Compositional Analysis and Numerical Simulation of Slagging Process on a Water-Cooled Wall of an MSW Incinerator
Abstract
:1. Introduction
2. Sample Testing
2.1. Experimental Methods
2.2. Test Results
3. Numerical Simulation Method
3.1. Calculation Model of Incineration
3.2. Calculation Model of Ash Particles
4. Results and Analysis
4.1. Calculation Results and Analysis of Gas-Phase Combustion
4.2. The Motion Trajectory of Ash Particles
4.3. The Influence of Ash Particle Size
4.4. The Influence of Ash Particle Concentration
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, W.; Ju, A.L. Current Situation and Enlightenment on Incineration Treatment of Domestic Waste in Japan. Environ. Sanit. Eng. 2019, 27, 57–60. [Google Scholar]
- Zhou, D. Rapid development of waste-to-energy incineration in Europe. Chin. Foreign Energy 2018, 23, 38. [Google Scholar]
- National Bureau of Statistics. 2024. Available online: https://data.stats.gov.cn (accessed on 1 October 2024).
- Zhong, D.; Zeng, K.; Li, J.; Qiu, Y.; Flamant, G.; Nzihou, A.; Vladimirovich, V.S.; Yang, H.; Chen, H. Characteristics and evolution of heavy components in bio-oil from the pyrolysis of cellulose, hemicellulose and lignin. Renew. Sustain. Energy Rev. 2022, 157, 111989. [Google Scholar] [CrossRef]
- Wang, R.; Rong, B.; Ma, S.; Ma, D.; Wu, L.; Ma, H.; Ma, Y.; Wang, S.; Hu, H.; Liu, C. Prediction of ash fusion temperatures of municipal solid waste incinerator. J. Energy Inst. 2023, 111, 101438. [Google Scholar] [CrossRef]
- Jiang, X.G.; Meng, X.F.; Liu, G.J. Research status of deposition growth on heat exchange surface of waste incineration system and countermeasures for deposition control. Chem. Ind. Eng. Prog. 2021, 40, 375–385. [Google Scholar]
- Ma, W.; Zhou, H.; Zhang, J.; Zhang, K.; Liu, D.; Zhou, C.; Cen, K. Behaviour of slagging deposits during coal and biomass co-combustion in a 300 kW down-fired furnace. Energy Fuels 2018, 32, 4399–4409. [Google Scholar] [CrossRef]
- Walsh, P.M.; Sayre, A.N.; Loehden, D.O.; Monroe, L.S.; Beér, J.M.; Sarofim, A.F. Deposition of bituminous coal ash on an isolated heat exchanger tube: Effects of coal properties on deposit growth. Prog. Energy Combust. Sci. 1990, 16, 327–345. [Google Scholar] [CrossRef]
- Chen, L.; Yong, S.Z.; Ghoniem, A.F. Modelling the slag behaviour in three dimensional CFD simulation of a vertically-oriented oxy-coal combustor. Fuel Process. Technol. 2013, 112, 106–117. [Google Scholar] [CrossRef]
- Ni, J.; Zhou, Z.; Yu, G.; Liang, Q.; Wang, F. Molten slag flow and phase transformation behaviors in a slagging entrained-flow coal gasifier. Ind. Eng. Chem. Res. 2010, 49, 12302–12310. [Google Scholar] [CrossRef]
- Chen, L.; Ghoniem, A.F. Development of a three-dimensional computational slag flow model for coal combustion and gasification. Fuel 2013, 113, 357–366. [Google Scholar] [CrossRef]
- Wang, X.H. A review on numerical modeling of ash deposition during the process of pulverized coal combustion. Adv. Mech. 2005, 35, 417–426. [Google Scholar]
- Li, W.Y. The Numerical Simulation of Coal Powder Combustion Process and Slagging in Utility Boiler. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2003. [Google Scholar]
- Pintana, P.; Tippxayawong, N. Prediction of Slag Occurrence in a Lignite-Fired Utility Boiler. WSEAS Trans. Environ. Dev. 2014, 10, 202–210. [Google Scholar]
- Pérez, M.G.; Vakkilainen, E.; Hyppänen, T. 2D dynamic mesh model for deposit shape prediction in boiler banks of recovery boilers with different tube spacing arrangements. Fuel 2015, 158, 139–151. [Google Scholar] [CrossRef]
- Tang, S.Z.; He, Y.L.; Wang, F.L.; Tao, Y.B. Parametric study on fouling mechanism and heat transfer characteristics of tube bundle heat exchangers for reducing fouling considering the deposition and removal mechanisms. Fuel 2018, 211, 301–311. [Google Scholar] [CrossRef]
- Fu, L.; Liu, P.; Li, G. Numerical investigation on ash fouling characteristics of flue gas heat exchanger. Appl. Therm. Eng. 2017, 123, 891–900. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhao, D.Q.; Jiang, L.Q.; Yang, W.B. The deposition and burning characteristics during slagging co-firing coal and wood: Modeling and numerical simulation. Combust. Sci. Technol. 2009, 181, 710–728. [Google Scholar] [CrossRef]
- Wang, J.J. Research on Optimization of Slagging Prevention Structure of Municipal Solid Waste Incinerator Based on CFD Numerical Simulation. Master’s Thesis, Zhejiang University, Hangzhou, China, 2022. [Google Scholar]
- Klasen, T.; Görner, K. The use of CFD for the prediction of problem areas inside a waste incinerator with regard to slagging, fouling and corrosion. Ind. Furn. Boil. 2000, 2, 393–402. [Google Scholar]
- Ma, T.; Zhou, H.Q.; Xu, F.; Chen, D.Z.; Qian, K.; Yin, L. Numerical Simulation and Intelligent Prediction of a 500t/d Municipal Solid Waste Incinerator. Energy 2024, 312, 133646. [Google Scholar] [CrossRef]
- Shuen, J.S.; Solomon AS, P.; Zhang, Q.F.; Faeth, G.M. Structure of particle-laden jets-Measurements and predictions. AIAA J. 1985, 23, 396–404. [Google Scholar] [CrossRef]
- Lee, F.C.C.; Lockwood, F.C. Modeling ash deposition in pulverized coal-fired applications. Prog. Energy Combust. Sci. 1999, 25, 117–132. [Google Scholar] [CrossRef]
- Costen, P.G.; Lockwood, F.C.; Siddique, M.M. Mathematical modeling of ash deposition in pulverized fuel-fired combustors. Proc. Combust. Inst. 2000, 28, 2243–2250. [Google Scholar] [CrossRef]
- Richards, G.H.; Slater, P.N.; Harb, J.N. Simulation of ash deposit growth in a pulverized coal-fired pilot scale reactor. Energy Fuels 1993, 7, 774–781. [Google Scholar] [CrossRef]
- Jia, T.; Chen, S.; Teng, L.; Zhang, R.; Yuan, G.; Chen, Y.; Yin, L. Characteristics and mechanism of slagging in a 500 t/d MSW incinerator. J. Energy Inst. 2024, 114, 101585. [Google Scholar] [CrossRef]
Element | Mass Fraction(%) |
---|---|
CaO | 25.008 |
SiO2 | 17.506 |
SO3 | 14.588 |
Fe2O3 | 13.305 |
Al2O3 | 7.161 |
Na2O | 7.064 |
K2O | 4.214 |
P2O5 | 2.519 |
TiO2 | 2.486 |
MgO | 2.403 |
ZnO | 2.146 |
Cl | 0.656 |
Cr2O3 | 0.283 |
MnO | 0.254 |
CuO | 0.094 |
PbO | 0.084 |
NiO | 0.07 |
SrO | 0.05 |
Sb2O3 | 0.042 |
ZrO2 | 0.041 |
Br | 0.016 |
Deformation Temperature (°C) | Softening Temperature (°C) | Hemispherical Temperature (°C) | Flow Temperature (°C) |
---|---|---|---|
1111 | 1113 | 1116 | 1128 |
Parameter | Value |
---|---|
Diameter (m) | 10−5 |
Temperature (K) | 1090 |
Mass flow rate (g/s) | 15.65 |
Velocity (m/s) | 6.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Jia, T.; Chen, Y.; Yin, L.; Huang, J.; Yuan, G. Compositional Analysis and Numerical Simulation of Slagging Process on a Water-Cooled Wall of an MSW Incinerator. Waste 2025, 3, 5. https://doi.org/10.3390/waste3010005
Chen S, Jia T, Chen Y, Yin L, Huang J, Yuan G. Compositional Analysis and Numerical Simulation of Slagging Process on a Water-Cooled Wall of an MSW Incinerator. Waste. 2025; 3(1):5. https://doi.org/10.3390/waste3010005
Chicago/Turabian StyleChen, Shanping, Tianyuan Jia, Yong Chen, Lijie Yin, Jingkuan Huang, and Guoan Yuan. 2025. "Compositional Analysis and Numerical Simulation of Slagging Process on a Water-Cooled Wall of an MSW Incinerator" Waste 3, no. 1: 5. https://doi.org/10.3390/waste3010005
APA StyleChen, S., Jia, T., Chen, Y., Yin, L., Huang, J., & Yuan, G. (2025). Compositional Analysis and Numerical Simulation of Slagging Process on a Water-Cooled Wall of an MSW Incinerator. Waste, 3(1), 5. https://doi.org/10.3390/waste3010005