.F. Design and development of new inhibitors against breast cancer, monkeypox and Marburg virus by modification of natural Fisetin via in silico and SAR studies. Acta Biochim. Pol. 2023, 70, 599–600. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Ahammad, I.; Chowdhury, Z.M.; Das, K.C.; Keya, C.A.; Salimullah, M. Proteome-based investigation identified potential drug repurposable small molecules against monkeypox disease. Mol. Biotechnol. 2024, 66, 626–640. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Adil, S.; Qudsia, H.A.; Waheed, Y.; Alshabrmi, F.M.; Wei, D.Q. Structure-based design of promising natural products to inhibit thymidylate kinase from monkeypox virus and validation using free energy calculations. Comput. Biol. Med. 2023, 158, 106797. [Google Scholar] [CrossRef] [PubMed]
- Zgarbova, M.; Otava, T.; Silhan, J.; Nencka, R.; Weber, J.; Boura, E. Inhibitors of mpox VP39 2′-o methyltransferase efficiently inhibit the monkeypox virus. Antivir. Res. 2023, 218, 105714. [Google Scholar] [CrossRef] [PubMed]
- Silhan, J.; Klima, M.; Otava, T.; Skvara, P.; Chalupska, D.; Chalupsky, K.; Kozic, J.; Nencka, R.; Boura, E. Discovery and structural characterization of monkeypox virus methyltransferase VP39 inhibitors reveal similarities to SARS-CoV-2 nsp14 methyltransferase. Nat. Commun. 2023, 14, 2259. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Chakraborty, S.; Ahmad, M.; Kumar, V.; Tailor, P.B.; Biswal, B.K. Identification of probable inhibitors for the DNA polymerase of the monkeypox virus through the virtual screening approach. Int. J. Biol. Macromol. 2023, 229, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Abduljalil, J.M.; Elfiky, A.A.; Elgohary, A.M. Exploration of natural compounds against the human mpox virus DNA-dependent RNA polymerase in silico. J. Infect. Public Health 2023, 16, 996–1003. [Google Scholar] [CrossRef]
- Dubey, A.; Alawi, M.M.; Alandijany, T.A.; Alsaady, I.M.; Altwaim, S.A.; Sahoo, A.K.; Dwivedi, V.D.; Azhar, E.I. Exploration of microbially derived natural compounds against monkeypox virus as viral core cysteine proteinase inhibitors. Viruses 2023, 15, 251. [Google Scholar] [CrossRef] [PubMed]
- Ashley, C.N.; Broni, E.; Wood, C.M.; Okuneye, T.; Ojukwu, M.T.; Dong, Q.; Gallagher, C.; Miller, W.A., 3rd. Identifying potential monkeypox virus inhibitors: An in silico study targeting the A42R protein. Front. Cell. Infect. Microbiol. 2024, 14, 1351737. [Google Scholar] [CrossRef] [PubMed]
- Lokhande, K.B.; Shrivastava, A.; Singh, A. In silico discovery of potent inhibitors against monkeypox’s major structural proteins. J. Biomol. Struct. Dyn. 2023, 41, 14259–14274. [Google Scholar] [CrossRef] [PubMed]
- Alawam, A.S.; Alawam, H.S.; Alshahrani, M.M.; Alwethaynani, M.S.; Alneghery, L.M.; Alamri, M.A. Structural and dynamical basis of VP35-RBD inhibition by marine fungi compounds to combat Marburg virus infection. Mar. Drugs 2024, 22, 34. [Google Scholar] [CrossRef]
- Molteni, C.; Forni, D.; Cagliani, R.; Arrigoni, F.; Pozzoli, U.; De Gioia, L.; Sironi, M. Selective events at individual sites underlie the evolution of monkeypox virus clades. Virus Evol. 2023, 9, vead031. [Google Scholar] [CrossRef]
- Desingu, P.A.; Rubeni, T.P.; Sundaresan, N.R. Evolution of monkeypox virus from 2017 to 2022: In the light of point mutations. Front. Microbiol. 2022, 13, 1037598. [Google Scholar] [CrossRef]
- Brennan, G.; Stoian, A.M.M.; Yu, H.; Rahman, M.J.; Banerjee, S.; Stroup, J.N.; Park, C.; Tazi, L.; Rothenburg, S. Molecular mechanisms of poxvirus evolution. mBio 2023, 14, e0152622. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.R.; Isaacs, S.N. Monkeypox virus and insights into its immunomodulatory proteins. Immunol. Rev. 2008, 225, 96–113. [Google Scholar] [CrossRef]
- Yu, X.; Shi, H.; Cheng, G. Mpox virus: Its molecular evolution and potential impact on viral epidemiology. Viruses 2023, 15, 995. [Google Scholar] [CrossRef] [PubMed]
- Sofiani, V.H.; Rukerd, M.R.Z.; Charostad, J.; Pardeshenas, M.; Ghazi, R.; Arefinia, N.; Shafieipour, S.; Salajegheh, F.; Nakhaie, M. From entry to evasion: A comprehensive analysis of host-virus interactions for monkeypox. Infect. Microbes Dis. 2024, 6, 56–64. [Google Scholar] [CrossRef]
- Rampogu, S.; Kim, Y.; Kim, S.W.; Lee, K.W. An overview on monkeypox virus: Pathogenesis, transmission, host interaction and therapeutics. Front. Cell. Infect. Microbiol. 2023, 13, 1076251. [Google Scholar] [CrossRef]
- Alakunle, E.; Kolawole, D.; Diaz-Canova, D.; Alele, F.; Adegboye, O.; Moens, U.; Okeke, M.I. A comprehensive review of monkeypox virus and mpox characteristics. Front. Cell. Infect. Microbiol. 2024, 14, 1360586. [Google Scholar] [CrossRef]
- Panda, D.; Cherry, S. Cell-based genomic screening: Elucidating virus-host interactions. Curr. Opin. Virol. 2012, 2, 784–792. [Google Scholar] [CrossRef]
- Ramage, H.; Cherry, S. Virus-host interactions: From unbiased genetic screens to function. Annu. Rev. Virol. 2015, 2, 497–524. [Google Scholar] [CrossRef]
- Rohaim, M.A.; Naggar, R.F.E.; Atasoy, M.O.; Munir, M. Molecular virology of orthopoxviruses with special reference to monkeypox virus. Adv. Exp. Med. Biol. 2024, 1451, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Lansiaux, E.; Jain, N.; Laivacuma, S.; Reinis, A. The virology of human monkeypox virus (hMPXV): A brief overview. Virus Res. 2022, 322, 198932. [Google Scholar] [CrossRef]
- Ejaz, H.; Junaid, K.; Younas, S.; Abdalla, A.E.; Bukhari, S.N.A.; Abosalif, K.O.A.; Ahmad, N.; Ahmed, Z.; Hamza, M.A.; Anwar, N. Emergence and dissemination of monkeypox, an intimidating global public health problem. J. Infect. Public Health 2022, 15, 1156–1165. [Google Scholar] [CrossRef]
No. | Year | Area | Theme | Main Topic | Reference |
---|---|---|---|---|---|
1 | 2011 | Global | Molecular Pathogenesis | Disease progression using molecular imaging | Dyall et al. [11] |
2 | 2022 | Global | Epidemiology and Evolution | Epidemiology, transmission, and molecular properties of Monkeypox | Kannan et al. [5] |
3 | 2023 | Global | Epidemiology and Evolution | Molecular evolution and genome analysis of the human Monkeypox virus | Wolf et al. [7] |
4 | 2023 | Brazil | Epidemiology and Evolution | Phylogenetic and molecular evolution of Monkeypox | Ferrareze et al. [1] |
5 | 2023 | Global | Therapeutics | Identification of flavonoid inhibitors targeting thymidine kinase | Abdizadeh [10] |
6 | 2024 | Global | Diagnostics | Validation of high-throughput molecular tests for Monkeypox detection | Anderson et al. [12] |
7 | 2024 | Nigeria | Diagnostics | Molecular detection of Monkeypox virus in wild rodents and humans | Abafi et al. [8] |
8 | 2024 | Global | Host-Virus Interactions | Host-virus interactions and immune response pathways | Tang et al. [6] |
9 | 2024 | Global | Host-Virus Interactions | Codon usage and protein evolution in Monkeypox virus | Shan et al. [15] |
10 | 2024 | Global | Therapeutics | Repositioning anti-infective compounds against cysteine proteinase | Rabaan et al. [18] |
11 | 2024 | China | Epidemiology and Evolution | Phylogeny and molecular evolution of Guangdong Monkeypox outbreak | Yu et al. [16] |
12 | 2024 | Global | Therapeutics | Potential inhibitors of envelope protein E8 using molecular simulations | Das et al. [19] |
13 | 2024 | Global | Therapeutics | Silencing E8L protein using siRNA for therapeutic purposes | Islam et al. [20] |
14 | 2024 | Global | Molecular Pathogenesis | Genetic, clinical, and therapeutic perspectives on Monkeypox | Wambani et al. [9] |
15 | 2024 | Global | Therapeutics | Pharmacophore modeling and drug discovery targeting thymidylate kinase | Charles et al. [21] |
16 | 2024 | Global | Therapeutics | Drug repurposing against Monkeypox virus RNA polymerase | Khan et al. [4] |
17 | 2024 | Africa | Epidemiology and Evolution | Monkeypox evolution and host interactions through computational studies | Abafi et al. [8] |
Clade | Primary Region | Distinctive Feature | Transmission | Public Health Implications |
---|---|---|---|---|
I | Central Africa | High virulence, higher case fatality rate than Clade II. | Primarily zoonotic with limited human-to-human transmission. | High fatality rates require focused surveillance in endemic regions and access to effective treatments. |
IIa | West Africa, Global cases traced to zoonotic origins | Less virulent than Clade I, endemic in West Africa. | Primarily zoonotic, lower human-to-human transmission. | This zoonotic transmission underscores the need for enhanced wildlife monitoring and public education. |
IIb | Multiple global regions, no known zoonotic link for 2022 PHEIC | Sequence clustering from 2017–2019, distinct global transmission. | Exclusively human-to-human transmission through close contact. | Increased transmissibility necessitates global surveillance and targeted vaccine deployment. |
Gene | Protein Coded | Main Role | Source |
---|---|---|---|
OPG027 | C7L | Host range determination and antiviral activity inhibition | Shan et al. [15] |
D1L | Ankyrin repeat protein | Adaptation to human host and person-to-person transmission | Tang et al. [6] |
IFIT1/2 | IFIT1/2 | Antiviral activity by inhibiting mRNA translation initiation | |
Cysteine protease | Cysteine protease | Viral replication by cleaving precursor polyproteins | Rabaan et al. [18] |
Ankyrin-like/Kelch-like | Ankyrin-like/Kelch-like proteins | Immunomodulation and potential influence on host range | Ferrareze et al. [1] |
BR-203, BR-209, COP-C3L | BR-203, BR-209, COP-C3L proteins | Variations in virulence between Central and Western African strains | Kannan et al. [5]; Tang et al. [6]; Ferrareze et al. [1] |
D14R | MOPICE | Virulence factor, absent in Western African strains | Shan et al. [15]; Ferrareze et al. [1]; Wambani et al. [9] |
Interaction Type | Description | References |
---|---|---|
Immune Response Inhibition | The MPXV developed strategies to suppress the host’s immune response. The OPG027 gene also inhibits the host’s antiviral activity and modulates the immune response of T cells, suppressing the activation of host T-cell receptors. | Wolf et al. [7], Kannan et al. [5], and Shan et al. [15] |
Interaction with Host Proteins | The MPXV C7L gene, an ortholog of OPG027 in the Vaccinia virus, encodes a protein interacting with human SAMD9 protein, which is crucial for viral growth in human cells and SAMD9 binding. Mutations like F79L can impact transmission, pathogenicity, or immune evasion of the Clade I MPXV. | Shan et al. [15] |
mRNA Translation Inhibition | Host genes IFIT1 and IFIT2 inhibit mRNA translation by binding to the eukaryotic initiation factor 3 (eIF3). The MPXV evolved to inhibit the expression of these genes, evading antiviral effects. | Tang et al. [6] |
Targets for Antiviral Therapies | Understanding molecular interactions between the MPXV and the host aids in developing antiviral therapy, focusing on viral proteins. | Abdizadeh [10], Charles et al. [21], Rabaan et al. [18], Das et al. [19], and Alharbi et al. [38], |
Thymidine Kinase (TK) | Crucial for viral DNA synthesis. TK inhibition is a promising strategy for antiviral development, with natural flavonoids showing potential as TK inhibitors. | Abdizadeh [10], Yousaf et al. [3], and Charles et al. [21] |
Nuclear Cysteine Protease | Essential for viral replication, making it a viable therapeutic target. Anti-infective compounds like tetracycline show potential as inhibitors. | Rabaan et al. [18] |
VP39 Methyltransferase | The key to mRNA “capping” is to protect viral mRNA from degradation and ensure efficient translation. Inhibiting VP39 could impair viral replication and immune evasion, with marine fungi-derived compounds showing potential as inhibitors. | Alharbi et al. [38] and Shan et al. [15] |
RNA Polymerase A6R Subunit | Crucial for viral genome transcription. FDA-approved drugs like Nilotinib, Conivaptan, and Ponatinib show potential as inhibitors. | Khan et al. [4] |
Envelope Protein E8 | Crucial for viral binding to host cells. Inhibiting E8 could block viral entry. Natural compounds like punicalagin show potential as inhibitors. | Das et al. [19] and Islam et al. [20] |
Mutations & Adaptation | Mutations in viral genes (e.g., D1L, OPG027, and A49R) may affect viral interaction with host cells, influencing virulence and transmission. APOBEC3-induced genome editing can accelerate viral adaptation to new hosts. | Tang et al. [6], Shan et al. [15], and Yu et al. [16] |
Method | Principle | Advantages | Disadvantages | References |
---|---|---|---|---|
Real-Time PCR (qPCR) | Amplifies specific viral DNA sequences to detect the MPXV, even in low viral load samples. | High sensitivity and specificity; improves assay reliability by using dual targets. | It requires specialized equipment and expertise and is prone to mutation-related resistance. | Kannan et al. [5], Anderson et al. [12], Dyall et al. [11], and Luciani et al. [59] |
Transcriptome Sequencing | Analyzes gene expression in MPXV-infected cells to understand molecular pathways in infection and immune evasion. | Reveals differentially expressed genes, aiding in antiviral therapy development. | Requires advanced sequencing facilities; analysis can be time-consuming. | Tang et al. [6] |
Phylogenetic Analysis | Sequences the MPXV’s genome to classify isolates, track outbreaks, and detect mutations. | Tracks viral evolution identifies outbreak origins, and detects resistance-related mutations. | Dependent on access to diverse genomic data; costly and computationally intensive. | Ferrareze et al. [1] and Yu et al. [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cambaza, E.M. A Review of the Molecular Understanding of the Mpox Virus (MPXV): Genomics, Immune Evasion, and Therapeutic Targets. Zoonotic Dis. 2025, 5, 3. https://doi.org/10.3390/zoonoticdis5010003
Cambaza EM. A Review of the Molecular Understanding of the Mpox Virus (MPXV): Genomics, Immune Evasion, and Therapeutic Targets. Zoonotic Diseases. 2025; 5(1):3. https://doi.org/10.3390/zoonoticdis5010003
Chicago/Turabian StyleCambaza, Edgar Manuel. 2025. "A Review of the Molecular Understanding of the Mpox Virus (MPXV): Genomics, Immune Evasion, and Therapeutic Targets" Zoonotic Diseases 5, no. 1: 3. https://doi.org/10.3390/zoonoticdis5010003
APA StyleCambaza, E. M. (2025). A Review of the Molecular Understanding of the Mpox Virus (MPXV): Genomics, Immune Evasion, and Therapeutic Targets. Zoonotic Diseases, 5(1), 3. https://doi.org/10.3390/zoonoticdis5010003