The Effects of Multiple Acute Turkesterone Doses on Indirect Measures of Hypertrophy and Metabolic Measures: A Preliminary Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach
2.2. Participants
2.3. Anthropometrics Analyses
2.4. Venipuncture
2.5. Supplementation Protocol
2.6. Serum Target Analysis
2.7. Resting Metabolic Rate Analysis
2.8. Gastrointestinal and Hemodynamic Assessments
2.9. Statistical Analyses
3. Results
3.1. Dietary Analysis
3.2. Resting Metabolic Rate Analysis
3.3. IGF-1 Serum Concentrations
3.4. Gastrointestinal Distress and Hemodynamic Response
4. Discussion
5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bathori, M.; Toth, N.; Hunyadi, A.; Marki, A.; Zador, E. Phytoecdysteroids and Anabolic-Androgenic Steroids—Structure and Effects on Humans. Curr. Med. Chem. 2008, 15, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Dinan, L.; Dioh, W.; Veillet, S.; Lafont, R. 20-Hydroxyecdysone, from Plant Extracts to Clinical Use: Therapeutic Potential for the Treatment of Neuromuscular, Cardio-Metabolic and Respiratory Diseases. Biomedicines 2021, 9, 492. [Google Scholar] [CrossRef] [PubMed]
- Guibout, L.; Mamadalieva, N.; Balducci, C.; Girault, J.-P.; Lafont, R. The minor ecdysteroids from Ajuga turkestanica. Phytochem. Anal. 2015, 26, 293–300. [Google Scholar] [CrossRef]
- Gorelick-Feldman, J.; MacLean, D.; Ilic, N.; Poulev, A.; Lila, M.A.; Cheng, D.; Raskin, I. Phytoecdysteroids Increase Protein Synthesis in Skeletal Muscle Cells. J. Agric. Food Chem. 2008, 56, 3532–3537. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.M.; Zwetsloot, K.A.; Arthur, S.T.; Sherman, C.A.; Huot, J.R.; Badmaev, V.; Grace, M.; Lila, M.A.; Nieman, D.C.; Shanely, R.A. Phytoecdysteroids Do Not Have Anabolic Effects in Skeletal Muscle in Sedentary Aging Mice. Int. J. Environ. Res. Public Health 2021, 18, 370. [Google Scholar] [CrossRef]
- Das, N.; Mishra, S.K.; Bishayee, A.; Ali, E.S.; Bishayee, A. The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review. Acta Pharm. Sin. B 2021, 11, 1740–1766. [Google Scholar] [CrossRef]
- Todorova, V.; Ivanova, S.; Chakarov, D.; Kraev, K.; Ivanov, K. Ecdysterone and Turkesterone-Compounds with Prominent Potential in Sport and Healthy Nutrition. Nutrients 2024, 16, 1382. [Google Scholar] [CrossRef]
- Bajguz, A.; Koronka, A. Effect of ecdysone application on the growth and biochemical changes in Chlorella vulgaris cells. Plant Physiol. Biochem. 2001, 39, 707–715. [Google Scholar] [CrossRef]
- Mamarasulov, B.; Davranov, K.; Jabborova, D. Phytochemical, pharmacological and biological properties of Ajuga turkestanica (Rgl.) Brig (Lamiaceae). Ann. Phytomed. 2020, 9, 44–57. [Google Scholar] [CrossRef]
- Todorova, V.; Ivanov, K.; Delattre, C.; Nalbantova, V.; Karcheva-Bahchevanska, D.; Ivanova, S. Plant Adaptogens—History and Future Perspectives. Nutrients 2021, 13, 2861. [Google Scholar] [CrossRef]
- Bajguz, A.; Bąkała, I.; Talarek, M. Chapter 5—Ecdysteroids in Plants and their Pharmacological Effects in Vertebrates and Humans. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 45, pp. 121–145. [Google Scholar]
- Syrov, V.N. Mechanism of the anabolic action of phytoecdisteroids in mammals. Nauchnye Doki Vyss. Shkoly Biol. Nauk. 1984, 11, 16–20. [Google Scholar]
- Sena Filho, J.G.; Duringer, J.; Maia, G.L.; Tavares, J.F.; Xavier, H.S.; da Silva, M.S.; da-Cunha, E.V.; Barbosa-Filho, J.M. Ecdysteroids from Vitex species: Distribution and compilation of their 13C-NMR spectral data. Chem. Biodivers. 2008, 5, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Syrov, V.N.; Khushbaktova, Z.A. Experimental study of pharmacotherapeutic effect of phytoecdisteroids and nerobol in toxic liver damage. Eksp. Klin. Farmakol. 2001, 64, 56–58. [Google Scholar] [PubMed]
- Lafont, R.; Dinan, L. Practical uses for ecdysteroids in mammals including humans: And update. J. Insect Sci. 2003, 3, 7. [Google Scholar] [CrossRef]
- Syrov, V.N.; Kurmukov, A.G. The anabolic properties of turkesterone phytoecdysone and turkesterone tetraacetate in experiments on male rats. Probl. Endokrinol. 1976, 22, 107–112. [Google Scholar]
- Syrov, V.N. Comparative experimental investigation of the anabolic activity of phytoecdysteroids and steranabols. Pharm. Chem. J. 2000, 34, 193–197. [Google Scholar] [CrossRef]
- Wackerhage, H.; Schoenfeld, B.J.; Hamilton, D.L.; Lehti, M.; Hulmi, J.J. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J. Appl. Physiol. 2019, 126, 30–43. [Google Scholar] [CrossRef]
- Egerman, M.A.; Glass, D.J. Signaling pathways controlling skeletal muscle mass. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 59–68. [Google Scholar] [CrossRef]
- Anthony, T.G.; Mirek, E.T.; Bargoud, A.R.; Phillipson-Weiner, L.; DeOliveira, C.M.; Wetstein, B.; Graf, B.L.; Kuhn, P.E.; Raskin, I. Evaluating the effect of 20-hydroxyecdysone (20HE) on mechanistic target of rapamycin complex 1 (mTORC1) signaling in the skeletal muscle and liver of rats. Appl. Physiol. Nutr. Metab. 2015, 40, 1324–1328. [Google Scholar] [CrossRef]
- Lawrence, M.M. Ajuga Turkestanica as a Countermeasure Against Sarcopenia and Dynapenia. Master’s Thesis, Appalachian State University, Boone, NC, USA, 2012. [Google Scholar]
- Dioh, W.; Tourette, C.; Del Signore, S.; Daudigny, L.; Dupont, P.; Balducci, C.; Dilda, P.J.; Lafont, R.; Veillet, S. A Phase 1 study for safety and pharmacokinetics of BIO101 (20-hydroxyecdysone) in healthy young and older adults. J. Cachexia Sarcopenia Muscle 2023, 14, 1259–1273. [Google Scholar] [CrossRef]
- Machek, S.B.; Cardaci, T.D.; Wilburn, D.T.; Cholewinski, M.C.; Latt, S.L.; Harris, D.R.; Willoughby, D.S. Neoprene Knee Sleeves of Varying Tightness Augment Barbell Squat One Repetition Maximum Performance Without Improving Other Indices of Muscular Strength, Power, or Endurance. J. Strength. Cond. Res. 2021, 35, S6–S15. [Google Scholar] [CrossRef] [PubMed]
- Machek, S.B.; Zawieja, E.E.; Heileson, J.L.; Harris, D.R.; Wilburn, D.T.; Fletcher, E.A.; Cholewa, J.M.; Szwengiel, A.; Chmurzynska, A.; Willoughby, D.S. Human serum betaine and associated biomarker concentrations following a 14 Day supplemental betaine loading protocol and during a 28 Day washout period: A pilot investigation. Nutrients 2022, 14, 498. [Google Scholar] [CrossRef] [PubMed]
- Machek, S.B.; Harris, D.R.; Zawieja, E.E.; Heileson, J.L.; Wilburn, D.T.; Radziejewska, A.; Chmurzynska, A.; Cholewa, J.M.; Willoughby, D.S. The impacts of combined blood flow restriction training and betaine supplementation on one-leg press muscular endurance, exercise-associated lactate concentrations, serum metabolic biomarkers, and hypoxia-inducible factor-1α gene expression. Nutrients 2022, 14, 5040. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Temirgaziyev, B.S.; Kučáková, K.; Baizhigit, Y.A.; Jurášek, M.; Džubák, P.; Hajdúch, M.; Dolenský, B.; Drašar, P.B.; Tuleuov, B.I.; Adekenov, S.M. Bioavailability and structural study of 20-hydroxyecdysone complexes with cyclodextrins. Steroids 2019, 147, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, G.; Yuliandra, T.; Wuest, B.; Mazzarino, M.; de la Torre, X.; Botrè, F.; Diel, P.; Isenmann, E.; Parr, M.K. Urinary Elimination of Ecdysterone and Its Metabolites Following a Single-Dose Administration in Humans. Metabolites 2021, 11, 366. [Google Scholar] [CrossRef]
- Crouter, S.E.; Antczak, A.; Hudak, J.R.; DellaValle, D.M.; Haas, J.D. Accuracy and reliability of the ParvoMedics TrueOne 2400 and MedGraphics VO2000 metabolic systems. Eur. J. Appl. Physiol. 2006, 98, 139–151. [Google Scholar] [CrossRef]
- Woods, A.L.; Garvican-Lewis, L.A.; Rice, A.J.; Thompson, K.G. The Ventilation-Corrected ParvoMedics TrueOne 2400 Provides a Valid and Reliable Assessment of Resting Metabolic Rate (RMR) in Athletes Compared With the Douglas Bag Method. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 454–463. [Google Scholar] [CrossRef]
- Isbell, T.R.; Klesges, R.C.; Meyers, A.W.; Klesges, L.M. Measurement reliability and reactivity using repeated measurements of resting energy expenditure with a face mask, mouthpiece, and ventilated canopy. JPEN J. Parenter. Enter. Nutr. 1991, 15, 165–168. [Google Scholar] [CrossRef]
- Pereira, M.A.; O’Reilly, E.; Augustsson, K.; Fraser, G.E.; Goldbourt, U.; Heitmann, B.L.; Hallmans, G.; Knekt, P.; Liu, S.; Pietinen, P.; et al. Dietary Fiber and Risk of Coronary Heart Disease: A Pooled Analysis of Cohort Studies. Arch. Intern. Med. 2004, 164, 370–376. [Google Scholar] [CrossRef]
- Campbell, B.I.; Perry, R.; Horsley, J.; Aguilar, D.; Shimshock, T.; Fox, C.; Vargas, A.; Colenso-Semple, L. A Commercially Available Thermogenic Dietary Supplement Increases Resting Metabolic Rate in Physically Active Males: A Randomized, Double-Blind, Placebo-Controlled Investigation. J. Diet. Suppl. 2020, 17, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Zito, G.; Campbell, B.; Colquhoun, R.; Martinez, N.; Buchanan, L.; Lehn, M.; Johnson, M.; St Louis, C.; Smith, Y.; Cloer, B.; et al. The effects of a fat loss supplement on resting metabolic rate and hemodynamic variables in healthy females: Preliminary results. J. Int. Soc. Sports Nutr. 2014, 11, P1. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.I.; Zito, G.; Colquhoun, R.; Martinez, N.; Kendall, K.; Buchanan, L.; Lehn, M.; Johnson, M.; St. Louis, C.; Smith, Y.; et al. The effects of a single-dose thermogenic supplement on resting metabolic rate and hemodynamic variables in healthy females—A randomized, double-blind, placebo-controlled, cross-over trial. J. Int. Soc. Sports Nutr. 2016, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, K.; Stip, E.; Pélissier, M.C.; Aardema, F.; Guay, S.; Gaudette, G.; Van Haaster, I.; Robillard, S.; Grenier, S.; Careau, Y.; et al. Treating delusional disorder: A comparison of cognitive-behavioural therapy and attention placebo control. Can. J. Psychiatry 2007, 52, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Kreider, R.B. Dietary supplements and the promotion of muscle growth with resistance exercise. Sports Med. 1999, 27, 97–110. [Google Scholar] [CrossRef]
- Parr, M.K.; Zhao, P.; Haupt, O.; Ngueu, S.T.; Hengevoss, J.; Fritzemeier, K.H.; Piechotta, M.; Schlörer, N.; Muhn, P.; Zheng, W.-Y.; et al. Estrogen receptor beta is involved in skeletal muscle hypertrophy induced by the phytoecdysteroid ecdysterone. Mol. Nutr. Food Res. 2014, 58, 1861–1872. [Google Scholar] [CrossRef]
- Tashmukhamedova, M.A.; Almatov, K.T.; Syrov, V.N.; Sultanov, M.B.; Abidov, A.A. Comparative study of the effect of ecdysterone, turkesterone and nerobol on the function of rat liver mitochondria in experimental diabetes. Vopr. Med. Khim 1986, 32, 24–28. [Google Scholar]
- Isenmann, E.; Ambrosio, G.; Joseph, J.F.; Mazzarino, M.; de la Torre, X.; Zimmer, P.; Kazlauskas, R.; Goebel, C.; Botrè, F.; Diel, P.; et al. Ecdysteroids as non-conventional anabolic agent: Performance enhancement by ecdysterone supplementation in humans. Arch. Toxicol. 2019, 93, 1807–1816. [Google Scholar] [CrossRef]
- Zauner, C.; Schneeweiss, B.; Kranz, A.; Madl, C.; Ratheiser, K.; Kramer, L.; Roth, E.; Schneider, B.; Lenz, K. Resting energy expenditure in short-term starvation is increased as a result of an increase in serum norepinephrine. Am. J. Clin. Nutr. 2000, 71, 1511–1515. [Google Scholar] [CrossRef]
- Bloomer, R.J.; Fisher-Wellman, K.H.; Hammond, K.G.; Schilling, B.K.; Weber, A.A.; Cole, B.J. Dietary supplement increases plasma norepinephrine, lipolysis, and metabolic rate in resistance trained men. J. Int. Soc. Sports Nutr. 2009, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Sidorova, Y.S.; Shipelin, V.A.; Petrov, N.A.; Zorin, S.N.; Mazo, V.K. Adaptogenic Properties of a Phytoecdysteroid-Rich Extract from the Leaves of Spinacia oleracea L. Plants 2021, 10, 2555. [Google Scholar] [CrossRef] [PubMed]
- Kuzmenko, A.I.; Morozova, R.P.; Nikolenko, I.A.; Korniets, G.V.; Kholodova Yu, D. Effects of vitamin D3 and ecdysterone on free-radical lipid peroxidation. Biochemistry 1997, 62, 609–612. [Google Scholar] [PubMed]
- Wilborn, C.D.; Taylor, L.W.; Campbell, B.I.; Kerksick, C.; Rasmussen, C.J.; Greenwood, M.; Kreider, R.B. Effects of methoxyisoflavone, ecdysterone, and sulfo-polysaccharide supplementation on training adaptations in resistance-trained males. J. Int. Soc. Sports Nutr. 2006, 3, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, U. Catecholamines*. In Encyclopedia of Stress, 2nd ed.; Fink, G., Ed.; Academic Press: New York, NY, USA, 2007; pp. 419–423. [Google Scholar]
- Ardalan, M.R.; Rafieian-Kopaei, M. Antioxidant supplementation in hypertension. J. Ren. Inj. Prev. 2014, 3, 39–40. [Google Scholar] [CrossRef]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef]
- Sponbeck, J.K.; Frandsen, C.R.; Ridge, S.T.; Swanson, D.A.; Swanson, D.C.; Johnson, A.W. Leg muscle cross-sectional area measured by ultrasound is highly correlated with MRI. J. Foot Ankle Res. 2021, 14, 5. [Google Scholar] [CrossRef]
- Adams, G.R.; Haddad, F. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J. Appl. Physiol. (1985) 1996, 81, 2509–2516. [Google Scholar] [CrossRef]
Participants (n = 11) | Mean ± SD |
---|---|
Age (y) | 23.3 ± 2.2 |
Height (cm) | 179.3 ± 7.9 |
Weight (kg) | 91 ± 18.5 |
Body Fat (%) | 18.6 ± 7.1 |
Lean Mass (kg) | 71.16 ± 10.97 |
Mean ± SD, 95% CI (LB, UB) | PLA | 1000 mg | 2000 mg | p-Value | ηp2 |
---|---|---|---|---|---|
Carbohydrate (g∙kg−1) | 2.9 ± 0.8 (2.3, 3.5) | 2.8 ± 1.0 (2.3, 3.9) | 3.1 ± 0.9 (2.5, 3.8) | 0.747 | 0.079 |
Fat (g∙kg−1) | 1.2 ± 0.4 (0.9, 1.5) | 1.0 ± 0.4 (0.8, 1.3) | 1.0 ± 0.3 (0.8, 1.3) | 0.160 | 0.160 |
Protein (g∙kg−1) | 1.9 ± 0.6 (1.5, 2.4) | 1.6 ± 0.4 (1.3, 2.0) | 1.7 ± 0.7 (1.2, 2.2) | 0.421 | 0.083 |
Total kcal | 2679 ± 727 (2231, 3161) | 2486 ± 938 (1832, 3046) | 2535 ± 318 (2262, 2716) | 0.356 | 0.098 |
Mean ± SD IGF-1 (ng/mL−1) | 1000 mg TURK | 2000 mg TURK | PLA |
---|---|---|---|
Pre | 80.6 ± 32.9 | 89.4 ± 27.9 | 72.1 ± 30.8 |
3H Post | 135.3 ± 53.7 | 147.9 ± 42.6 | 72.9 ± 33.3 |
24H Post | 112.2 ± 58.8 | 139.2 ± 39 | 70.8 ± 28.2 |
Mean ± SD | 1000 mg TURK | 2000 mg TURK | PLA | ||||||
---|---|---|---|---|---|---|---|---|---|
PRE | 3HPOST | 24HPOST | PRE | 3HPOST | 24HPOST | PRE | 3HPOST | 24HPOST | |
HR (bpm) | 63.3 ± 11.7 | 63.6 ± 12.9 | 67.8 ± 14.9 | 66.6 ± 7.6 | 62.9 ± 6.5 | 63.9 ± 10.3 | 63.4 ± 9.4 | 64.1 ± 9 | 66.2 ± 8.6 |
SBP (mmhg) | 121 ± 4.7 | 122.1 ± 6.7 | 118.9 ± 3.7 | 123.7 ± 4.1 | 122.8 ± 3.6 | 123.4 ± 3.9 | 120.6 ± 4.7 | 121 ± 3.8 | 122.4 ± 8.6 |
DBP (mmhg) | 77.3 ± 4.2 | 78.2 ± 4.7 | 76.7 ± 3.1 | 79.7 ± 3.3 | 79.1 ± 4.9 | 78.7 ± 2.6 | 77 ± 5 | 78 ± 4.9 | 78.1 ± 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, D.R.; Chapman-Lopez, T.; Machek, S.B.; Forsse, J.S.; Sulak, T.; Funderburk, L.K. The Effects of Multiple Acute Turkesterone Doses on Indirect Measures of Hypertrophy and Metabolic Measures: A Preliminary Investigation. Muscles 2024, 3, 364-375. https://doi.org/10.3390/muscles3040031
Harris DR, Chapman-Lopez T, Machek SB, Forsse JS, Sulak T, Funderburk LK. The Effects of Multiple Acute Turkesterone Doses on Indirect Measures of Hypertrophy and Metabolic Measures: A Preliminary Investigation. Muscles. 2024; 3(4):364-375. https://doi.org/10.3390/muscles3040031
Chicago/Turabian StyleHarris, Dillon R., Tomas Chapman-Lopez, Steven B. Machek, Jeffery S. Forsse, Tracey Sulak, and Leslee K. Funderburk. 2024. "The Effects of Multiple Acute Turkesterone Doses on Indirect Measures of Hypertrophy and Metabolic Measures: A Preliminary Investigation" Muscles 3, no. 4: 364-375. https://doi.org/10.3390/muscles3040031
APA StyleHarris, D. R., Chapman-Lopez, T., Machek, S. B., Forsse, J. S., Sulak, T., & Funderburk, L. K. (2024). The Effects of Multiple Acute Turkesterone Doses on Indirect Measures of Hypertrophy and Metabolic Measures: A Preliminary Investigation. Muscles, 3(4), 364-375. https://doi.org/10.3390/muscles3040031