Innovative Techniques for Electrolytic Manganese Residue Utilization: A Review
Abstract
:1. Introduction
1.1. The Electrolytic Manganese Metal Production
1.2. Electrolytic Manganese Residue
2. Research Methodology
3. Methods of Recovering Valuable Elements from EMR
3.1. Water-Leaching
3.2. Chemical Leaching: Acid-Leaching
3.3. Leaching Mechanism
- (1)
- In the acidic system, Fe3+/Fe2+ were extracted from EMR:
- (2)
- At the anode, low-valent Mn2+ and Fe2+ compounds undergo direct oxidation. The primary reactions at the anode are outlined as follows:
- (3)
- The reactions on the cathode;
3.4. Alkaline-Leaching
3.5. Bioleaching
3.6. Roasting
4. Thermodynamic Analysis of EMR
4.1. Kinetic Model and Phase Transformation Characteristics EMR
4.2. Oxidation of Manganese Oxide in EMR
5. Resource Utilization of EMR
5.1. EMR in Building Materials
5.1.1. EMR in Cementitious Materials
5.1.2. Bricks and Road Base Materials
References | Product Compositions (wt.%) | Product Characteristics | Leaching Toxicity (mg/L) |
---|---|---|---|
[120] | EMR: 12%, hot-stewed steel slag: 28%, cement: 60% | Cementitious materials: Compressive strength: 50.5 MPa, flexural strength: 8.0 MPa | - |
[121] | EMR: 13.5%, NaOH: 1.5% | Cement admixture: Compressive strength: 10.03 MPa | Cd: 0.0035, Ni: 0.1565, Zn: 0.1886, Cr: 0.0877, Mn: 0.5321, Pb: 0.1346 |
[122] | EMR: 20~35%, sulfur: 45~55%, sand: 15~30% | Sulfur concrete: Compressive strength: 48.89~63.17 MPa, flexural strength: 7.12~9.47 MPa | Cd: N.D., Cu: 0.004, Zn: 0.043, Cr: 0.033, Ni: 0.030, Mn: 0.045, Pb: 0.034 |
[120] | EMR: 14%, hot-stewed steel slag: 36%, cement: 50%, | Cementitious materials: Compressive strength: 43.5 MPa, flexural strength: 7.0 MPa | - |
[115] | Preparation: EMR: 8% TiO2 coating: absolute ethanol, water, and HNO3 coat on the cement | TiO2-EMR cement materials: compressive and flexural strength meet the national standard | Mn: 0.515, Cu: N.D., Cd: N.D., Zn: 0.086 Pb: 0.094, Cr: N.D |
[123] | EMR (be pretreated with carbide slag): 15%, clinker: 65%, blast furnace slag: 20% | Cement-based cementitious material: Compressive strength: 32.9 MPa, flexural strength: 6.8 MPa | Mn < 0.001, Cd < 0.001, As < 0.001, Cr: 0.053, NH4+N: 1.56, Pb: 0.003 |
[14] | EMR: 45%, GBFS: 50%, Ca(OH)2: 5% | Cementitious material: Compressive strength: 30 MPa | Mn: N.D., NH4+N ˂ 0.175 mmol/L |
[124] | EMR: 10–40%, limestone: 60–70%, kaolin: 0–20%, gypsum: 5% | Quasi-sulphoaluminate cementitious material: Compressive strength: 35–65 MPa | - |
[125] | EMR: 5%, fly ash: 10%, blast furnace slag 10%, | The compressive strength and flexural strength exhibit an initial increase (0–5%) followed by a drop (5–20%) when the EMR increases. EIF90 of 5.4 kg∙MPa−1∙m3 | - |
[113] | Activator (EMR:Ca(OH)2:clinker = 30:3:5): 20~35%, GBFS: 30~65%, clinker > 5% | Preparation of electrolytic manganese residue–ground granulated blast furnace slag cement | - |
References | Product Compositions (wt.%) | Product Characteristics | Leaching Toxicity (mg/L) |
---|---|---|---|
[126] | EMR: 42.7%, red mud: 21%, aggregate: 15%, cement: 5%, carbide slag 6.3% | Non-sintered bricks: Absorption band: 1621–1675 cm−1 | NH4+-N: N.D. |
[75] | EMR: 30%, aggregate: 59.5%, cement: 10.5% | Steam-autoclaved bricks: Compressive strength: 22.05 MPa, binding strength: 5.76 MPa | Mn: N.D., Hg2+: 4.4 × 10−4, Pb2+: 0.127, Cd2+: 0.010, Ba2+ N.D., Ni2+ N.D., Ag+ N.D., Cd2+ 0.010 Cr3+ N.D., Cr6+ N.D., Cu2+: 0.015, Zn2+: 0.029, Be2+: 0.015 |
[111] | Pretreated EMR: 30–40%, aggregate: 40–60%, cement: 10.5–12% | Steam-autoclaved bricks: Compressive strength: >15 MPa, dry shrinkage: ˂0.11% | Mn: N.D., Cd: 0.01, As: 1.23 × 10−3, Cr: N.D., Cu: 0.015, Hg: 4.4 × 10−4, Pb: 0.127 |
[127] | EMR: 63%, sand: 10%, Ca(OH)2: 12% thermal-mechanical activated K-feldspar: 15% | Autoclaved brick: Compressive strength: 23.5 MP | Mn: <0.02 |
[118] | EMR: 30%, additive: 8% | Permeable bricks: Splitting tensile strength: 3.53 MPa, permeability coefficient: 3.2 × 10−2 cm/s | Mn: N.D., Cd: N.D., As: N.D., Cr: N.D., Hg: N.D., Pb: N.D., NH4+-N: N.D. |
[116] | EMR: 90%, shale: 5–10%, coal ash: 0–5% | Sintered bricks: Compressive strength: 24.34–30.72 MPa, | - |
[119] | Surface material: Cement: 15%, pigment: 3%, stone: 75%, water: 7% Base material: EMR: 15%, stone: 72%, cement: 3%, additives: 7%, water: 3% | Permeable bricks: Splitting tensile strength: 3.85 MPa, permeability coefficient: 3.2 × 10−2 cm/s | - |
[128] | EMR: 100% | Baking-free bricks: Compressive strength > 12 MPa | Mn: N.D., NH4+-N: N.D |
EMR: 50%, river sand: 25%, quicklime: 10%, cement: 15% | Baking-free brick: Compressive strength: 19 MPa | - | |
[129] | EMR: 60%, standard sand: 20%, cement: 20% | Autoclaved brick: Resistance to break intensity: 4.4 MPa, resistance to pression intensity: 23.8 MPa | Zn: 0.33, Cu: 0.30, Hg: 0.018, Pb:1.9, Cr3+: 0.05, Cr6+: N.D., Cd: 0.02, As: 0.12, F: 0.11, Ni: 0.58 |
[130] | Pretreated EMR: 30% (EMR: lime = 8:1 (g/g)), water: 30%, cement: 10.5%, aggregate: 59.5% | Autoclaved brick: Compressive strength: 22.05 MPa, binding strength: 5.75 MPa | Mn: N.D., Cd: 0.01, As: 1.23 × 10−3, Cu: 0.015, Hg: 4.4 × 10−4, Pb: 0.127, Zn: 0.029, F: 0.052, Be: 0.015, Se: 5.56 × 10−3 |
[117] | EMR: 60%, river sand: 20%, cement:20% | Unfired EMR brick: Compressive strength: 42.6 MPa, water absorption rate: 6.5%, bulk density 1.9370~2.0239 g/cm3 | Mn: 1.2, Pb: <0.01, Zn: 0.12 Co: 0.01, As: 0.41 Fe: 086 |
5.1.3. Ceramics Materials
5.1.4. Agriculture (Organic Fertiliser)
5.1.5. EMR in Other Applications
6. Conclusions and Areas of Future Study
6.1. Prospects and Technical Aspects
6.2. Policy and Market
6.3. Environmental Sustainability and Economic Evaluation
Author Contributions
Funding
Conflicts of Interest
References
- Clarke, C.; Upson, S. A global portrait of the manganese industry—A socioeconomic perspective. Neurotoxicology 2017, 58, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, Y.; Lu, M.; Su, Z.; Li, G.; Jiang, T. Extraction and separation of manganese and iron from ferruginous manganese ores: A review. Miner. Eng. 2019, 131, 286–303. [Google Scholar] [CrossRef]
- Elliott, R.; Coley, K.; Mostaghel, S.; Barati, M. Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 1: Current Practice and Processing Fundamentals. JOM 2018, 70, 680–690. [Google Scholar] [CrossRef]
- Steenkamp, J.D.; Bam, W.G.; Ringdalen, E.; Mushwana, M.; Hockaday, S.A.C.; Sithole, A.N. Working towards an increase in manganese ferroalloy production in South Africa—A research agenda. J. S. Afr. Inst. Min. Metall. 2018, 118, 645–654. [Google Scholar] [CrossRef]
- Sun, D.; Yang, L.; Liu, N.; Jiang, W.; Jiang, X.; Li, J.; Yang, Z.; Song, Z. Sulfur resource recovery based on electrolytic manganese residue calcination and manganese oxide ore desulfurization for the clean production of electrolytic manganese. Chin. J. Chem. Eng. 2020, 28, 864–870. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, X.; Shen, X.; Zhai, Y.; Hong, J. Life cycle assessment of electrolytic manganese metal production. J. Clean. Prod. 2020, 253, 119951. [Google Scholar] [CrossRef]
- Lan, J.; Sun, Y.; Tian, H.; Zhan, W.; Du, Y.; Zhang, T.; Hou, H. Electrolytic manganese residue-based cement for manganese ore pit backfilling: Performance and mechanism. J. Hazard. Mater. 2021, 411, 124941. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Xu, Y.; Tang, B.; Wang, Y. Preparation of road base material by utilizing electrolytic manganese residue based on Si-Al structure: Mechanical properties and Mn2+ stabilization/solidification characterization. J. Hazard. Mater. 2020, 390, 122188. [Google Scholar] [CrossRef]
- Han, F.; Wu, L. Industrial Solid Waste Recycling in Western China; Springer Nature Singapore Pte Ltd.: Singapore, 2019. [Google Scholar] [CrossRef]
- Tian, Y.; Shu, J.; Chen, M.; Wang, J.; Wang, Y.; Luo, Z.; Wang, R.; Yang, F.; Xiu, F.; Sun, Z. Manganese and ammonia nitrogen recovery from electrolytic manganese residue by electric field enhanced leaching. J. Clean. Prod. 2019, 236, 117708. [Google Scholar] [CrossRef]
- He, D.; Luo, Z.; Zeng, X.; Chen, Q.; Zhao, Z.; Cao, W.; Shu, J.; Chen, M. Electrolytic manganese residue disposal based on basic burning raw material: Heavy metals solidification/stabilization and long-term stability. Sci. Total Environ. 2022, 825, 153774. [Google Scholar] [CrossRef]
- Wang, F.; Long, G.; Bai, M.; Wang, J.; Zhou, J.L.; Zhou, X. Application of electrolytic manganese residues in cement products through pozzolanic activity motivation and calcination. J. Clean. Prod. 2022, 338, 130629. [Google Scholar] [CrossRef]
- Wu, F.; Liu, X.; Qu, G.; Ning, P. A critical review on extraction of valuable metals from solid waste. Sep. Purif. Technol. 2022, 301, 122043. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Q.; Xue, J. Reuse of hazardous electrolytic manganese residue: Detailed leaching characterization and novel application as a cementitious material. Resour. Conserv. Recycl. 2020, 154, 104645. [Google Scholar] [CrossRef]
- Han, F.; Wu, L. Resource Utilization of Electrolytic Manganese Residues. In Industrial Solid Waste Recycling in Western China; Springer: Singapore, 2019; pp. 127–164. Available online: http://link.springer.com/10.1007/978-981-13-8086-0_3 (accessed on 10 May 2024).
- Xu, F.; Jiang, L.; Dan, Z.; Gao, X.; Duan, N.; Han, G.; Zhu, H. Water balance analysis and wastewater recycling investigation in electrolytic manganese industry of China—A case study. Hydrometallurgy 2014, 149, 12–22. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Chen, H.; Liu, C. Mn forms and environmental impact of electrolytic manganese residue. Adv. Mat. Res. 2011, 183–185, 570–574. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, P.; Li, J.; Gao, Y.; Liu, S.; Wang, C.; Onyekwena, C.C.; Lei, X. Exploring the migration and transformation behaviors of heavy metals and ammonia nitrogen from electrolytic manganese residue to agricultural soils through column leaching test. Environ. Sci. Pollut. Res. 2023, 30, 93199–93212. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Jiang, D.; Hong, M.; Liu, Z. Hazard-free treatment and resource utilisation of electrolytic manganese residue: A review. J. Clean. Prod. 2021, 306, 127224. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Nagano, H.; Murai, R.; Sugimori, H.; Sekiguchi, C.; Sumi, I. Development of Mn recovery process from waste dry cell batteries. J. Mater. Cycles Waste Manag. 2018, 20, 1909–1917. [Google Scholar] [CrossRef]
- Jacob, R.; Sankaranarayanan, S.R.; Babu, S.K. Recent advancements in manganese steels—A review. Mater. Today Proc. 2020, 27, 2852–2858. [Google Scholar] [CrossRef]
- Sun, X.; Hao, H.; Liu, Z.; Zhao, F. Insights into the global flow pattern of manganese. Resour. Policy 2020, 65, 101578. [Google Scholar] [CrossRef]
- Shu, J.; Liu, R.; Liu, Z.; Chen, H.; Tao, C. Enhanced extraction of manganese from electrolytic manganese residue by electrochemical. J. Electroanal. Chem. 2016, 780, 32–37. [Google Scholar] [CrossRef]
- Wang, F.; Long, G.; Ma, K.; Zeng, X.; Tang, Z.; Dong, R.; He, J.; Shangguan, M.; Hu, Q.; Liew, R.K. Recyling manganese-rich electrolytic residues: A review. Environ. Chem. Lett. 2023, 21, 2251–2284. [Google Scholar] [CrossRef]
- Yang, T.; Xue, Y.; Liu, X.; Zhang, Z. Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: A review. Process Saf. Environ. Prot. 2022, 157, 509–526. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.; Ma, X.; Cao, Z.; Zhang, C.; Zhong, H. A green production process of electrolytic manganese metal based on solvent extraction. Colloids Surf. A Physicochem. Eng. Asp. 2023, 670, 131517. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, C.Y. Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide. Hydrometallurgy 2007, 89, 137–159. [Google Scholar] [CrossRef]
- Ma, X.; Tan, H.; He, X. Preparation and surface modification of anhydrous calcium sulfate whiskers from FGD gypsum in autoclave-free hydrothermal system. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 2055–2062. [Google Scholar] [CrossRef]
- Fu, Y.; Qiao, H.; Feng, Q.; Chen, K.; Li, Y.; Xue, C.; Zhang, Y. Review of new methods for resource utilisation of electrolytic manganese residue and its application in building materials. Constr. Build. Mater. 2023, 401, 132901. [Google Scholar] [CrossRef]
- He, Z.; Tang, L.; Chen, K.; Wang, X.; Shen, Z.; Xiao, Y. Study on the mechanism and mechanical properties of magnesium oxychloride cement for blocking pollutants migration from electrolytic manganese residue. J. Mater. Cycles Waste Manag. 2023, 25, 3161–3174. [Google Scholar] [CrossRef]
- Ma, M.; Du, Y.; Bao, S.; Li, J.; Wei, H.; Lv, Y.; Song, X.; Zhang, T.; Du, D. Removal of cadmium and lead from aqueous solutions by thermal activated electrolytic manganese residues. Sci. Total Environ. 2020, 748, 141490. [Google Scholar] [CrossRef]
- Deng, Y.; Shu, J.; Lei, T.; Zeng, X.; Li, B.; Chen, M. A green method for Mn2+ and NH4+-N removal in electrolytic manganese residue leachate by electric field and phosphorus ore flotation tailings. Sep. Purif. Technol. 2021, 270, 118820. [Google Scholar] [CrossRef]
- Shu, J.; Wu, H.; Liu, R.; Liu, Z.; Li, B.; Chen, M.; Tao, C. Simultaneous stabilization/solidification of Mn2+ and -NH4+N from electrolytic manganese residue using MgO and different phosphate resource. Ecotoxicol. Environ. Saf. 2018, 148, 220–227. [Google Scholar] [CrossRef]
- Zhou, Y. Reusing electrolytic manganese residue as an activator: The effect of calcination on its mineralogy and activity. Constr. Build. Mater. 2021, 294, 123533. [Google Scholar] [CrossRef]
- Yao, L.; Xin, G.; Pu, P.; Yang, L.; Jiang, X.; Jiang, Z.; Jiang, W. Promotion of manganese extraction and flue gas desulfurization with manganese ore by iron in the anodic solution of electrolytic manganese. Hydrometallurgy 2021, 199, 105542. [Google Scholar] [CrossRef]
- Jun, C.; Fukang, J.; Chengshan, H.; Qianxu, Y. Study on the adsorption performance of electrolytic manganese slag-based zeolite for manganese ions. Inorg. Salt Ind. 2020, 51, 61–66. [Google Scholar] [CrossRef]
- Li, C.; Zhong, H.; Wang, S.; Xue, J. Leaching Behavior and Risk Assessment of Heavy Metals in a Landfill of Electrolytic Manganese Residue in Western Hunan, China. Hum. Ecol. Risk Assess. Int. J. 2014, 20, 1249–1263. [Google Scholar] [CrossRef]
- Su, H.; Zhou, W.; Lyu, X.; Liu, X.; Gao, W.; Li, C.; Li, S. Remediation treatment and resource utilization trends of electrolytic manganese residue. Miner. Eng. 2023, 202, 108264. [Google Scholar] [CrossRef]
- Li, W.; Jin, H.; Xie, H.; Wang, D. Progress in comprehensive utilization of electrolytic manganese residue: A review. Environ. Sci. Pollut. Res. 2023, 30, 48837–48853. [Google Scholar] [CrossRef]
- Tsay, M.-Y. A bibliometric analysis of hydrogen energy literature, 1965–2005. Scientometrics 2008, 75, 421–438. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, W.; Yang, Y.; Yang, Y.; Man, X. Global trends of municipal solid waste research from 1997 to 2014 using bibliometric analysis. J. Air Waste Manag. Assoc. 2015, 65, 1161–1170. [Google Scholar] [CrossRef]
- Borthakur, A.; Govind, M. Public understandings of E-waste and its disposal in urban India: From a review towards a conceptual framework. J. Clean. Prod. 2018, 172, 1053–1066. [Google Scholar] [CrossRef]
- Duan, N.; Fan, W.; Changbo, Z.; Chunlei, Z.; Hongbing, Y. Analysis of pollution materials generated from electrolytic manganese industries in China. Resour. Conserv. Recycl. 2010, 54, 506–511. [Google Scholar] [CrossRef]
- Shi, Y.; Long, G.; Wang, F.; Xie, Y.; Bai, M. Innovative co-treatment technology for effective disposal of electrolytic manganese residue. Environ. Pollut. 2023, 335, 122234. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wilson, B.P.; Lundström, M.; Liu, Z. Hazard-free treatment of electrolytic manganese residue and recovery of manganese using low temperature roasting-water washing process. J. Hazard. Mater. 2021, 402, 123561. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Dong, Y.; Xiang, Y.; Zhang, S.; Mei, T.; Hou, H. Selective recovery of manganese from electrolytic manganese residue by using water as extractant under mechanochemical ball grinding: Mechanism and kinetics. J. Hazard. Mater. 2021, 415, 125556. [Google Scholar] [CrossRef]
- Zheng, F.; Zhu, H.; Luo, T.; Wang, H.; Hou, H. Pure water leaching soluble manganese from electrolytic manganese residue: Leaching kinetics model analysis and characterization. J. Environ. Chem. Eng. 2020, 8, 103916. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Zhang, Q.; Li, L. Technology conditions and kinetics analysis of manganese and iron ions leaching from electrolytic manganese residue by acid reduction. Bull. Chin. Ceram. Soc. 2017, 36, 2844–28849. [Google Scholar]
- Yang, X.; Xiang, X.; Xue, X. Study on acid leaching experimental conditions of electrolytic manganese residue. Bull. Chin. Ceram. Soc. 2018, 37, 7. [Google Scholar]
- Zou, Q.; Liu, H.; Xie, H. Leaching process of electrolytic manganese slag by alkali solution and its kinetics. Miner. Metall. Eng. 2018, 38, 83–87. (In Chinese) [Google Scholar] [CrossRef]
- Li, C.; Zhong, H.; Wang, S.; Xue, J.; Zhang, Z. Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. J. Ind. Eng. Chem. 2015, 23, 344–352. [Google Scholar] [CrossRef]
- Wang, N.; Fang, Z.; Peng, S.; Cheng, D.; Du, B.; Zhou, C. Recovery of soluble manganese from electrolyte manganese residue using a combination of ammonia and CO2. Hydrometallurgy 2016, 164, 288–294. [Google Scholar] [CrossRef]
- Shu, J.; Wu, Y.; Deng, Y.; Lei, T.; Huang, J.; Han, Y.; Zhang, X.; Zhao, Z.; Wei, Y.; Chen, M. Enhanced removal of Mn2+ and NH4+-N in electrolytic manganese metal residue using washing and electrolytic oxidation. Sep. Purif. Technol. 2021, 270, 118798. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, J.; Xu, C.; Yang, J.; Liu, M.; Ren, M.; Tan, X.; Lin, A.; Yang, W. The formation of discharge standards of pollutants for municipal wastewater treatment plants needs adapt to local conditions in China. Environ. Sci. Pollut. Res. 2023, 30, 57207–57211. [Google Scholar] [CrossRef]
- Lai, H.; Huang, L.; Gan, C.; Xing, P.; Li, J.; Luo, X. Enhanced acid leaching of metallurgical grade silicon in hydrofluoric acid containing hydrogen peroxide as oxidizing agent. Hydrometallurgy 2016, 164, 103–110. [Google Scholar] [CrossRef]
- Wu, S.; Wang, L.; Zhao, L.; Zhang, P.; El-Shall, H.; Moudgil, B.; Haung, X.; Zhang, L. Recovery of rare earth elements from phosphate rock by hydrometallurgical processes—A critical review. Chem. Eng. J. 2018, 335, 774–800. [Google Scholar] [CrossRef]
- Yuzhu, O.; Youji, L.; Hui, L.; Zhiping, L.; Xiaowei, P.; Wenbin, Y. Recovery of manganese from electrolytic manganese residue by different leaching techniques in the presence of accessory ingredients. Rare Met. Mater. Eng. 2008, 37, 603–608. [Google Scholar]
- Peng, T.; Xu, L.; Chen, H. Preparation and characterization of high specific surface area Mn3O4 from electrolytic manganese residue. Cent. Eur. J. Chem. 2010, 8, 1059–1068. [Google Scholar] [CrossRef]
- Peng, T.; Xu, L.; Wang, X. Leaching of manganese residue for the preparation of trimanganese tetroxide with a high surface area. Chin. J. Geochem. 2013, 32, 331–336. [Google Scholar] [CrossRef]
- Shu, J.; Lin, F.; Chen, M.; Li, B.; Wei, L.; Wang, J.; Luo, Z.; Wang, R. An innovative method to enhance manganese and ammonia nitrogen leaching from electrolytic manganese residue by surfactant and anode iron plate. Hydrometallurgy 2020, 193, 105311. [Google Scholar] [CrossRef]
- Rao, S.; Sun, J.; Wang, D.; Liu, Z.; Zhu, W.; Cao, H.; Duan, L. Selective recovery of manganese and lead from electrolytic manganese residues in a sulfuric acid solution with galena as the reductant. Sep. Purif. Technol. 2023, 308, 122937. [Google Scholar] [CrossRef]
- Wu, S.; Liu, R.; Liu, Z.; Du, J.; Tao, C. Electrokinetic remediation of electrolytic manganese residue using solar-cell and leachate-recirculation. J. Chem. Eng. Jpn. 2019, 52, 710–717. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, R.; Shu, J.; Chen, M.; Xu, Z.; Han, Y.; Zhang, X.; Zhao, Z.; Wei, Y.; Chen, M. Enhanced manganese leaching from electrolytic manganese residue by electrochemical process and Na2SO3. Miner. Eng. 2022, 189, 107862. [Google Scholar] [CrossRef]
- Shu, J.; Liu, R.; Liu, Z.; Chen, H.; Tao, C. Leaching of manganese from electrolytic manganese residue by electro-reduction. Environ. Technol. 2017, 38, 2077–2084. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Sun, X.; Liu, R.; Liu, Z.; Wu, H.; Chen, M.; Li, B. Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents. Ecotoxicol. Environ. Saf. 2019, 171, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, H.; Liu, Z.; Tao, C. Electrokinetic remediation with solar powered for electrolytic manganese residue and researching on migration of ammonia nitrogen and manganese. J. Water Process Eng. 2020, 38, 101655. [Google Scholar] [CrossRef]
- Suanon, F.; Tang, L.; Sheng, H.; Fu, Y.; Xiang, L.; Herzberger, A.; Jiang, X.; Mama, D.; Wang, F. TW80 and GLDA-enhanced oxidation under electrokinetic remediation for aged contaminated-soil: Does it worth? Chem. Eng. J. 2020, 385, 123934. [Google Scholar] [CrossRef]
- Yang, Y.; Shu, J.; Zhang, L.; Su, P.; Meng, W.; Wan, Q.; Liu, Z.; Liu, R.; Chen, F.; Ming, X. Enhanced Leaching of Mn from Electrolytic Manganese Anode Slime via an Electric Field. Energy Fuels 2021, 35, 20224–20230. [Google Scholar] [CrossRef]
- Guo, X.; Yi, Y.; Shi, J.; Tian, Q. Leaching behavior of metals from high-arsenic dust by NaOH–Na2S alkaline leaching. Trans. Nonferrous Met. Soc. China 2016, 26, 575–580. [Google Scholar] [CrossRef]
- Shu, J.; Deng, Y.; Wei, X.; Chen, M.; Yang, Y.; Deng, Z. Migration and Transformation Behavior of Mn2+ and NH4+-N in Electrolytic Manganese Residue at Different Leaching pH Environments: Release Kinetic Model, Physical Phase Changes, and Formation of Manganese Oxide. ACS ES T Water 2023, 3, 2229–2237. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, J.; Wang, N. Treating electrolytic manganese residue with alkaline additives for stabilizing manganese and removing ammonia. Korean J. Chem. Eng. 2013, 30, 2037–2042. [Google Scholar] [CrossRef]
- Shu, J.; Liu, R.; Liu, Z.; Chen, H.; Du, J.; Tao, C. Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO. J. Hazard. Mater. 2016, 317, 267–274. [Google Scholar] [CrossRef]
- Zhang, D.; Xiao, D.; Yu, Q.; Chen, S.; Chen, S.; Miao, M. Preparation of Mesoporous Silica from Electrolytic Manganese Slags by Using Amino-Ended Hyperbranched Polyamide as Template. ACS Sustain. Chem. Eng. 2017, 5, 10258–10265. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Wei, H.; Yang, X.; Benoit, G.; Jiao, X. Alkaline-thermal activated electrolytic manganese residue-based geopolymers for efficient immobilization of heavy metals. Constr. Build. Mater. 2021, 298, 123853. [Google Scholar] [CrossRef]
- Lan, J.; Sun, Y.; Guo, L.; Du, Y.; Du, D.; Zhang, T.; Li, J.; Ye, H. Highly efficient removal of As(V) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent. J. Alloys. Compd. 2019, 811, 151973. [Google Scholar] [CrossRef]
- Liang, D.; Qin, F.; Li, X.; Jiang, J. Performance of Concrete Made with Manganese Slag. Appl. Mech. Mater. 2012, 117, 1185–1189. [Google Scholar] [CrossRef]
- Zhao, S.; Zheng, W.; Wang, C.; He, F.; Wang, J.; Lin, X.; Luo, X.; Feng, J. Environmentally-friendly biorecovery of manganese from electrolytic manganese residue using a novel Penicillium oxalicum strain Z6-5-1: Kinetics and mechanism. J. Hazard. Mater. 2023, 446, 130662. [Google Scholar] [CrossRef]
- Roy, J.J.; Madhavi, S.; Cao, B. Metal extraction from spent lithium-ion batteries (LIBs) at high pulp density by environmentally friendly bioleaching process. J. Clean. Prod. 2021, 280, 124242. [Google Scholar] [CrossRef]
- Sur, I.M.; Micle, V.; Hegyi, A.; Lăzărescu, A.-V. Extraction of Metals from Polluted Soils by Bioleaching in Relation to Environmental Risk Assessment. Materials 2022, 15, 3973. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, R.; Nie, Y.; Xia, L.; Li, P.; Fan, X.; Zheng, L. Extraction of Al and rare earths (Ce, Gd, Sc, Y) from red mud by aerobic and anaerobic bi-stage bioleaching. Chem. Eng. J. 2020, 401, 125914. [Google Scholar] [CrossRef]
- Lv, Y.; Li, J.; Ye, H.; Xu, Z.; Du, D.; Chen, S. Bioleaching of electrolytic manganese residue by silicate bacteria, and optimization of parameters during the leaching process. Miner. Metall. Process. 2018, 35, 176–183. [Google Scholar] [CrossRef]
- Lv, Y.; Li, J.; Ye, H.; Du, D.; Li, J.; Sun, P.; Ma, M.; Wen, J. Bioleaching behaviors of silicon and metals in electrolytic manganese residue using silicate bacteria. J. Clean. Prod. 2019, 228, 901–909. [Google Scholar] [CrossRef]
- Xin, B.; Chen, B.; Duan, N.; Zhou, C. Extraction of manganese from electrolytic manganese residue by bioleaching. Bioresour. Technol. 2011, 102, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Li, J.; Ye, H.; Du, D.; Gan, C.; Sun, P.; Wen, J. Bioleaching of silicon in electrolytic manganese residue using single and mixed silicate bacteria. Bioprocess Biosyst. Eng. 2019, 42, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Li, J.; Ye, H.; Du, D.; Sun, P.; Ma, M.; Zhang, T. Bioleaching of silicon in electrolytic manganese residue (EMR) by Paenibacillus mucilaginosus: Impact of silicate mineral structures. Chemosphere 2020, 256, 127043. [Google Scholar] [CrossRef] [PubMed]
- Duan, N.; Zhou, C.; Chen, B.; Jiang, W.; Xin, B. Bioleaching of Mn from manganese residues by the mixed culture of Acidithiobacillus and mechanism. J. Chem. Technol. Biotechnol. 2011, 86, 832–837. [Google Scholar] [CrossRef]
- Lan, J.; Sun, Y.; Chen, X.; Zhan, W.; Du, Y.; Zhang, T.; Ye, H.; Du, D.; Hou, H. Bio-leaching of manganese from electrolytic manganese slag by Microbacterium trichothecenolyticum Y1: Mechanism and characteristics of microbial metabolites. Bioresour. Technol. 2021, 319, 124056. [Google Scholar] [CrossRef]
- Huang, L.; Li, X.; Hu, J.; Deng, Q.; Yang, C.; Liu, W.; Zhao, F.L.; Jiang, H. Recovery of manganese as spinel MgMn2O4 cathode material from electrolytic manganese residue by Na2CO3 hydrothermal-roasting process. Sep. Purif. Technol. 2024, 336, 126248. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, Y.; Liu, H.; Li, Y.; Chen, S.; Tian, S. Hazard-Free Treatment of Electrolytic Manganese Residue and Recovery of High-Concentration SO2 Using High-Temperature Reduction Roasting Process. Separations 2023, 10, 288. [Google Scholar] [CrossRef]
- Li, G.; Liu, M.; Rao, M.; Jiang, T.; Zhuang, J.; Zhang, Y. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. J. Hazard. Mater. 2014, 280, 774–780. [Google Scholar] [CrossRef]
- Li, J.; Du, D.; Peng, Q.; Wu, C.; Lv, K.; Ye, H.; Chen, S.; Zhan, W. Activation of silicon in the electrolytic manganese residue by mechanical grinding-roasting. J. Clean. Prod. 2018, 192, 347–353. [Google Scholar] [CrossRef]
- Zhan, X.; Wang, J.; Yue, Z.; Deng, R.; Wang, Y.; Xu, X. Roasting mechanism of lightweight low-aluminum–silicon ceramisite derived from municipal solid waste incineration fly ash and electrolytic manganese residue. Waste Manag. 2022, 153, 264–274. [Google Scholar] [CrossRef]
- Guo, X.; Qin, H.; Tian, Q.; Zhang, L. The efficacy of a new iodination roasting technology to recover gold and silver from refractory gold tailing. J. Clean. Prod. 2020, 261, 121147. [Google Scholar] [CrossRef]
- Peng, N.; Pan, Q.; Liu, H.; Yang, Z.; Wang, G. Recovery of iron and manganese from iron-bearing manganese residues by multi-step roasting and magnetic separation. Miner. Eng. 2018, 126, 177–183. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Q.; Ding, S.; Su, S. Simultaneous absorption of SO2 and NOx with pyrolusite slurry combined with gas-phase oxidation of NO using ozone: Effect of molar ratio of O2/(SO2 + 0.5NOx) in flue gas. Chem. Eng. J. 2013, 228, 700–707. [Google Scholar] [CrossRef]
- Huang, L.; Li, X.; Li, Q.; Wang, Q.; Zhao, F.; Liu, W. Ammonia removal and simultaneous immobilization of manganese and magnesium from electrolytic manganese residue by a low-temperature CaO roasting process. Environ. Sci. Pollut. Res. 2024, 31, 11321–11333. [Google Scholar] [CrossRef]
- Li, X.; Zhou, M.; Chen, F.; Li, J.; Li, Y.; Wang, Y.; Hou, H. Clean Stepwise Extraction of Valuable Components from Electrolytic Manganese Residue via Reducing Leaching–Roasting. ACS Sustain. Chem. Eng. 2021, 9, 8069–8079. [Google Scholar] [CrossRef]
- He, S.; Liu, Z. Efficient process for recovery of waste LiMn2O4 cathode material: Low-temperature (NH4+)2SO4 calcination mechanisms and water-leaching characteristics. Waste Manag. 2020, 108, 28–40. [Google Scholar] [CrossRef]
- Nakajima, K.; Takeda, O.; Miki, T.; Matsubae, K.; Nagasaka, T. Thermodynamic Analysis for the Controllability of Elements in the Recycling Process of Metals. Environ. Sci. Technol. 2011, 45, 4929–4936. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, T.; Liu, X.; Cao, Z.; Gu, J.; Wang, Y. Enabling efficient and economical degradation of PCDD/Fs in MSWIFA via catalysis and dechlorination effect of EMR in synergistic thermal treatment. Chemosphere 2023, 342, 140164. [Google Scholar] [CrossRef]
- He, W.L.; Li, R.; Yang, Y.P.; Zhang, Y.; Nie, D. Kinetic and thermodynamic analysis on preparation of belite-calcium sulphoaluminate cement using electrolytic manganese residue and barium slag by TGA. Environ. Sci. Pollut. Res. 2023, 30, 95901–95916. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Q. Highly Efficient Removal of Cu (II) with Modified Electrolytic Manganese Residue as A Novel Adsorbent. Arab. J. Sci. Eng. 2022, 47, 6577–6589. [Google Scholar] [CrossRef]
- Li, C.; Yu, Y.; Li, Q.; Zhong, H.; Wang, S. Kinetics and equilibrium studies of phosphate removal from aqueous solution by calcium silicate hydrate synthesized from electrolytic manganese residue. Adsorpt. Sci. Technol. 2019, 37, 547–565. [Google Scholar] [CrossRef]
- Demirel, Y. Thermodynamic Analysis. Arab. J. Sci. Eng. 2013, 38, 221–249. [Google Scholar] [CrossRef]
- Duan, N.; Cui, K.; Zhu, C.; Jin, S. Study on phase evolution and promoting the pozzolanic activity of electrolytic manganese residue during calcination. Environ. Res. 2023, 227, 115774. [Google Scholar] [CrossRef]
- Wu, C.; Gu, S.; Zhang, Q.; Bai, Y.; Li, M.; Yuan, Y.; Wang, H.; Liu, X.; Yuan, Y.; Zhu, N.; et al. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 2019, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J.; Liu, B.; Huang, J.; Ye, J.; Li, Y.; Su, Z.; Wang, J. Extraction and Separation of Mn and Pb from Electrolytic Manganese Anodic Slime (EMAS) via SO2 Roasting Followed by Acid Leaching Process. JOM 2020, 72, 925–932. [Google Scholar] [CrossRef]
- Ma, G.; Liu, X.; Lv, Y.; Yan, X.; Zhu, X.; Zhang, M. A Research Progress on Stabilization/Solidification of Electrolytic Manganese Residue. Environ. Sci. Eng. 2023, 57–72. [Google Scholar] [CrossRef]
- Shua, J.; Liua, R.; Liua, Z.; Chena, H.; Taoa, C. Leaching of manganese from electrolytic manganese residue by electro-reduction method. Environ. Technol. 2024, 45, 1248. [Google Scholar] [CrossRef]
- Ye, D.; Xu, Z.; Fu, Y.; Zhao, Y. Effects of electrolytic manganese residue (EMR) to co-sintering mechanism of ceramic aggregate. Int. J. Appl. Ceram. Technol. 2022, 19, 3017–3029. [Google Scholar] [CrossRef]
- Du, B.; Zhou, C.; Duan, N. Recycling of electrolytic manganese solid waste in autoclaved bricks preparation in China. J. Mater. Cycles Waste Manag. 2014, 16, 258–269. [Google Scholar] [CrossRef]
- He, W.; Li, R.; Zhang, Y.; Nie, D. Synergistic use of electrolytic manganese residue and barium slag to prepare belite- sulphoaluminate cement study. Constr. Build. Mater. 2022, 326, 126672. [Google Scholar] [CrossRef]
- Wang, J.; Peng, B.; Chai, L.; Zhang, Q.; Liu, Q. Preparation of electrolytic manganese residue–ground granulated blastfurnace slag cement. Powder Technol. 2013, 241, 12–18. [Google Scholar] [CrossRef]
- Wang, Y. Research of utilizing electrolytic manganese residue for cement mineralizer. Concrete 2010, 8, 90–93. [Google Scholar]
- Li, Q.; Liu, Q.; Peng, B.; Chai, L.; Liu, H. Self-cleaning performance of TiO2-coating cement materials prepared based on solidification/stabilization of electrolytic manganese residue. Constr. Build. Mater. 2016, 106, 236–242. [Google Scholar] [CrossRef]
- Song, M.; Jie, Z.; Huan, Y.; Peng, Z.; Qingjie, Z. Investigation on sintering properties of electrolytic manganese residue-shale-coal ash raw compacts. EBSCO 2019, 46, 133. [Google Scholar]
- Zhou, C.; Du, B.; Wang, N.; Chen, Z. Preparation and strength property of autoclaved bricks from electrolytic manganese residue. J. Clean. Prod. 2014, 84, 707–714. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Liu, X.; Tang, B.; Mukiza, E.; Zhang, N. Preparation of non-sintered permeable bricks using electrolytic manganese residue: Environmental and NH3-N recovery benefits. J. Hazard. Mater. 2019, 378. [Google Scholar] [CrossRef]
- Tang, B.; Gao, S.; Wang, Y.; Liu, X.; Zhang, N. Pore structure analysis of electrolytic manganese residue based permeable brick by using industrial CT. Constr. Build. Mater. 2019, 208, 697–709. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, P.; Zhao, Y.; Liu, R.; Wei, J. Sulfate activation of electrolytic manganese residue on heat-stewed steel slag activity. Inorg. Chem. Ind. 2019, 51, 66–69. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175825714&partnerID=40&md5=230e4012129c4dc5b10131645e25f41e (accessed on 10 May 2024).
- Huang, C.; Shi, X.; Gong, J.; Chen, S. Alkali-activated electrolytic manganese residue preparation of cement admixture. Chin. J. Environ. Eng. 2017, 11, 1851–1856. [Google Scholar] [CrossRef]
- Yang, C.; Lv, X.X.; Tian, X.K.; Wang, Y.X.; Komarneni, S. An investigation on the use of electrolytic manganese residue as filler in sulfur concrete. Constr. Build. Mater. 2014, 73, 305–310. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Zhang, Y.; Tang, B.; Mukiza, E. Investigation on sulfate activation of electrolytic manganese residue on early activity of blast furnace slag in cement-based cementitious material. Constr. Build. Mater. 2019, 229, 116831. [Google Scholar] [CrossRef]
- Hou, P.-K.; Qian, J.-S.; Wang, Z.; Deng, C. Production of quasi-sulfoaluminate cementitious materials with electrolytic manganese residue. Cem. Concr. Compos. 2012, 34, 248–254. [Google Scholar] [CrossRef]
- Wang, F.; Long, G.; Bai, M.; Shi, Y.; Zhou, J.L. Feasibility of low-carbon electrolytic manganese residue-based supplementary cementitious materials. Sci. Total Environ. 2023, 883, 163672. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Ren, Y.Y.; Zhang, Z.Q.; Liu, X.M.; Wang, Y.G. Harmless treatment of electrolytic manganese residue: Ammonia nitrogen recovery, preparation of struvite and nonsintered bricks. Chem. Eng. J. 2023, 455, 140739. [Google Scholar] [CrossRef]
- Li, J.; Lv, Y.; Jiao, X.; Sun, P.; Li, J.; Wuri, L. Zhang, T. Electrolytic manganese residue based autoclaved bricks with Ca(OH)2 and thermal-mechanical activated K-feldspar additions. Constr. Build. Mater. 2020, 230, 116848. [Google Scholar] [CrossRef]
- Lan, J.; Zhang, S.; Mei, T.; Dong, Y.; Hou, H. Mechanochemical modification of electrolytic manganese residue: Ammonium nitrogen recycling, heavy metal solidification, and baking-free brick preparation. J. Clean. Prod. 2021, 329, 129727. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, W.; Liu, H. The research on preparation of a new building material with EMR and their properties. Adv. Mat. Res. 2011, 167–163, 4575–4579. [Google Scholar] [CrossRef]
- Wang, P.; Liu, D.-Y. Preparation of baking-free brick from manganese residue and its mechanical properties. J. Nanomater. 2013, 2013, 452854. [Google Scholar] [CrossRef]
- Jiang, L. Heat treatment parameters of preparing glass-ceramic with electrolytic manganese residue and their properties. J. Therm. Anal. Calorim. 2020, 140, 1737–1744. [Google Scholar] [CrossRef]
- Sławski, S.; Woźniak, A.; Bazan, P.; Mrówka, M. The Mechanical and Tribological Properties of Epoxy-Based Composites Filled with Manganese-Containing Waste. Materials 2022, 15, 1579. [Google Scholar] [CrossRef]
- Qian, J.; Hou, P.; Wang, Z.; Qu, Y. Crystallization characteristic of glass-ceramic made from electrolytic manganese residue. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2012, 27, 45–49. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, B.; Ge, W.; Yan, C.J.; Yang, X. Magnetic Separation and Magnetic Properties of Low-Grade Manganese Carbonate Ore. JOM 2014, 67, 361–368. [Google Scholar] [CrossRef]
- Hu, C.; Wang, L.; Yang, L.; Bai, J. Optimization mixture ratio parameters of lightweight aggregates incorporating municipal solid waste incineration fly ash and electrolytic manganese residues using the Uniform Design Method. Fresenius. Environ. Bull 2018, 27, 9147–9155. [Google Scholar]
- Hu, C.; Wang, L.; Zhan, X.; Gong, J.; Bai, J.; Yang, L. Preparation of ceramsite with MSWI fly ash and electrolytic manganese residues. Chin. J. Environ. Eng. 2019, 13, 177–185. [Google Scholar] [CrossRef]
- Wu, J.; Song, M.; Xu, X.; Cheng, H.; Rao, Z. Prospects and advances of comprehensive utilization of electrolytic manganese residue. Chin. J. Environ. Eng. 2014, 8, 2645–2652. [Google Scholar]
- Zhang, J.; Lian, Q.; Wang, J.; Chen, F. Experimental study on the preparation of ceramic wall and floor tiles with manganese residue. China Ceram. Ind. 2009, 16, 16–19. [Google Scholar]
- Hu, C.; Yu, H. Preparation of ceramic bricks from electrolytic manganese residue. Silic. Bull 2010, 29, 112–115. [Google Scholar]
- Cheng, H.; Ye, F.; Wei, H.; Shi, W.; Wu, S. Study on the effect of pore-forming agent on preparation of porous ceramics by electrolytic manganese slag. Shandong Chem. Ind. 2019, 48, 31. (In Chinese) [Google Scholar]
- Zhan, X.; Wang, L.; Gong, J.; Wang, X.; Song, X.; Xu, T. Co-sintering MSWI fly ash with electrolytic manganese residue and coal fly ash for lightweight ceramisite. Chemosphere 2021, 263, 127914. [Google Scholar] [CrossRef]
- An, X.; Wu, Z.; Qin, H.; Liu, X.; He, Y.; Xu, X.; Li, T.; Yu, B. Integrated co-pyrolysis and coating for the synthesis of a new coated biochar-based fertilizer with enhanced slow-release performance. J. Clean. Prod. 2021, 283, 124642. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Potential of industrial de-dusting residues as a source of potassium for fertilizer production—A mini review. Resour. Conserv. Recycl. 2019, 143, 68–76. [Google Scholar] [CrossRef]
- Mubula, Y.; Yu, M.; Yang, D.; Lin, B.; Guo, Y.; Qiu, T. Recovery of valuable elements from solid waste with the aid of external electric field: A review. J. Environ. Chem. Eng. 2023, 11, 111237. [Google Scholar] [CrossRef]
- Das, N.; Jana, R.K. Adsorption of some bivalent heavy metal ions from aqueous solutions by manganese nodule leached residues. J. Colloid Interface Sci. 2006, 293, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Luo, C.; Wang, J.; Wang, H.; Chen, Z.; Wang, S.; Chen, Z. Recycling application of modified waste electrolytic manganese anode slag as efficient catalyst for PMS activation. Sci. Total Environ. 2021, 762, 143120. [Google Scholar] [CrossRef]
- Jiang, M.; Du, Y.G.; Du, D.; Deng, Y.; Chen, N. Technology for producing silicon-manganese fertilizer from EMM residue. China’s Manganese Ind. 2014, 32, 16–19. [Google Scholar]
- Liu, T. Study on Preparation Technology of Electrolytic Manganese Residue Compound Fertilizer. Master’s Thesis, Central South University, Changsha, China, 2012. (In Chinese). [Google Scholar]
- Lv, Y.; Li, J.; Chen, Z.; Ye, H.; Du, D.; Shao, L.; Ma, M. Species identification and mutation breeding of silicon-activating bacteria isolated from electrolytic manganese residue. Environ. Sci. Pollut. Res. 2021, 28, 1491–1501. [Google Scholar] [CrossRef]
- Xu, F.; Wang, X.; Chen, L.; Ding, D. Nutrition effect of Mn in manganese tailings on wheat growth. Guizhou Agric. Sci. 2010, 8, 56–58. [Google Scholar]
- Zhang, Y.; Chen, Y.; Kang, W.; Han, H.; Song, H.; Zhang, C.; Wang, H.; Yang, X.; Gong, X.; Zhai, C.; et al. Excellent adsorption of Zn (II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment. J. Clean. Prod. 2020, 258, 120736. [Google Scholar] [CrossRef]
- Li, C.; Zhong, H.; Wang, S.; Xue, J.; Wu, F.; Zhang, Z. Manganese extraction by reduction–acid leaching from low-grade manganese oxide ores using CaS as reductant. Trans. Nonferrous Met. Soc. China 2015, 25, 1677–1684. [Google Scholar] [CrossRef]
- Li, C.; Zhong, H.; Wang, S.; Xue, J.; Wu, F.; Zhang, Z. Preparation of MnO2 and calcium silicate hydrate from electrolytic manganese residue and evaluation of adsorption properties. J. Cent. South Univ. 2015, 22, 2493–2502. [Google Scholar] [CrossRef]
- Li, C.X.; Zhong, H.; Wang, S.; Xue, J.R.; Zhang, Z.Y. A novel conversion process for waste residue: Synthesis of zeolite from electrolytic manganese residue and its application to the removal of heavy metals. Colloids Surf. A Physicochem. Eng. Asp. 2015, 470, 258–267. [Google Scholar] [CrossRef]
- Zhan, X.; Wang, L.; Wang, X.; Gong, J.; Yang, L.; Bai, J. Enhanced geopolymeric co-disposal efficiency of heavy metals from MSWI fly ash and electrolytic manganese residue using complex alkaline and calcining pre-treatment. Waste Manag. 2019, 98, 135–143. [Google Scholar] [CrossRef]
- Zhao, R.; Han, F. Preparation of Geopolymer Using Electrolytic Manganese Residue. In Key Engineering Materials; Bao, Y., Jiang, D., Gong, J.H., Eds.; Trans Tech Publications Ltd.: Bäch, Switzerland, 2014; Volume 591, pp. 130–133. [Google Scholar] [CrossRef]
- Li, J.; Sun, P.; Li, J.; Lv, Y.; Ye, H.; Shao, L.; Du, D. Synthesis of electrolytic manganese residue-fly ash based geopolymers with high compressive strength. Constr. Build. Mater. 2020, 248, 118489. [Google Scholar] [CrossRef]
- Han, Y.C.; Cui, X.M.; Lv, X.S.; Wang, K.T. Preparation and characterization of geopolymers based on a phosphoric-acid-activated electrolytic manganese dioxide residue. J. Clean. Prod. 2018, 205, 488–498. [Google Scholar] [CrossRef]
- Duan, H.; Hu, X.; Sun, Z. Magnetic zeolite imidazole framework material-8 as an effective and recyclable adsorbent for removal of ceftazidime from aqueous solution. J. Hazard. Mater. 2020, 384, 121406. [Google Scholar] [CrossRef]
- Buaisha, M.; Balku, S.; Yaman, Ş.Ö. Heavy Metal Removal Investigation in Conventional Activated Sludge Systems. Civ. Eng. J. 2020, 6, 470–477. [Google Scholar] [CrossRef]
- Hossain, N.; Bhuiyan, M.A.; Pramanik, B.K.; Nizamuddin, S.; Griffin, G. Waste materials for wastewater treatment and waste adsorbents for biofuel and cement supplement applications: A critical review. J. Clean. Prod. 2020, 255, 120261. [Google Scholar] [CrossRef]
- Lan, J.; Sun, Y.; Huang, P.; Du, Y.; Zhan, W.; Zhang, T.; Du, D. Using Electrolytic Manganese Residue to prepare novel nanocomposite catalysts for efficient degradation of Azo Dyes in Fenton-like processes. Chemosphere 2020, 252, 126487. [Google Scholar] [CrossRef]
- Li, M.; Huang, F.; Hu, L.; Sun, W.; Li, E.; Xiong, D.; Zhong, H.; He, Z. Efficient activation of peroxymonosulfate by a novel catalyst prepared directly from electrolytic manganese slag for degradation of recalcitrant organic pollutes. Chem. Eng. J. 2020, 401, 126085. [Google Scholar] [CrossRef]
Chemical Properties | Mass Fraction (%) | Physical Properties | Value |
---|---|---|---|
SiO2 | 25–40 | Density (g/cm3) | 2–3 |
Al2O3 | 8–20 | Fineness (cm2/g) | ~3000 |
SO3 | 20–30 | Water content (%) | 20–30 |
CaO | 10 | LOI (%) | ~20 |
Fe2O3 | 5–10 | average particle size (μm) | 15–17 |
Mn2+(EQV:MnO2) | 2–7 | pH | 4–6 |
MgO | 1–3 |
References | Leaching Reagent | Experimental Conditions | Recovery Efficiency |
---|---|---|---|
[45] | Pure Water | Roasting at low temperature (600 °C) for 60 min, water washing process at 25 °C with a S:L ratio of 1:4 | Mn2+ recovery below 0.005 g/L |
[46] | Pure Water | Ball milling with S:L ratio of 1:2, rotation at 250 rpm, volume ratio of electromagnet rotor to balls (VEMR/Vballs) of 0.8, fill factor of 0.12, duration of 30 min, and addition of oxalic acid dihydrate. | Mn2+ recovery at 98%, Fe below 2%, NH4+-N concentration at 13.65 mg/L |
[47] | Pure Water | Leaching at 24 °C with a S:L ratio of 1:4 and an agitation rate of 300 rpm | Mn2+ recovery at 83.35% |
[48] | Sulfuric Acid (H2SO4) | S:L = 1:4, temperature = 85 °C, H2SO4 concentration = 1.67 mol/L, H2C2O4 concentration = 0.2mol/L, time = 120 min | Mn2+ recovery at 99.9%, Fe at 79.3% |
[49] | Hydrochloric Acid (HCl) | S:L = 1:6, temperature = 100 °C, HCl concentration = 2 mol/L, time = 60 min | Recovery: Mn at 95.89%, Fe at 94.69%, Ca at 63.38%, Al at 2.21%, NH4+-N: 96.34% |
[50] | NaOH | S:L = 1:5, temperature = 130 °C, NaOH concentration = 2 mol/L, time = 5 h, Stirring speed = 300 r/min | Si recovery at 82.04% |
[51] | Nitric Acid (HNO3) | S:L = 1:20, temperature = 50 °C, HNO3 concentration = 2 mol/L, time = 2 h | Mn approach 100% |
Reaction Equation | (kJ·mol−1) | Spontaneous Reaction/Temperature Range/K |
---|---|---|
11MnO2 + 2FeS2 = 11MnO + Fe2O3 + 4SO2(g) | = −170.92 − 1.026T | Spontaneous |
15MnO2 + 2FeS2 + 14H2SO4 = 15MnSO4 + Fe2(SO4)3+ 14H2O | = −2918.36 − 0.014T | Spontaneous |
2MnO2 + SO2(g) = Mn2O3 + SO3(l) | = −15.01 + 0.018T | T < 834 |
3MnO2 + 2SO2(g) = Mn3O4 + 2SO3(l) | = −22.22 + 0.049T | T < 453 |
MnO2 + SO2(g) = MnSO4 | = −240.98 + 0.177T | T < 1361 |
3MnO2 + 2Fe + 6H2SO4 = 3MnSO4 + Fe2(SO4)3 + 6H2O | = 1020.13 + 0.047T | Spontaneous |
Reaction Equation | (kJ·mol−1) | Spontaneous Reaction/Temperature Range/K |
---|---|---|
MnO2 + SO2(g) = MnSO4 | = −192.7 + 0.18T | T < 1091 |
2MnO2 = Mn2O3 + 1/2O2(g) | = 55.64 − 0.1T | T > 530.5 |
3MnO2 + SO2(g) = Mn2O3 + MnSO4 + 1/2O2(g) | = −32.76 + 0.02T | T < 1910 |
2Mn2O3 + SO2(g) = Mn3O4 + MnSO4 | = −43.35 + 0.05T | T < 963.3 |
Mn2O3 + 2SO2(g) + 1/2O2(g) = 2MnSO4 | = −441.4 + 0.46T | T < 962.7 |
Mn3O4 + 3SO2(g) + O2(g) = 3MnSO4 | = −700.8 + 0.73T | T < 964.3 |
2Mn3O4 + 6SO2(g) = 5MnSO4 + MnS | = −156.7 + 0.26T | T < 602.7 |
4Mn2O3 + 8SO2(g) = MnS + 7MnSO4 | = −243.4 + 0.35T | T < 695.4 |
Mn3O4 + SO2(g) = 2MnO + MnSO4 | = −24.41 + 0.04T | T < 642.4 |
PbO2 + SO2(g) = PbSO4 | = −291.2 + 0.17T | T < 1730 |
PbO2 = PbO + 1/2O2(g) | = 9.10 − 0.02T | T < 441.4 |
PbO + SO2(g) + 1/2O2(g) = PbSO4 | = 78.70 + 0.06T | T < 1256 |
4PbO + 4SO2(g) = PbS + 3PbSO4 | = −142.0 + 0.17T | T < 843.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larbi, A.; Chen, X.; Khan, S.M.; Fangheng, T. Innovative Techniques for Electrolytic Manganese Residue Utilization: A Review. Waste 2024, 2, 354-381. https://doi.org/10.3390/waste2030020
Larbi A, Chen X, Khan SM, Fangheng T. Innovative Techniques for Electrolytic Manganese Residue Utilization: A Review. Waste. 2024; 2(3):354-381. https://doi.org/10.3390/waste2030020
Chicago/Turabian StyleLarbi, Andrews, Xiping Chen, Suliman Muhammad Khan, and Tang Fangheng. 2024. "Innovative Techniques for Electrolytic Manganese Residue Utilization: A Review" Waste 2, no. 3: 354-381. https://doi.org/10.3390/waste2030020
APA StyleLarbi, A., Chen, X., Khan, S. M., & Fangheng, T. (2024). Innovative Techniques for Electrolytic Manganese Residue Utilization: A Review. Waste, 2(3), 354-381. https://doi.org/10.3390/waste2030020